
Characterizing Fault Propagation in Safety-Critical
Processor Designs

Jaime Espinosa†‡, Carles Hernandez‡, Jaume Abella‡
†Universitat Politècnica de València

‡Barcelona Supercomputing Center (BSC-CNS)

Abstract—Achieving reduced time-to-market in modern elec-
tronic designs targeting safety critical applications is becom-
ing very challenging, as these designs need to go through
a certification step that introduces a non-negligible overhead
in the verification and validation process. To cope with this
challenge, safety-critical systems industry is demanding new tools
and methodologies allowing quick and cost-effective means for
robustness verification. Microarchitectural simulators have been
widely used to test reliability properties in different domains but
their use in the process of robustness verification remains yet
to be validated against other accepted methods such as RTL or
gate-level simulation. In this paper we perform fault injections in
an RTL model of a processor to characterize fault propagation.
The results and conclusions of this characterization will serve to
devise to what extent fault injection methodologies for robustness
verification using microarchitectural simulators can be employed.

I. INTRODUCTION

Increasingly complex modern electronic designs for safety-
critical markets must adhere to the strict requirements of func-
tional safety standards. Thus, those designs have to undergo an
expensive and time-consuming certification process, which is
against the always stringent need to reduce the time to market.
In that context, new tools and procedures have to be devised
for a quick and cost-effective way to test whether robustness
properties are achieved throughout the whole design flow.

Simulation-based fault injection is considered a suitable
methodology for the robustness verification process, as quick
and cheap corrections on misbehavior can be made. Un-
fortunately, such fault injection is often carried out at the
gate level, and so the testing process can be excruciatingly
slow and requires unduly high computing resources. When
applied at a higher level of abstraction such as Register
Transfer Level (RTL), the burden is reduced but it is still
overwhelming for repeated use. This fact renders impractical
fault injection after each design modification. If designers
are intended to verify each modification, a sheer increase
in simulation speed is needed while still obtaining accept-
ably accurate results. Considering the constraints mentioned
above, microarchitectural simulators arise as one of the most
promising approaches to partially cope with the increasing
complexity of the verification and test process of complex
systems. The main benefits of this low-cost verification step
reside on the reduction of the verification time and on the
ability to start the verification process long before having the
RTL description of the processor, thus saving costs.

The use of microarchitectural simulators to estimate failure
rate metrics is challenging as the modelled processor lacks

most of the information required for accurately injecting faults.
In fact, the majority of the potential injection nodes that are
present at more detailed abstraction levels like RTL or gate-
level are missing. Typically, fault injection experiments using
microarchitectural simulators focus on the register file [8][19]
and on the different memory structures [18][1]. However,
these fault injection experiments, while useful to test the
effectiveness of fault-tolerant capabilities and the like, are
not suitable to estimate failure rate metrics as required by
certification standards. For this to happen it is required to
quantify how likely is that a fault present at any possible
processor net, gate, or flip/flop propagates to the register file
or the different memory structures.

In this paper we focus on the characterization of processor
fault’s behavior as a first step towards increasing the con-
fidence on failure rate estimates given by microarchitectural
simulations. In particular, we focus on how faults propagate
to the different system’s outputs and how many of these faults
propagate to the processor register file and/or control/status
registers. For the characterization of fault propagation, faults
have been injected in an RTL description of the LEON3
processor [21] using simulation commands as described in
[11].

Results in this paper show that even though a significant
fraction of the faults originated in the core show up in the
register file and/or control/status registers, injecting faults only
in such registers is not enough to accurately model the impact
of core faults, since a considerable amount of system failures
are not preceded by any error manifestation in the mentioned
registers.

The rest of the paper is organized as follows. Section II
reviews the state-of-the art in fault injection in the RTL and
microarchitectural simulators. Sections III and IV present the
methodology used in this paper for characterizing processor’s
fault propagation and the results of such analysis, respectively.
Finally, in Section V some conclusions are drawn.

