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1L.Introduction-

The motivation of this paper stems from an ample variety
of communications problems where a receiving station has
to retrieve the transmitted data from a channel-distorted
versions of the original signal.. The purpose has been to
derive an adaptive algorithm that can ensure blind
demodulation, without a training signal. All available
statistical knowledge of the clean modulated signal may be
employed. In this sense, acquisition is performed on
availability of a statistical reference rather than on a time
reference (training sequence). The algorithm herein
developed is specially suited for those applications where at
least partial knowledge of the signal statistics is available
and very little is known about the characteristics of the
noise or interfering signals. Provision against effects such
as coloured noise, unknown channel impulse response,
unbalanced I-QQ channels, can be achieved by the same
algorithm and a suitable architecture [1]. We have striven
for its robustness and simplicity.. As a difference to
cumulant-based algorithms [2], that estimate the channel
from statistics of the incoming signal, this algorithm can
be classified as of the Bussgang type. A suitable cost
function is derived whose minimization ensures correct
demodulation.

2.8ignal Model

The signal model of a linearly modulated signal and related
notation are presented in this section. Let us assume that a
sequence of symbols ay is modulated on a Nyquist pulse
p(t) and transmitted through a chavnel of impulse response
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he(t). The received signal is expressed by the following

equality,
k=+w
=2, %

where n(t) stands for an additive Gaussian noise process.
Synchronisation with the symbol sequence as well as carrier
phase offset are implicit in the channel response he(t). The
demodulation architecture is defined in terms of a linear
filter h,(t) working at the symbol rate on the incoming
signal, such that the estimates of the symbol sequence are
given by,

m
(ph )t —kT)+n,(r)

[2]
&, ={(rh, )1 -kT)

Note that a linear operation on the incoming data is
sufficient to resolve stationary effects as symbol time offset
or phase rotation (provided that the architecture of the linear
filter ha(t) is suitably defined). Frequency Doppler can also
be compensated for without inclusion of an NCO (Number
Controlled Osciliator) if the Doppler uncertainty range is
much smaller than the signal bandwidtth. Synchronisation
can be corrected for with a simple time shift of ha(t). In a
digital implementation we will assume that samples are
taken at the rate 1/T;, such that the available signal is
discrete with re=r{kT). The filter h, will be considered as a
FIR of N coefficients. Hence, if successive snapshots of
the signal are taken at the rate of once per symbol, ri =
[r(k),rk-1},....,0{k-Ng+1})], the received signal can be
expressed as the convolution of the symbol sequence ag
with a vector sequence hy of length N, that contains the
discrete snapshots of the impulse response r*hg in the
format already defined for r,
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The symboi estimates are then obtained via muliiplication
with the coefficient vector w (of h),

(4]
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The objective of the filter w is to minimise the power of
the interfering terms, Gaussian and convolutive noise, to
minimise the bit error rate on ag. It would be desired that w
were orthogonal to all vectors {by(i),i=0} although this
seldom happens as h; is usually infinite response. The
coefficients of w are updated to minimise a suitable cost
function to be derived in the next section

3.Derivation of the Cost Function
Assuming perfect knowledge of all relevant model
parameters, we seek to derive the optimal estimator of ay
within the subset of all possible linear estimators, For the
mode] presented in the introduction, the estimator should
(approximately) converge into the subspace orthogonal to
the span of {h.(i),i=0}. As the optimization crilerion, we
have chosen the minimization of a cost function akin to the
discrimination between the pdf of ay and that of its
estimate iy, Let the Kullback-Leibler information measure
(or minus cross-entropy) [3] between two probability
density functions, pyx and py, be expressed as,

(5]

. Px(x) -
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We wish that the statistics of the estimate be as close as
possible to the prior pdf of a, . Let A denote the random
variable at the output of the estimator for the optimal case
when all parameters of interest (a, pdf of ny ) are available,
Also let A denote the output of the estimating filter w.
Therefore, minimization of the discrimination between the
real pdf of A and the desired pdf of A is enforced,

(6]
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The stumbling block of this approach is that the pdf of A
appears explicitly in the first term of the discrimination,
which equals the minus entropy of the symbol estimates.
Its cstimation is not straightforward (some procedures are
referenced in [2] based on high order statistics of the process
and hence difficult 1o obtain). The minimum attainable
output noise variance is also unknown. Therefore we
propose instcad minimisation of the following cost
function, obtained as the second summand in eq.6,

