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INTRODUCTION

Aperture synthesis radiometry is becoming a feasible
concept for imaging applications, especially at low
microwave frequencies where it takes clear advantage of the
absence of mechanical antenna motion. A 2D interferometric
radiometer consists of a large number of receivers with small
antennas distributed along a 2D structure, and the brightness
temperature image is formed by inversion of the measured
cross-correlation between all pairs of antennas. This is the
concept of MIRAS (Mlicrowave Radiometer by Aperture
Synthesis), the core instrument of the SMOS (Soil Moisture
and Ocean Salinity) mission selected by the European Space
Agency (ESA) and planned to be launched in 2005. In its
preliminary design, MIRAS receivers are uniformly
distributed along a Y-shape structure and work at L-Band.

This approach, however, poses a challenge in the
specifications required for the receivers: a) The short
integration time due to the platform motion strongly limits
the achievable sensitivity, b) the spatial resolution is
determined by the structure dimensions -which cannot be
made arbitrarily large- and c) the radiometric accuracy
depends on the non ideal behavior of the receivers, although,
to some extent can be corrected by internal calibration.

This paper contributes to define the main trade-off
between hardware requirements and system performance of
this complex instrument.

RECEIVER FREQUENCY PLAN

A typical MIRAS receiver (Fig. 1) includes an RF section
-with an input switch, a filter and an amplifier-, a
phase/quadrature frequency down-converter, two two-level
(sign function) quantizers and samplers. The RF bandwidth is
limited to the reserved band 1400-1427 MHz, but to avoid
interference from L-band radars and other services at
adjacent frequencies, the input RF filter band is fixed at
1404-1423 MHz. The in-phase (i) and quadrature (q) outputs
of all receivers are sent to a matrix of 1 bit digital correlators
located in the hub. Complex correlation is achieved from two
real correlations: i®i gives the real part and q®i the
imaginary part. The use of one-bit two level digital
correlators allows high level of integration, lower data rate
and moderate power consumption. On the other hand, the
radiometric sensitivity is degraded by a factor depending on
the sampling rate and the intermediate frequency (IF) band.
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Figure 1. Block diagram of a single receiver
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Clock frequency and IF band

The IF band is set by the local oscillator (LO) frequency.
To avoid reducing the signal bandwidth (and thus the
sensitivity) the receiver operates in (upper) single side band
mode, which means that the LO frequency is set outside the
RF band, and the image band is filtered. The IF band goes
then from 1404-fi to 1423-f;o MHz. The system clock is
used both to drive the samplers and to lock the LO frequency,
so this one is a multiple of the system clock. To agree with
the Nyquist sampling criterion the clock frequency must be
twice the largest frequency in the band. However, a high
clock frequency increases the data rate and creates
technological design problems in the correlator. So, the
lowest possible IF frequency is desired but, on the other
hand, low IF means closer image band, and the image
rejection becomes worse. Furthermore, since the filter is not
of ideal rectangular shape, there is always a given amount of
aliasing, which in any case has to be evaluated. All this
ultimately affects the error in the measured correlation for a
given integration time, which can be quantified by the use of
the so-called “effective integration time” in all radiometric
sensitivity computations.

Effective integration time
The output of a real digital correlator is a random signal:

l N
r= ﬁ;p' f (1)
where N is the total number of samples and
p, = glb, ()] -g[b,(t,)], being g[] the non-linear quantizing
function and b, and b, the correlator input signals (Gaussian).
The sampling times are t= ty+(i-1)/f; being t, an arbitrary
time origin and f; the sampling (clock) frequency. The

variance of r is given by ([1] chapter 7):
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where R, is the autocorrelation function of p, o its variance

P
and p its mean, which turns out to be equal to that of r. For
uncorrelated samples this equation is reduced to the known

result ¢} =c2 /N, which allows to define, in the general

case of correlated samples, the effective number of samples
as Ny =0’ /o]

If the integration time is limited to 1, the total number of
samples is N=~f;t. At the Nyquist sampling rate f=2B where
B the signal bandwidth, so Nyyquis=2B7. Since in this case the
samples are uncorrelated, the effective integration time can
be defined as:

T i_}:]_sz_z_cﬁ/cf 3
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Now, introducing this definition in (2), and using the
approximations suggested in [2] for one bit two level
correlators, the effective integration time can easily be
computed as a function of the frequency clock, taking into
account different filter shapes and LO frequencies.

Figure 2 shows the effective integration time for three LO
frequencies as a function of clock frequency. The
autocorrelation function Ry(t) in (2) has been computed by
inverse Fourier Transform from the measured frequency
responses of two actual filters manufactured by Matra
Marconi Space (UK) especially for the MIRAS project.

This figure shows that oversampling increases the
effective integration time if quantization is used. Moreover
shifting the band to higher frequencies (higher LO) decreases
the effective integration time, unless the clock frequency is
increased at least to twice the maximum frequency of the
band, regardless of the signal bandwidth'. The known result
T5=1/2.46 given in [2] and experimentally verified in [3]
corresponds here to a LO frequency of 1404 MHz and clock
frequency of 38 MHz. The small discrepancy is due to the
use of a real filter instead of an ideal rectangular one.

Since the LO frequency must be a multiple of the clock
frequency, a good choice is fio=1396 MHz and f,=55.84
MHz, which corresponds to an IF band of 8 to 27 MHz. With
these values, the effective integration time becomes
7,4=0.55 7, which once substituted in the equation for
radiometric sensitivity [4], gives AT=5K for a 200K constant
scene.