II. BACKGROUND ON SIMULATION-BASED
ROBUSTNESS VERIFICATION

Safety-relevant systems need to go through a certification
process. For instance, in automotive systems the ISO26262
functional safety standard [10] specifies the safety require-
ments that the different system components need to fulfil in
relation with the overall system’s safety. In the case of avionics
systems the standard that defines the methods and tools to

certify electronic products is the DO-178B [17]. Regardless
of the application domain, simulation-based fault injection is a
certification-friendly methodology for the safety requirements
verification when analytical methods are not considered to
be sufficient. This is, for instance, specified in the case of
automotive systems in ISO26262 Part 5 Table 3. Note that this
is the case for complex hardware components verification like
a microcontroller. Fault injection through simulation can be
performed using different levels of abstraction like functional,
RTL, or gate-level. The current state of practice uses RTL and
gate-level experiments to test hardware robustness as these
methodologies have been shown to provide enough accuracy
when related to the silicon level [14]. In the same way, if
microarchitectural simulators are to be considered for the
robustness verification process, results obtained at this level
must be correlated with the ones obtained at lower levels of
abstraction like the RTL or gate-level. In this paper we focus
on relating RTL fault injection to experiments carried out at
the microarchitectural level.

Several techniques exist to perform RTL level fault in-
jection. A widely-used method is the injection in the HDL
through simulator commands [11], which works well for most
of the fault models described in the literature. In fact, some
additional fault models such as those involving several injec-
tion points –short-circuit, multi-bit injection– can be applied
if the more intrusive technique of saboteurs is used [2], but an
instrumentation of the model –and the consequent decrease in
simulation speed– is entailed.

Fault models representativeness has been validated for
logic/RTL levels [6]. On the contrary, for higher abstraction
levels like the microarchitectural one some works have pointed
out the difficulties of correlating these results with the ones
obtained at the physical level [12]. The majority of works
carried out with microarchitectural simulators focus on proces-
sor’s reliability estimation. Processor’s reliability is estimated
by the determination of the architectural vulnerability factor
(AVF) [13]. The AVF is determined by the fraction of the
architectural bits contributing to the processor’s reliability.
A similar approach is the one in [3] where the concept of
instruction vulnerability factor (IVF) is proposed to evaluate
how faults in every instruction affect the final application
output. Likewise, in [16] the IVF is used to define a compi-
lation process taking into account ISS reliability information.
Finally, a truly existing correlation between fault injections
experiments performed in an RTL processor description and
the information available at the ISS was shown in [5] for the
case of permanent fault models, though limited to final number
of failures. Other detailed studies targeted to soft error models
did not find such correlation by using single bit-flip injections
in registers, suggesting other fault models should be devised
for high-level injections [4].

A. Fault injection at the RTL

A circuit described at the functional level does not provide
information on the internal components, but only a method to
obtain outputs from inputs. Conversely, RTL description of a

Integer Unit

Oper.
REGS

State
REGS

Mem
Glue
Logic

ALU

Result
REG

Processor Description

Cache Memory

Functional Emulator

Timing Simulator

Mem REGS

ISA

Pipeline Caches

Queues BUS

Instruction Set Simulator

(a) (b)

Fig. 1. (a) RTL processor description (b) Microarchitectural processor
description

circuit comprises contents of registers and combinational logic,
expressed in terms of logic functions and connections as shown
in Figure 1(a). Specifically, the detail on the intermediate steps
in terms of internal signals and operands, which allows for
later synthesis of the design, renders it an ideal candidate for
fault injection. Two are the main benefits:
• First, it is the lowest level –most detailed– and closest

to the level where faults happen in the real system –the
physical level– which, without loss of generality, achieves
a good degree of representativity.

• Second, since the next level in detail –the gate level– does
include the implementation technology in the description
of the system, results of injection in RTL stay valid across
different implementations, platforms, etc.

B. Fault injection at the ISS Level

Typically, a microarchitectural simulator consists of two
differentiated parts: the functional emulator and the timing
simulator (see Figure 1(b)). The functional emulator contains
the full description of the instruction set architecture (ISA) and
keeps the architectural state of the processor (i.e. architectural
registers and memory data). A functional emulator is able to
run application code that has been compiled for a particular
architecture and to perform its execution in such a way that
the memory data and architectural registers contain an exact
representation of the real processor state. In other words, the
functional emulator is the interpreter. The timing simulator
interacts with the functional emulator and mimics with some
degree of accuracy the timing behavior of the different in-
structions during their execution. To do so, the timing simu-
lator models the cache memories, the processor pipeline, the
register file structure, and several other queues and structures
depending on the target degree of accuracy. Thus, it allows
computing information like the number of execution cycles,
cache hits/misses and the like. Some implementations of an
ISS may have functional and timing simulation integrated,
although this typically challenges their flexibility.

