Editorial Preface

Nik Bessis, University of Derby, Derby, UK

Research Articles

1 A Waste Management Robot System: Its Implementation and Experimental Results
Keita Matsuo, Fukuoka Prefectural Fukuoka Technical High School, Fukuoka, Japan
Yi Liu, Graduate School of Engineering, Fukuoka Institute of Technology (FIT), Fukuoka, Japan
Donald Elmazi, Polytechnic University of Tirana, Tirana, Albania
Leonard Barolli, Fukuoka Institute of Technology, Fukuoka, Japan

13 Reduced Topologically Real-World Networks: A Big-Data Approach
Marcello Trovati, Department of Computing and Mathematics, University of Derby, Derby, UK

28 F3N: An Intelligent Fuzzy-Based Cluster Head Selection System for WSNs and Its Performance Evaluation
Donald Elmazi, Polytechnic University of Tirana, Tirana, Albania
Evjola Spaho, Polytechnic University of Tirana, Tirana, Albania
Keita Matsuo, Fukuoka Prefectural Fukuoka Technical High School, Fukuoka, Japan
Tetsuya Oda, Fukuoka Institute of Technology, Fukuoka, Japan
Makoto Ikeda, Fukuoka Institute of Technology, Fukuoka, Japan
Leonard Barolli, Fukuoka Institute of Technology, Fukuoka, Japan

45 Improvement of JXTA-Overlay P2P Platform: Evaluation for Medical Application and Reliability
Yi Liu, Fukuoka Institute of Technology (FIT), Fukuoka, Japan
Shinji Sakamoto, Fukuoka Institute of Technology (FIT), Fukuoka, Japan
Keita Matsuo, Fukuoka Prefectural Fukuoka Technical High School, Fukuoka, Japan
Makoto Ikeda, Fukuoka Institute of Technology (FIT), Fukuoka, Japan
Leonard Barolli, Fukuoka Institute of Technology (FIT), Fukuoka, Japan
Fatos Xhafa, Technical University of Catalonia, Barcelona, Spain

Copyright

The International Journal of Distributed Systems and Technologies (IJDST) (ISSN 1947-3532; eISSN 1947-3540), Copyright © 2015 IGI Global. All rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views expressed in this journal are those of the authors but not necessarily of IGI Global.

The International Journal of Distributed Systems and Technologies is indexed or listed in the following: ACM Digital Library; Bacon’s Media Directory; Cabell’s Directories; DBLP; Google Scholar; INSPEC; JournalTOCs; Library & Information Science Abstracts (LISA); Linguistics & Language Behavior Abstracts (LLBA); MediaFinder; SCOPUS; The Standard Periodical Directory; Ulrich’s Periodicals Directory.
ABSTRACT

JXTA-Overlay is a middleware built on top of the JXTA specification, which defines a set of protocols that standardize how different devices may communicate and collaborate among them. JXTA-Overlay provides a set of basic functionalities, primitives, intended to be as complete as possible to satisfy the needs of most JXTA-based applications. In this paper, the authors improve the reliability of their JXTA-Overlay P2P platform by implementing a new fuzzy-based Peer Reliability (PR) system. In the system, the authors considered three input parameters: Local Score (LS), Security (S) and Number of Interactions (NI). They evaluate JXTA-Overlay platform for medical applications and reliability. The experimental results show that by using JXTA-Overlay is possible to decide the situation of the patients. The simulation results have shown that the proposed system has a good performance and can choose reliable peers to connect in JXTA-Overlay platform.

Keywords: Fuzzy Logic, JXTA-Overlay, Medical Applications, P2P Systems, Peer Reliability

INTRODUCTION

The Internet is growing every day and the performance of computers is increased exponentially. However, the Internet architecture is based on Client/Server (C/S) topology, therefore cannot use efficiently the client’s features. Also, with appearance of new technologies such as ad-hoc networks, sensor networks, body networks, home networking, new network devices and applications will appear. Therefore, it is very important to monitor, control and optimize these

DOI: 10.4018/IJDST.2015040104
• **Heater Function:** The heater function maintains the temperature to be more than a predetermined value.

• **Ventilation Function:** The ventilation function avoids the condensation of moisture inside the compost.

We improved the ventilation function of the waste management robot system in order to have better oxidization and fermentation. The initial model of waste management robots (left) and the improved model (right) are shown in Figure 5. In the improved version we created many holes.

