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ABSTRACT

The OSALPC (One-Sided Autocorrelation Linear Predictive
Coding) representation of the speech signal has shown to
be attractive for speech recognition because of its simplicity
and its high recognition performance with respect to the
standard LPC in severe noisy conditions. In this paper the
OSALPC technique is applied to the problem of speaker
identification in noisy conditions. As shown with
experimental results, using additive white noise, that
technique also achieves much better results than both LPC
and mel-cepstrum parameterizations in this task.

1. INTRODUCTION

The performance of existing speech and speaker
recognition systems degrades rapidly in the presence of
background noise when training and testing cannot be done
in the same ambient conditions. In order to develop a
system that operates robustly and reliably in the presence of
noise, many techniques have been proposed in the literature
for reducing noise in each stage of the recognition process
[1]. However, speech and speaker recognition in noisy
environments remains an unsolved problem.

One of the main attempts to combat the noise problem
consists of finding novel acoustic representations that are
resistant to noise corruption in order to replace the
traditional parameterization techniques, which are known to
be very sensitive to the presence of noise.

Concretely, in speech and speaker recognition
applications, cepstral-based parameters are the most
common representations. However, the most widely used
techniques of computing cepstra, such as linear prediction
(LPC) [2] and mel-cepstrum [3], lead to poor recognition
rates in noisy conditions, even if only a modest level of
noise contamination is present in the speech signal.

Recently, the authors proposed an alternative
parameterization technique called One-Sided
Autocorrelation Linear Predictive Coding (OSALPC) [4]
for noisy speech recognition. This technique, closely
related with the Short-Time Modified Coherence (SMC)
representation [5], is essentially an AR modeling of the
causal part of the autocorrelation sequence and its use in
noisy speech recognition has shown to be attractive because
of its simplicity and high speech recognition performance
with respect to the standard LPC in severe conditions of
additive white noise [4] and noisy car environment [6].
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In this paper the OSALPC technique is applied to the
problem of text independent speaker identification in noisy
conditions in order to gain some perspective of the merit of
that technique with respect to the conventional LPC and
mel-cepstrum parameterization techniques. Experiments
have been carried out using a simple and efficient speaker
identification system that uses an arithmetic-harmonic
sphericity measure on covariance matrices [7]. In this
work, only additive white noise has been considered.

The paper is organized in the following way. In section
2 the OSALPC technique is revised and its relationship
with the standard LPC approach and the SMC
representation is discused. Section 3 is dedicated to report
the experiments and results. Finally, in section 4 some
conclusions are summarized from those results.

2. OSALPC REPRESENTATION

From the autocorrelation sequence R(n) we may define
the one-sided (causal part of the) autocorrelation (OSA)
sequence

R(m) m>0
R*(m) =9 R(0)/2 m=0 H
0 m<(

which verifies
R*¥(m) + R*(-m) =R(m), -oc<m<e (2)

Its Fourier transform is the complex spectrum
1 .
$H(w) =5 [S(@) + jSii(e)] 3

where S(w) s the spectrum, i.e. the Fourier transform of
R(n), and Sjj(w) is the Hilbert transform of S(w).

Due to the analogy between S*(w) in (3) and the
analytic signal used in amplitude modulation, a spectral
"envelope” E(w) [8] can be defined as

E(w) = IST (o) 4)

This envelope characteristic, along with the high
dynamic range of speech spectra, originates that E(w)
strongly enhances the highest power frequency bands.
Thus, the noise components lying outside the enhanced
frequency band are largely attenuated in E(o) with respect
to S(w). On the other hand, it is well known that R+(n) has
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the same poles than the signal [9].

These both properties, robustness to noise and pole-
preservation, suggest that the AR parameters of the speech
signal can be more reliably estimated from R*(n) than
directly from the signal itself when it is corrupted by broad
band noise. For this purpose, in the same manner as the
standard LPC performs a linear prediction of the speech
signal, that is equivalent to assume an all-pole model for the
spectrum of the signal S{w), we may consider a linear
prediction of R*(n), equivalent to assume an all-pole model
for its spectrum E2(w). This is the basis of the OSALPC
(One-Sided Autocorrelation Linear Predictive Coding)
parameterization technique, proposed in {4] as a robust
representation of speech signal when noise is present.

The algorithm to calculate the cepstrum coefficients
corresponding to the OSALPC technique is simple:

a) Firstly, from the speech frame of length N the
autocorrelation lags until M = N/2 are computed.

b) In the case of additive white noise, as in this paper,
R(0) is set to O because it is very corrupted by noise.