Therefore, fault injection in a ISS needs to be typically
performed in registers and memory in the emulator, and
propagation information can be obtained, including its timing,
based on the event modeled by the timing simulator.

III. CHARACTERIZING FAULT PROPAGATION

As mentioned before, in this paper we want to show to
what extent microarchitectural simulators can be employed in
the robustness verification flow of safety-critical systems. In
particular, we elaborate on the potentials of injecting faults
in the processor architectural registers. The emulator part of a
microarchitectural simulator only includes registers (inside the
cores) and memory (outside the cores). Therefore, our view is
that by characterizing which faults that reach core boundaries
are reflected, either in the general purpose registers and/or in
the control/status registers, we will know to what extent core
faults behavior can be captured using the emulator part only.

Throughout the paper we use the common nomenclature to
distinguish between faults, errors, and failures. We consider
faults those upsets that can take place at any point of the
design and are actually what is being injected; errors, the
mismatches in the values of user registers (stored in the
register file) or system registers in this case, and failures, the
mismatches at the considered outputs. In our case, address and
data buses are taken as system outputs. Note that this is the
exact point at which light-lockstep cores outputs are compared
for error detection purposes. Microcontrollers implementing
light-lockstep compare any off-core activity (i.e., memory
read/write, I/O read/write), but cannot detect faults that do
not propagate outside cores . Processors implementing light-
lockstep like the Infineon AURIX [9] and the STMicroelec-
tronics SPC56XL60/54 family [20] are widely used for safety-
relevant applications in the automotive domain.

We are interested in analyzing the influence of faults in
the system towards the incorrect delivery of results, i.e. the
appearance of failures. As studied earlier in literature, deter-
mining how faults in a system propagate through logic paths
is not a straightforward task. The relationship between faults
and errors depends on several factors. First of all, the actual
implementation of the processor determines heavily which
nodes are connected with which others, so that a path for
propagation exists. Second, the system architecture according
to the executed instructions and data determines the paths that
are exercised and thus can propagate faults in nets to other
structures and/or system outputs. Finally, in case faults are
transient, the exact point in time when the fault occurs is also
very relevant to have an error captured that can later potentially
become a failure. In fact, the shorter the fault duration the
lower the probability that it will be captured at a sequential
element due to time filtering. In this study to facilitate the
analysis we consider only permanent faults. However, we
strongly believe that main conclusions drawn for permanent
faults will remain also valid in the case of transient faults but
the confirmation of this hypothesis is let as future work.

To characterize fault propagation we follow a methodology
that consists of injecting faults in all possible nets of an RTL
processor description. From the injectable nets we have ex-
cluded the register file and cache memory structures due to the
following reason: errors occurring within these structures are
effectively detected and/or corrected by employing redundacy

IF D E M W

IC DC

Memory

RF

On-chip bus

I-
ca

ch
e

D
-c

a
ch

eRegister File

Fig. 2. Generic processor pipeline scheme. IF (instruction fetch), D (decode),
E (execution), M (Memory), W (Write-back).

mechanims (e.g., error correction codes) and this is the case
in most of the processors targeting safety-critical applications
[22][9]. Moreover, available nets in these structures do not
realistically represent their area. Memory structures are typ-
ically implemented using SRAMs cells to miminimize area
and power and the RTL includes only an instantiation of these
components as a black box and/or its behavioural description.

For every fault injection where a net has been forced
to a given value, we compare the outputs of architectural
registers (general purpose and control registers) and the data
and address signals of the core at the on-chip boundaries to
the ones obtained with a fault-free simulation.