Control of Waste Management Robots

The control screen of waste management robot system is shown in Figure 6. There are 6 sets of temperature and moisture sensors which are controlled by the control system. The measured data are stored and the feedback control is carried out by using the measured data.

EXPERIMENTS AND EVALUATION

We carried out experiments using four sets of waste management robots and one set of usual compost box (corrugated paper compost box). The measurement conditions are as follows.

- **Waste Management 1:** The mixer was operated for 1 minute every 12 hours.
- **Waste Management 2:** The mixer was operated for 1 minute every one hour.
- **Waste Management 3:** The mixer was operated for 1 minute every 12 hours. Also, when the internal temperature was less than 30 degrees, the heater function

![Figure 4. Experimental environment of waste management robots](image-url)
was activated in order to keep warm the internal temperature of the robot.

- **Waste Management 4**: The mixer was operated for 1 minute every one hour. Also, when the internal temperature was less than 30 degrees, the heater function was activated in order to keep warm the internal temperature of the robot.

- **Normal Compost Box**: The mixer was operated for 1 minute every 12 hours.

Experimental Conditions

In order to carry out the experiments, for 30 days we inserted 5 times per week the kitchen garbage into each waste management robot (compost box). Then, we measured the temperature and
humidity inside each compost box. In Figure 7 are shown the temperatures of each waste management robot and the last one shows the outside temperature. The ▲ mark shows the time when the kitchen garbage was inserted into the compost box.

Evaluation Results

In Figure 8 is shown the temperature change in the waste management robots 1 and 2. We can see that when the fermentation starts, the temperature inside the compost is increasing. The fermentation in the waste management robot 1 starts 24 hours after the kitchen garbage were inserted. However, in the waste management robot 2, it starts immediately after the kitchen garbage were inserted.

The change of internal temperature of the waste management robots 3 and 4 is shown in Figure 9. Because the heater function was activated to keep the temperature constant at 30 degree, both composts box have almost the
The change of the temperature and humidity of the waste management robots 1 and 2 are shown in Figure 10. While, the change of the temperature and humidity of the waste management robots 3 and 4 are shown in Figure 11. In Figure 10, the humidity is increased proportionally with the increase of the fermentation. The humidity is over 80% before and after we inserted the kitchen garbage. However as shown in Figure 11, because of the heater activation, the temperature is about 30 degrees, but the humidity is less than 80%.

In Figure 12, we show the compost of normal compost box and waste management robots. Even the fermented period is the same, it is clear that waste management robots perform better than normal compost box. Thus, the waste management robot system is a very good system for decreasing the environment pollution.
CONCLUSION AND FUTURE WORK

In this work, we presented the design and implementation of a waste management robot system, which is a distributed system that combines the robot technology and compost technology for recycling of kitchen garbage discharged from humans. The proposed system process effectively the kitchen garbage by combining information network functions, sensor technology and robot technology.

We evaluated the performance of the proposed system by some experiments. From the experiments we found that the churning (mixing) function is a very effective function and more than 80% of humidity was required in order to generate a compost. Furthermore,
the heater function is necessary to control the temperature and humidity.

In the future, we would like to implement a moisture control device. Also, in order to build a better recycling environment, we would like to obtain the power supply from solar system or wind power generation.

REFERENCES

Keita Matsuo received his BE and PhD Degrees from Fukuoka Institute of Technology (FIT), Japan in 1989 and 2010, respectively. From 1989 to 2012, he was working as a Teacher at Fukuoka Technical High School, Tobata Technical High School, Kaho-Sogo High School and as a Teacher Consultant at Fukuoka Education Center. He is presently working as a Teacher at Fukuoka Technical High School. His research interests include distance learning systems, Web-based education system, P2P systems, robotics, sensor technology, wireless sensor networks and Internet applications.

Yi Liu received BE from Fukuoka Institute of Technology (FIT), Japan in March 2014. From April 2014, she is a Master Student at Graduate School of Engineering, FIT. Her research interests include P2P systems, Fuzzy Logic, wireless networks, robotic systems, wireless ad-hoc networks and intelligent algorithms.

Donald Elmazi received BE from Tirana Polytechnic University, Albania in December 2013. Presently, he is a Master Student at Tirana Polytechnic University. His research interests include wireless sensor networks, wireless sensor actor networks, Fuzzy Logic, intelligent algorithms, robotic systems and wireless ad-hoc networks.