RADIOMETRIC ACCURACY

A 2D interferometric radiometer is based on the integral
relation existing between the brightness temperature map of
an extended source and the cross-correlation between pairs of
antennas (visibility function). In normalized version, it is:

u(u,v) = 3fTE,m] @)

! The case of band pass sampling is not covered here.

Effective integration time for real filters and 1 bit quantization

[ — LOfreq= 1404 MHz
- = = =| ~ - LOfreq=1399.5 MHz | — |
—— LOfreq= 1396 MHz X

015 — £ — — 4 — — _ _ R [ 1

i | ]

0.1 1 L 1 1 J

10 20 30 40 50 60
Clock frequency (MHz)

Figure 2 Effective integration time

where the symbol I stands for a 2D integral operator, which
is reduced to a Fourier Transform when decorrelation effects
are negligible and the antennas are identical. In this
transformation (&,n) are the directing cosines and (u,v) the
projections over the XY axes of the antenna spacing,
normalized to the nominal center frequency. The function to
which the operator is applied is the so-called normalized
modified temperature, defined as:

T = L TB (E» TI) Fnk (é?n) F.:J (E_n n) (5)
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being Ty the brightness temperature map, T, the antenna
temperature, Fy; the normalized voltage pattern of antennas
k and j forming a baseline, and Q; their equivalent solid
angle. In the above expression, the antenna temperature is
considered the same for all antennas and very accurately
measured using a dedicated total power radiometer located in
the center of the array.

Due to system imperfections, the retrieved modified
temperature of a given pixel differs from the actual one, thus
producing a distorted image. The radiometric accuracy is
defined [5] as the root-mean square of the temperature errors
of the individual pixels, namely:

AT = ’—1—_—1_‘2['%4]2 )

being T the (non-normalized) modified temperature

T=TT, and T its estimation using the actual instrument.
The above formula is applied to M pixels, corresponding only
to the central part of the field of view to avoid aliasing
effects. The test scene consists of a constant temperature of
200K over the Earth and OK in the sky.

Sensitivity of errors to radiometric accuracy

All imperfections in the receivers or antennas contribute
to the degradation of the radiometric accuracy, some of them
having greater impact than others. Equation (6) is useful to
compute the contribution of a given error to AT. Numerical
computation of AT for Gaussian random errors in the
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receivers or antennas shows that this is linearly dependent of
the standard deviation of the error, which allows to define the
sensitivity of the error to radiometric accuracy S; as:

AT, % S, G - (7)

The maximum allowable error in a given parameter can
be easily computed from (7), provided the maximum impact
that produces in the radiometric accuracy is established. If all
contributions are considered independent from each other, the
total radiometric accuracy turns out to be the quadratic
summation of all of them, namely:

AT(O!EI =“ z:l:[AT’)]z ? (8)

being n the number of individual contributions to AT.

Accuracy improvement by calibration

Periodic calibration is needed so as to estimate the
different errors in order to correct them in the inversion
procedure. Radiometric accuracy is then determined by the
residual errors after correction. In any case, the specifications
of the instrument must be established so as to have the total
radiometric accuracy, after calibration, below a given
specified value, which is eventually set by the scientific
requirements of the mission. As shown in Fig 1, internal
calibration is performed by periodically injecting noise to the
receivers. Two sources of noise are used: uncorrelated (for
the offset) and correlated. Due to the large dimensions of the
array, correlated noise cannot be accurately distributed to all
receivers, but only to those of the hub. For the rest, a
distributed approach using several sources must be used [6].
This reduces the effectiveness of the calibration mechanism,
getting as a result some residual non-separable amplitude and
phase errors, having high impact on accuracy.

Antenna errors cannot be corrected using noise injection
so, to achieve low impact on accuracy, good on-ground
characterization is needed. This must be performed with the
antennas mounted and loaded in the same conditions as in
normal instrument operation, so as to include mutual
coupling effects. Low drift in the lifetime must be assumed.

Accuracy budged

Table 1 shows the computed sensitivities of the main
error sources along with their contribution to radiometric
accuracy given reasonable values. In this table the antenna
pattern errors must be understood as accuracy in the on-
ground measurement. The separable phase error includes
phase differences in antenna path (before injection) and in the
noise distribution network. Separable amplitude errors are
estimated from the accuracy of measuring the noise
temperature of the receivers, and non-separable amplitude
and phase errors assume that complete correlated noise is
only injected in the hub antennas, using a distributed
approach for the rest [6]. The other sources in the last line of
Table 1 refer mainly to cross-polarization and correlators
offset, not included in the previous lines.

Table 1. Contribution of errors to accuracy

Error Sensitivity Oerror | AT (K)
Antenna pattern
phaseripple | 1.48 K/° 0.5° 0.74
amplitude ripple | 1.06 K/% 0.5% 0.53
Antenna phase center
x-y uncertainty | 2.65 K/mm | 0.25mm | 0.66
z axis uncertainty | 0.53 K/mm | 1 mm 0.53
Receiver errors
Separable amplitude [ 0.59 K/% | 0.68% 04
Separable phase | 0.36 K/° 0.9° 0.32
Quadrature | 0.36 K/° 0.1° 0.04
Non-separable amplitude | 0.28 K/% 1.5% 0.44
Non-separable phase | 0.5 K/° 0.8° 0.4
Other 1.0
TOTAL ACCURACY 1.8
CONCLUSION

The main hardware requirements for MIRAS, a 1.4 GHz
aperture synthesis radiometer currently being developed for
the ESA mission SMOS, have been studied in terms of their
impact on system performance. First, the clock frequency and
IF band and their contribution to the effective integration
time. Then various receiver and antenna errors affecting the
radiometric accuracy. At the end, the total accuracy expected
for such instrument is estimated.
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