In typical processor architectures memory operations are
performed reading or writting architectural registers. Based
on this, an inmediate hypothesis that can be drawn is that
roughly all errors that will be visible at the on-chip bus
boundaries will also be reflected in the register file and/or
control/status registers. If this hypothesis is confirmed it would
mean that faults in the core can be easily mimicked using
microarchitectural simulators or even functional simulators as
both types of simulator tools have access to the architectural
register file of the processor. However, if we pay attention
to a typical core pipeline implementation we realise that
correlating fault injections performed at RTL nets using only
the architectural registers might not be a straightforward task
and, in fact, it might even be unfeasible. Figure 2 shows a
schematic of a generic processor pipeline and its interface
with the on-chip bus to reach main memory. Note that, while
in a typical processor pipeline all memory operations are per-
formed through writing and reading general-purpose registers,
the actual implementation makes on-chip bus communication
to occur through D-cache and I-cache modules in the fetch
and memory stages, respectively. The previous implementation
view illustrates that not all faults affecting core nets will reach
the architectural registers as some of these nets have logic
paths that go directly to the on-chip bus. In the next section
we analyze and evaluate in detail fault propagation for the
faults occuring within the core and show the exact fraction of
faults that can be covered by performing error injection at the
architectural registers.

Leon3

Integer
 Unit

Data
Cache

Inst
cache

M
em

or
y

Data

Address

Fault Injection Analysis

RTL verification tool

System
Registers Register

File

Fig. 3. RTL robustness verification framework

IV. EXPERIMENTAL RESULTS

In this section we present results characterizing fault prop-
agation in order to confirm the hypothesis presented in the
previous section.

A. Experimental Setup

For our experiments we use an RTL model of a 32-
bit LEON3 SparcV8 microcontroller, since it is used in the
context of safety-relevant systems and both the microarchi-
tectural simulator and the RTL description of this processor
are available [21]. The LEON3 processor consists mainly of a
7-stage pipeline for integer operations (integer unit, IU) plus
data and instruction caches. In this processor all instructions
use all pipeline stages, since we use a minimal configuration
where a floating point unit is not present. The RTL processor
description follows the structural VHDL design guidelines and
it models our target of injection (IU) as an entity. The test
framework used in the paper is the one shown in Figure 3.
Injection and analysis points in this framework are consistent
with the methodology explained in Section III. To make
analysis costs of register faults affordable we have used the
LEON3 with a flat register file configuration1 as this reduces
the number of total registers that need to be tracked in every
simulation.

The workload chosen for investigation includes programs
from 2 different benchmark suites: the Mälardalen WCET
group suite [7], suitable to test real-time system properties
and the EEMBC Autobench suite [15], which reflects current
real-world demand of some automotive CRTES. The selected
programs are: a finite impulse response filter over a 700
items long sample (fir), a matrix multiplication of 4x4 size
(matmult), a matrix initialization of 20 elements (initmat),
a vehicle speed calculator (rspeed) and a CAN bus reader
(canrdr).

Regarding the faultload, several permanent hardware fault
models have been selected, specifically single stuck-at-1,
stuck-at-0 and open line. These have been injected using
simulator commands as in [11]. The campaign for each fault

1Note that a typical SPARC configuration uses a windowed register file
configuration with around 144 32-bit registers. Tracking the contents of 144
32-bit registers even for relatively small benchmarks is unfeasible.

model and workload has consisted of one experiment per
injection node in the IU (since permanent faults are applied),
totaling 5,246 nodes. As the focus of the experiments is
to characterize fault propagation, each experiment applies a
single injection in a fixed instant: just before the execution of
the main procedure, after the initialization.

B. Results

Capturing failure probability. Figure 4 shows the percent-
age of experiments ending in failure, broken down into those
that showed a previous error –in the register file or system
registers– and those that did not. This result is specially impor-
tant as it provides relevant information about how accurately
we can capture the behavior of faults occurring within the
core pipeline by injecting errors in the architectural registers
of a microarchitectural simulator. Plots in the first row (so
(a), (b) and (c)) show the percentages of experiments ending
in failure when faults are injected in all the nets available
in the LEON3 IU . As shown in these plots a non-negligible
number of failures (dashed lines) were not preceded by an
error. The percentage of experiments not showing an error
that ended in a failure ranges from 13% (stuck-at-1 faults in
rspeed) to just 2% (open line faults in matmult). This indicates
that the effect of faults within the core cannot be captured with
register-based error injection solely. Furthermore, we note that
in all core nets in the IU also the inputs to the Data cache
and Instruction cache modules are being injected directly. To
weight the impact this fact causes we remove these nets from
the injection in the plots shown in the second row ((d), (e)
and (f)). As expected, the number of failures not reflected in
architectural register errors decreases.