¢) Secondly, the Hamming window from m=0 to M is
applied on the one-sided autocorrelation sequence obtained
in steps a) and b).

d) Thirdly, the first p + 1 autocorrelation lags of this
sequence are computed from m = 0 to p using the classical
biased estimator.
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Fig.1. Block diagram for the calculation of the OSALPC
cepstrum (R(0) is set to zero only in the case of additive
white noise)
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e) Then these values are used as entries to the Levinson-
Durbin algorithm to estimate the AR parameters.

f) Finally, the cepstral coeffcients corresponding to the
model are recurrently computed from those AR parameters.
Fi Alblock diagram of the proposed algorithm is given in

ig. 1. .

The robustness of that algorithm to additive white noise
is illustrated in Fig. 2. In that case, the conventional biased
autocorrelation estimator, i.e. the one that is commonly
employed in speech processing, was used to compute the
one-sided autocorrelation sequence. As it can be seen in the
figure, the OSALPC square envelope strongly enhances the
highest power frequency band and is more robust to
additive white noise than the LPC spectrum.

It can also be seen in Fig. 2 that spurious peaks appear
in the OSALPC square envelope. Probably, they are due to
the fact that OSALPC technique does not actually perform a
deconvolution between the filter and the excitation of the
canonic model of speech production done by the standard
LPC technique [4].

However, in spite of the OSALPC technigue only
performs a partial deconvolution, its use in noisy speech
recognition has shown to be attractive because of its
simplicity and high speech recognition performance with
respect to the conventional LPC in severe conditions of
additive white noise [4] and noisy car environment [6].

[] s2 184 156 208 260 312 364 416 468

a) LPC spectrum

b) OSALPC square envelope

Fig. 2. Robustness of the OSALPC representation to
additive white noise: a) LPC spectrum and b) OSALPC
square envelope of a voiced speech frame in noise free
conditions (sohid line) and SNR equal to 0 dB (dotted line).
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The Short-Time Modified Coherence (SMC) technique,
proposed by D. Mansour and B.H. Juang [5], is also based
on an AR modeling in the autocorrclation domain.
However, whereas in the OSALPC technique the entries to
the Levinson-Durbin algorithm (first p values of the
autocorrelation of the one-sided autocorrelation sequence)
are calculated from R+*(n) using the classical biased
autocorrelation estimator, in the SMC representation they
are computed using a square root spectral shaper. In terms
of the above OSALPC formulation, that difference actually
consists of assuming in the SMC technique an all-pole
spectral model for the envelope E(w) instead of E2(w).

The OSALPC technique was compared in a previous
work [4] on noisy speech recognition with both the
conventional LPC and the SMC technique, using speech
signals that included additive white noise. In those tests,
the OSALPC technique outperformed the other two for low
SNR, using the conventional biased estimator to compute
the one-sided autocorrelation. In the present investigation
and in a recent work on speech recognition in real noisy car
environment [6], OSALPC was implemented using the
same one-sided autocorrelation estimator than SMC (i.e.,
the coherence estimator, which is delined in [5]), since we
observed a slight improvement by using it instead of the
biased estimator for the case of additive white noise.
Actually, with the coherence estimator, the OSALPC
representation achieved in our experiments better results
than the SMC representation for every tested SNR,
including clean speech [10].

3. SPEAKER IDENTIFICATION
EXPERIMENTS

This section reports the application of the OSALPC
technique to the problem of text independent speaker
identification in noisy conditions, i.c. from conversational
speech utterances that have been corrupted by noise, in
order to gain some perspective of the merit of that technique
with respect to the standard parameterization techniques,
LPC and mel-cepstrum.

3.1. Speech Database

For training text independent speaker identification, a
task-specitic corpus s not necessary. The testing corpus is
different from the training corpus. Conscquently, the
speaker identification task becomes more difficult, but it is
closer to a real application.

The TIMIT [11] database was used in our experiments.
It consists of 420 speakers (130 females and 290 malcs)
classified into the cight “dialect regions” of American
English. Each speaker utters 10 sentences. 2 of these
sentences are “dialect sentences™ and are uttered by every
spcaker. The 8 others are different for each speaker: 5
“MIT” sentences (from a set of 450 sentences), designed to
provide a rich variety of phonctic segments and contexts;
and 3 “TI” sentences (from 1890), taken from a large
corpus of written text. There are no impostors, only
cooperative speakers. In the average, a sentence lasts about
3 seconds. The speech signal is sampled at 16 KHz and
quantized using 2 bytes per sample.

The TIMIT sentences were considered clean signals.
Noisy speech was simulated by adding zero mean white
Gaussian noise to the clean signals.

3.2. Speaker Identification System

There are a number of techniques that have
demonstrated good text independent speaker identification
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performance in relatively low-noise environments. In this
paper, the experiments have been carried out using a simple
speaker identification system that uses an arithmetic-
harmonic sphericity measure on the covariance matrices of
the sequence of the parameter vectors [7], which is easy to
implement and computationally etficient.