[71

w,0, = argmin{—E& In pA.,+N(a,,)(a)}
where now minimisation has been also extended to the

parameters characterising unknown additive noise affecting
the output smbols. The adaptive algorithm implementing
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this criterion steers the oumtput statistics through w and
controls the shape of the non-linearity through o. The
output pdf is modeled as that of Ay,+N(0), with A, a
random variable wiht the same pdf of the symbols and N(g)
additive noise parametrised by its variance o (or maybe
some other paramer for non-Gaussian distributions, see
Section 4.1). Intuitively, when the distribution of & is such
that its most likely values coincide with the maxima of the
pdf of Ay+N(0), the expectation of the non-linearity in eq.7
reaches its minimum value. Although the parametrization
of the objective pdf may not be exact (due to interference or
convolutional noise), this effect renders a robust cost
function for an adaptive algorithm, Application of this cost
function also minimises noise variance at the output of the
adaptive filter. Additive noise on a random process X(n)
manifests itself as a broadening of the peaks of its pdf. If
the maxima of py coincide with the (convex) peaks of the
non-linearity, this broadening should be minimised so as to
gather most samples of X(n) around the peaks of the
objective pdf. Thus, the expectation in eq.7 is minimised.
In general, the proposed cost function will be multimodal
depending on the involved statistics. The criterion outlined
in eq.7 should be understood as one of absolute
minimization. When the joint minimisation in eq.7 is
carried out, it does not necessarily imply that the
distribution of A equals that of A although it is similar. In
practice we have observed this distributional bias in high
noise situations as constellation shrinkage. A rigorous
proof falls out of the scope of this article. Nevertheless, if
the pdf of A is kept fixed, partial minimisation with respect
0 ¢ can cause that pj — pa (provided that the
parametrisation of A is exact enough), as endorsed by the
cross-entropy (eq.53).

3.1  Relationship with DFE

We will show in this section that the proposed cost
function is equivalent to DFE algorithms in the medium (o
high range of signal-to-noise ratios and in the tracking
regime. To that purpose let us consider the distribution of a
discrete constant envelope modulation as given in eq.12
with the constraint that la;?=1 for ali symbols. Let us also
assume that SNR is high: Ingl?<<1, with ny addtive noise
and that we are already in tracking regime. Then, when
symbol a; is present, all Gaussian exponentials in eq.12
excepl that corresponding to the actual symbol are
vanishingly small (depending on the reliability assigned by
the tentative variance o). The criterion can then be
approximated with most likelihood to a least squares of the

type,
(8]
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save additive constants, with a;(3) the closest symbol to the
estimate 4. It has been thus proven that the proposed
criterion is equivalent to a Decision Directed (DD)
algorithm for high SNR. For low SNR, other symbols
than the closest also influence the cost function, for the

reliability of the decision is not so high. After some



algebra, the criterion in eq.7 can also be shown to equal the
CMA. [4] algorithm for constant amplitude modulations.

4.Adaptive Algorithm

The coefficients of the adaptive algorithm will be updated in
terms of the gradient of the cost function defined in Section
3. Note here that the gradient will also have to be calculated
with respect to the parametrisation of the noise (see eq.7).
Nevertheless, as the expectation operator cannot be realised
in practice, we will take a finite sample estimate, such that
the non-linearity evaluated at the output of the matched
filters is given by the following expression,

N, 2 g,

-l k=Ng,

J= N‘"’zk:x lnpAow( w r,‘

When Njy>1, ] wms out to be a memory non-linearity.
When the gradient with respect to the coefficients is
calculated we have that,

Vol = N2 e by oy (@
k

=- ;3 z £ (&k )rk
k

‘Where a generalized error £(3) is introduced in terms of the
target distribation. Note though that this is not the actual
error with respect to the transmitted symbols. From this
expression, we can see that each of the terms in the
summation is weighted by the exponential of Jy. Therefore,
when the ontput value iy has a low likelihood with respect
to the tentative pdf, the exponential term is very high. In
this way, when we are far from convergence, the gradient
tends to accelerate. As we approach convergence such that
the cost function decreases, the weighting terms become
less and less important, stabilizing the algorithm. The
gradient with respect to the noise parameter is given by,

fl1]
d N
V,J==N_» e*—p é
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For the particular case of linearly modulated signals, the
objective pdf is given by the convolution of the discrete
constellation pdf and the model of the underlying noise
distribution. Assuming a Gaussian distribution we are led
to,

[12]
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with Mp the number of modulation levels. The error (i)
with respect to the coefficients will then be expressed in
terms of the following non-linearities,

¢ laral'fe? /2 =0 el /o
e(a)=3
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t14]

qi(ak )(aic - ai)
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Note that the set of non-linearities {q;,1<i<Mg} play the
role of a measure of the likelihood that &, contains the
symbol #i. They are estimates of the conditional
probabilitie s p(ajliy) parametrised by the tentative variance
o. If ¢ is taken to be the actual noise variance, we obtain
by application of the Bayes conditional probability rule that
qi(a)=pla;lay). Moreover, it holds that Z;-1 Mo 9i(A)=1 as
was to be expected. Thus, the error defined in [4.6] appears
as a weighted average of the error between the output
sample &) and all symbols in the constellation. Symbols
farther apart than the closest neighbours will have a lesser
influence on e(fiy) as parametrised by G.