In particular, the fraction of these failures decreases by
around 1 to 3 percentage points with respect to the case when
all nets are injected. Thus, the number of remaining failures
without error is still significant. Even more important, the frac-
tion of failures without error changes across benchmark and
does not correlate with the number of failures with error. For
instance, the fraction of failures without error for rspeed w.r.t.
the failures with error or w.r.t. the total number of injections is
much higher than for initmat for all fault types. This indicates
that injecting faults only in the register file with a simulator
does not provide information about failures without error and
such information cannot be inferred indirectly.

Error’s profile. After injection and analysis we find the
percentage of faults that are propagated to errors for each
campaign. Figure 5 shows the percentage of faults that cause
one or more errors for the 3 fault models considered in this
study. As shown in the figure, the percentage of faults that
propagate to errors is slightly superior to the percentage of
faults that propagate to failures through errors – black columns
in Figure 4 (a), (b) and (c) – which agrees with the expected
fact that some error manifestations do not end up causing a
system failure. In any case, the fraction of experiments with
errors not causing system failure is always below 7%, meaning
that for the selected fault models most of the bits in the
exercised registers become critical.

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(a) Stuck-at-1

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(b) Stuck-at-0

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(c) Open line

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(d) Stuck-at-1, No cache inputs

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(e) Stuck-at-0, No cache inputs

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(f) Open line, No cache inputs

Fig. 4. Percentage of failures in the experiments according to whether they caused a prior error or not.

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 e
rr

o
rs

Benchmarks

Stuck-at-1
Stuck-at-0
Open line

Fig. 5. Percentage of experiments which cause 1 or more errors in the registers

Figure 6 shows the error distribution across the processor
architectural registers for two of the benchmarks analyzed. As
expected the program counter (r.f.pc) is one of the registers
that accumulates more errors. This is a consequence of two
factors: (1) regardless of the benchmark executed the program
counter is always severely exercised and (2) a significant
number of logic paths exist between IU nets and the program
counter. On the contrary, in the case of general purpose regis-
ters the benchmark exercised determines the exact registers to
which faults are propagated. In the example of the plot canrdr
concentrates a large fraction of the errors in two registers while
in initmat those (several) registers frequently written during
the execution accumulate a significant fraction of errors.

Another important conclusion that holds for the case of
permanent faults is that the probability of failure does not
depend on how errors reach architectural registers, i.e. how
likely registers are affected by an error, but only on the
type and amount of instructions that are exercised. In fact,

this is in line with the work in [5] that showed that the
probability of failure for permanent faults can be approached
by knowing how diverse the set of instructions exercised by a
given benchmark is.

V. CONCLUSIONS

The use of microarchitectural simulators has recently arised
as a promising approach to reduce the costs associated with
the robustness verification of safety critical processors. How-
ever, for this low-cost simulation approach to be adopted its
accuracy must be validated. In this paper we characterize fault
propagation for those faults occurring within the core in order
to understand to a what extent microarchitectural simulators
can be used in the robustness verification process. To do so,
we have injected faults in an RTL processor description and
analyze the percentage of faults propagating to errors and
failures.

Results in this paper show that while a significant number of
faults originated within the core can be covered with verifica-
tion methodologies focusing on error injection in architectural
registers, the achieved coverage is not enough to provide very
accurate results. A potential candidate to increase the confi-
dence on verification methodologies using microarchitectural
simulators is the use of a combined approach and perform error
injection in both cache modules and architectural registers.
The inmediate practical consequence of this is that functional
emulators only are not sufficient to mimic the behavior of all
potential core faults and thus, more detailed simulation tools
like microarchitectural (timing) simulators are required. We let
as future work the validation of the combined error injection
approach.