In that system, one reference is used per speaker, which
is the covariance matrix of the acoustic parameters of a
training utterance.

The arithmetic-harmonic sphericity distance measure
between a test covariance matrix Y and a reference
covariance matrix X is defined as:

wX,Y) = log (%) )

where A and H are respectively the arithmetic and
harmonic means of the eigenvalues of Y relative to X
(eigenvalues of the product YX-1), that are always
possitive. This measure is non-negative and equals to zero
iff A = H, that is iff all eigenvalues are equal (i.e. when X
and Y are proportional). Morcover, p is clearly symmetric.
Another important property of this measure comes from the
fact that it can be computed very efficiently without an
explicit computation of the cigenvalues of Y relative to X.

That measure is used in association with the 1-nearest
neighbor decision rule. The possibility of rejection is not
taken into account.

3.3. Experiments and Results

For each speaker, the reference covariance matrix was
computed from the concatenated acoustic parameters
corresponding to the 5 "MIT" sentences of the TIMIT
database, recorded in noise-free conditions. Thus, a
training utterance lasts approximately 5 x 3 = 15 seconds.

During testing two experiments were performed per
speaker. For each experiment, the test covariance matrix
was computed from the concatenated parameters of 2 of the
5 remaining sentences. Therefore, a test utterance lasts
approximately 2 x 3 = 6 scconds. Those signals were
contaminated by zero mean white Gaussian noise in order
that the SNR becomes « (clean), 30, 20 and 10 dB.

The speech signal was preemphasized with 1 - 0.95 271,
In the parameterization stage of the system, the signal was
divided into frames of 25 ms at 10 ms rate. Each frame was
characterized by 20 cepstral parameters calculated by either
the conventional LPC method, the mel-cepstrum technique
or the OSALPC representation proposed in this paper. In
all cases, an analysis order (prediction order in the LPC and
OSALPC methods and number of filters in the mel-
cepstrum technique) equal to 20) was used.

Table 1 shows the speaker identification scores for a set
of 100 speakers (200 tests) corresponding to the three
parameterizations above considered -LPCC (Linecar
Prediction Cepstral Coeflicients), MFCC (Mel-Frequency

SNR (dB) clean 30 20 10
LPCC 100 95.0 55.0 7.0
MFCC 100 95.5 53.0 19.5
OSALPCC 100 98.5 79.0 20.5

Table 1. Speaker identification scores for 100 speakers
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Cepstral Coefficients) and OSALPCC (One-Sided
Autocorrelation Linear Prediction Cepstral Coefficients)- in
terms of the SNR of additive white noise of the test signals.
The reference signals are clean.

As it can be seen in Table 1, the speaker identification
results are very sensitive to noise distortion. The same
observation was made in [12]. Relating to the
parameterization technique, the speaker identification scores
obtained using LPCC and MFCC are very similar, but
OSALPCC results are much better whenever the SNR is
not too low. Experiments with other sizes of speaker sets
showed similar relative scores between the three
techniques.

In Fig. 3, the results of Table 1 are compared with the
results corresponding to the conventional LPC technique in
the case that both test and training data, although degraded
by noise, are matched in terms of SNR. This case is called
"reference” in the figure because, although it is a somewhat
artificial situation, provides a "good target for any noise
compensation or adaptation scheme” [12].
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Fig. 3. Comparison of techniques

In the experiments of Table 1, every technique achieved
100 % speaker identification rate in clean conditions. In
order to gain some perspective of the merit of the OSALPC
technique in these conditions, experiments were performed
for a set of 200 speakers (400 tests) using the conventional
LPC and the new OSALPC techniques. The speaker
identification scores obtained were 95.75 and 99.5,
respectively. This lost of speaker identification accuracy of
the OSALPC technique in clean conditions is probably due
to the imperfect deconvolution of the speech signal
performed by that technique.
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4. CONCLUSIONS

In this paper, the linear prediction of the one-sided
autocorrelation sequence (OSALPC), already proposcd by
the authors in [4] for noisy speech recognition, is applied to
text independent speaker identification in the presence of
additive white noise and it is compared with the traditional
parameterizations of speech, LPC-cepstrum and mel-
cepstrum. Experiments have been carried out using a
simple and efficient speaker identification system that uses
an arithmetic-harmonic sphericity measure on covariance
matrices [7].

From this study, two main conclusions are attained:

a) Text independent speaker identification using the
LPC-cepstrum and mel-cepstrum techniques, degrades
drastically in the presence of additive white noise.

b) The OSALPC technique noticeably outperforms
those techniques whenever the SNR is not too low.

Therefore, we can assert that the OSALPC technique is
also useful, at least with this system, for speaker
identification in noisy conditions.
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