In its tumn, the derivative with respect to the tentative

vartance is expressed as,
{151
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This gradient can also be associated to a measurement of the
error between the tentative variance ¢ and the actoal noise
variance oy,. Just note that a weighted average is performed
of the squared errors of the symbol estimate Ak with respect
to the constellation symbols.

A common pitfall when adaptively changing the cost
funiction itself (as we are doing through adaptation of the
tentative variance) is encountered when the filter coefficients
are not updated with an equivalent step-size normalized to
the curvature of the new cost function. The consequence of
this is higher misadjustment noise and possibly divergence
as a higher curvature must be offset with a smailer step-
size. Then the gradient with respect to the coefficients
should be normalised by 1/62, which is approximately the
curvature of J evaluated at the peaks. The tentative variance
has been bounded from below:o? = og? +AZ, in order to
preclude that the cost function migrates to an approximately
Gaussian distribution during adaptation. This would recover
noise instead of data at the equalizer output. A becomes then
the adaptive parameter. The coefficient update equation

results,
[16]

Wi = Wy "f-"w(’:v“ﬁj ., O =0g+A;

4.1 Inclusion of Other Distributions

Up till now a Gaussian model has been assumed for the
distribution of the additive noise N(o). Nevertheless, other
models can also be uvtilised. In fact, the algorithm is guite
robust as concerns the choice of the noise pdf provided that
the model pdf and the actual one display similar shapes. We
put forward here utilisation of a Laplacian noise distribution
to take into account possible interference not accurately
modeled by a Gaussian (longer tails). The real Laplacian
distribution for the noise N(A) is given by,

Pygay(m}= (21)" eV

(17



In this way, the criterion in high noise is found equivalent
to minimisation of the absolute error between the output
sample & and the closest symbol a;(3),

[18]

~E, 0P, (@)~ By Re 8+ [m ) , 8= - a(2)

save additive constants. The expressions for the gradient are
calculated as in eq.10 and eq.11.

5.Simulations

Blind demodulation of a QPSK signal filtered by a mixed-
phase channel has been considered for the simulations.
Performance of the algorithm averaged over a set of
realizations in a wide range of SNR is depicted in figure.1.
(the term N,y in eq.9 has been chosen as 1), It displays the
inverse of the squared tentative variance parameter (a
Gaussian model has been assumed for hie noise) versus
time which can also be interpreted as the evolution of the
EbNo before the decision device. It appears that the range of
acquisition falls in the order of one to two thousand
symbols depending on the input SNR. The step size for the
adaptation of the coefficients has been chosen as 0.005
while that of the tentative variance is 0.05. In general the
tentative variance accepts quite high adaptation rates
without danger of divergence. The acquisition curve of the
tentative variance is usually very steep during convergence,
The smoothed behaviour observed in figure 1 is due rather
to statistical averaging of several realizations (the elbow
does not always occur at the same instant) than to the actual
behaviour of a single realization. A realization of the
coefficients error with respect to the optimum equalizer is
depicted in figure 3.

6.Conclusions

An algorithm capable of forcing a signal of an a priori
known pdf at the output of an adaptive system has been
presented. It has also been shown that it is able to
minimise (unknown) noise variance at the output. The rate
of blind acquisition is rather fast as compared with other
methods, Some research is currently being done to solve the
capture problem of the algorithm to distributions that are
similar to the a priori template.
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Figure 1. Evolution of the inverse of the squared tentative
noise variance before detection or estimated EbNo for
several input SNR's (dB): 16.90, 13.37, 10.88, 8.94, 7.35,
6.02, 4.86, 3.83, 2.92,
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Figure 2.: Evolution of the in-phase channel for an input

SNR of 4.86 dB (see figure 1 for output EbNo).
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Figure 3. Evolution of the equalizer coefficients error

with respect to the optimum filter at an input SNR of 4.86

dB (see figure 1 for output EbNo).
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