While the results in this work have been obtained for a
specific architecture, it includes similar features to the bulk

0,0%
2,0%
4,0%
6,0%
8,0%

10,0%
12,0%
14,0%
16,0%
18,0%
20,0%
22,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

(a) initmat

0,0%
2,0%
4,0%
6,0%
8,0%

10,0%
12,0%
14,0%
16,0%
18,0%
20,0%
22,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

(b) canrdr

Fig. 6. Errors distribution in system and user registers for different benchmarks

of architectures in the domain, so conclusions can be easily
extrapolated to other safety-critical architectures.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking VeTeSS project under
grant agreement number 295311. This work has also been
funded by the Ministry of Economy and Competitiveness of
Spain under contract TIN2012-34557 and HiPEAC. Jaume
Abella is partially supported by the Ministry of Economy and
Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717.

REFERENCES

[1] J. Abella, E. Quiones, et al. Rvc-based time-predictable faulty caches for
safety-critical systems. In On-Line Testing Symposium (IOLTS), 2011
IEEE 17th International, pages 25–30, July 2011.

[2] J.-C. Baraza, J. Gracia, et al. Enhancement of fault injection techniques
based on the modification of vhdl code. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 16(6):693–706, June 2008.

[3] Demid Borodin and Ben H.H. Juurlink. Protective redundancy overhead
reduction using instruction vulnerability factor. In CF, 2010.

[4] Hyungmin Cho, S. Mirkhani, et al. Quantitative evaluation of soft error
injection techniques for robust system design. In Design Automation
Conference (DAC), 2013 50th ACM / IEEE, pages 1–10, May 2013.

[5] J. Espinosa, C. Hernandez, et al. Analysis and rtl correlation of instruc-
tion set simulators for automotive microcontroller robustness verifica-
tion. In DAC, 2015. http://people.ac.upc.edu/jabella/DAC2015BSC.pdf.

[6] Pedro Gil, Jean Arlat, et al. Fault representativeness. Tech-
nical report, DBench project, IST 2000-25425 [Online]. Available:
http://www.laas.fr/DBench, 2002.

[7] Jan Gustafsson, Adam Betts, et al. The Mälardalen WCET benchmarks
– past, present and future. In Björn Lisper, editor, WCET2010, pages
137–147, Brussels, Belgium, jul 2010. OCG.

[8] C. Hernandez and J. Abella. Live: Timely error detection in light-
lockstep safety critical systems. In DAC, 2014.

[9] Infineon. AURIX - TriCore datasheet. highly integrated and
performance optimized 32-bit microcontrollers for automotive
and industrial applications, 2012. https://www.infineon.com/
dgdl?folderId=db3a304412b407950112b409ae660342&fileId=
db3a30431f848401011fc664882a7648.

[10] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[11] E. Jenn, J. Arlat, et al. Fault injection into VHDL models: the mefisto
tool. In FTCS, 1994.

[12] Man-Lap Li, P. Ramachandran, et al. Accurate microarchitecture-level
fault modeling for studying hardware faults. In HPCA, 2009.

[13] S.S. Mukherjee, C. Weaver, et al. A systematic methodology to
compute the architectural vulnerability factors for a high-performance
microprocessor. In MICRO, 2003.

[14] J.-H. Oetjens, N. Bannow, et al. Safety evaluation of automotive elec-
tronics using virtual prototypes: State of the art and research challenges.
In DAC, 2014.

[15] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[16] S. Rehman, M. Shafique, et al. Reliable software for unreliable hard-
ware: Embedded code generation aiming at reliability. In CODES+ISSS,
2011.

[17] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations
in Airborne Systems and Equipment Certification, 1992.

[18] Daniel Sánchez, Yiannakis Sazeides, et al. Modeling the impact
of permanent faults in caches. ACM Trans. Archit. Code Optim.,
10(4):29:1–29:23, dec 2013.

[19] B. Sangchoolie, F. Ayatolahi, et al. A study of the impact of bit-
flip errors on programs compiled with different optimization levels. In
EDCC, 2014.

[20] STMicroelectronics. 32-bit Power Architecture microcontroller for
automotive SIL3/ASILD chassis and safety applications, 2014.

[21] http://www.gaisler.com/cms/index.php?option=com content&task=
view&id=13&Itemid=53. Leon3 Processor. Aeroflex Gaisler.

[22] http://www.gaisler.com/index.php/products/processors/leon3ft. Leon3
fault-tolerant Processor. Aeroflex Gaisler.