Leonard Barolli received BE and PhD degrees from Tirana University and Yamagata University, Japan, in 1989 and 1997, respectively. From 1997 to 2005, he was working as JSPS Post Doctor Fellow Researcher and Research Associate at Yamagata University, Assistant Professor at Saitama Institute of Technology (SIT) and Associate Professor at Fukuoka Institute of Technology (FIT). He is presently a Full Professor at Department of Information and Communication Engineering, FIT. Dr. Barolli has published more than 500 papers in referred Journals and International Conference proceedings. Dr. Barolli is the Steering Committee Co-Chair of IEEE AINA, BWCCA, 3PGCIC, NBiS, INCoS CISIS, and IMIS International Conferences. His research interests include network traffic control, fuzzy control, genetic algorithms, ad-hoc networks and sensor networks, Web-based applications, distance learning systems and P2P systems. He is a member of SOFT, IPSJ, and IEEE.
CALL FOR ARTICLES

International Journal of Distributed Systems and Technologies
An official publication of the Information Resources Management Association

MISSION:
The mission of the International Journal of Distributed Systems and Technologies (IJDST) is to be a timely publication of original and scholarly research contributions, publishing papers in all aspects of the traditional and emerging areas of applied distributed systems and integration research (including data, agent, and mining technologies) such as next generation technologies, next generation grid, and distributed and throughput computing concepts, as well as related theories, applications, and integrations at various levels. Targeting researchers, practitioners, students, academics, and industry professionals, IJDST provides an international forum for the dissemination of state-of-the-art theories, practices, and empirical research in distributed systems and prompts future community development as a means of promoting and sustaining a network of excellence.

COVERAGE/MAJOR TOPICS:
• Distributed concepts, systems, applications, technologies, and advanced paradigms for early warning systems, evacuation processes, climate changes, disaster management, and threat detection including geographical information systems and health informatics
• Distributed strategies and practices for e-society, global economies, developing countries, and education
• Distributed systems, system architecture and design, technologies and applications, and their integration methods and tools for performance analysis, verification, testing, and benchmarking and their empirical results
• Distributed technologies for science or business process, models, and application integration and management such as in operational research, economic models, and supply chain
• Distributed technology applications and system integration solutions in diverse collaborative environments including but not limited to science, engineering, management, and business
• Forensics, security, cryptography, threat detection, business continuity, trust, identity management, policies, and quality of service management
• Innovative developments in distributed computer, operating systems, databases, middleware, networking, and application architecture including design and analysis of distributed algorithms, programming languages, compilers, software tools and middleware environments, autonomy services, IoT, smart environments, cloud computing, service oriented, grid, peer-to-peer, throughput and cluster programming interfaces, scheduling and fault-tolerance service and algorithms, and synchronization and concurrency theory and programming
• Matching, mapping, and other novel techniques for the integration, management, and interoperability of distributed data, systems, technologies, services, architectures, applications, and legacy systems
• Novel algorithms, uses, and implications of distributed concepts, models, architectures, technologies, and practices for example in Internet, wireless communications, mobile, ad-hoc networks, and sensors
• Representation techniques like semantics, meta-data, tagging, clouds, ontologies, and knowledge bases in distributed environments
• Theories and applications of distributed computing such as algorithms and services, and their implementation in Internet, pervasive and utility computing, IoT, smart environments, cloud computing, peer-to-peer, grid, next generation grid, and next generation technologies
• Theories, applications, and technologies such as click stream, data mining, databases, data warehouses, Web houses, Web data centers and sites, mashups, intra-/inter-tagging, IoT, smart environments, cloud computing for managing and integrating linked, streaming, media rich, multimedia, spatial, temporal data, services, and resources
• Theory and use of distributed technologies for collaborative work, resource sharing, and problem solving
• Theory of distributed systems and technologies such as parallel or integration algorithms
• User and community led systems and application development, software engineering modeling, architecture, description, deployment, packaging, interfaces, and distribution
• Other implications, including scientific or business models, and human and/or market dynamics influencing decisions and transitions within small and large virtual communities or organizations

All inquiries regarding IJDST should be directed to the attention of:
Nik Bessis, Editor-in-Chief
nik.bessis@beds.ac.uk
All manuscript submissions to IJDST should be sent through the online submission system:
http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

Ideas for Special Theme Issues may be submitted to the Editor-in-Chief.

Please recommend this publication to your librarian. For a convenient easy-to-use library recommendation form, please visit:
http://www.igi-global.com/IJDST