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Abstract.— One reason why classical phylogenetic reconstruction methods fail to cor-

rectly infer the underlying topology is because they assume oversimplified models. In

this paper we propose a quartet reconstruction method consistent with the most general

Markov model of nucleotide substitution, which can also deal with data coming from

mixtures on the same topology. Our proposed method uses phylogenetic invariants and

provides a system of weights that can be used as input for quartet-based methods. We

study its performance on real data and on a wide range of simulated 4-taxon data (both

time-homogeneous and nonhomogeneous, with or without among-site rate heterogeneity,

and with different branch length settings). We compare it to the classical methods of

1



neighbor-joining (with paralinear distance), maximum likelihood (with different underly-

ing models), and maximum parsimony. Our results show that this method is accurate

and robust, has a similar performance to ML when data satisfies the assumptions of both

methods, and outperforms the other methods when these are based on inappropriate sub-

stitution models. If alignments are long enough, then it also outperforms other methods

when some of its assumptions are violated.

[Keywords: phylogenetic invariants, topology reconstruction, general Markov model,

heterogeneity across lineages, heterogeneity across sites, yeast]

Introduction

Usual methods of phylogenetic tree topology reconstruction are known to have limita-

tions. For example, maximum likelihood (ML) is known to fail when data violate some

of the underlying model assumptions (Swofford et al. 2001; Ho and Jermiin 2004; Kück

et al. 2012); maximum parsimony (MP) is statistically inconsistent in the Felsenstein zone

(Felsenstein 1978); and neighbor-joining (NJ) is subject to the choice of an unbiased dis-

tance and it is not as accurate as ML when both methods can be applied (Tateno et al.

1994). When trying to estimate relationships among distantly related organisms, neglect-

ing heterogeneity in the substitution process across lineages or heterogeneity across sites

may result in inaccurate phylogenetic estimates (see Felsenstein 1978; Fitch 1986; Yang

1994; Yang and Roberts 1995; Galtier and Gouy 1998; Ho and Jermiin 2004; Foster 2004;

Kolaczkowski and Thornton 2004; Stefankovic and Vigoda 2007, among others).
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Phylogenetic invariants were first introduced by Cavender and Felsenstein (1987)

and Lake (1987) as a non-parametric method of phylogenetic reconstruction: they are

equations satisfied by any possible joint distribution of character patterns at the leaves

of a tree evolving under an evolutionary Markov model. For example, if one considers

the Jukes-Cantor model on the tree 12|34, then any distribution p of patterns at the

leaves satisfies the equation pAACC = pGGTT . The potential of phylogenetic invariants

was the ability to deal with more general models and of detecting the topology without

estimating branch lengths or substitution parameters (see Felsenstein 2004, chapter 22).

In particular, they can handle heterogeneity across lineages better than other methods

(Casanellas and Fernández-Sánchez 2007; Holland et al. 2013) and (some) could deal

with heterogeneity across sites, as Lake’s invariants did (Lake 1987). Nevertheless, only

a few phylogenetic invariants were known by that time, it was not clear how to use them

(Felsenstein 2004), they seemed useless for large trees, and the approach was laid aside

due to the poor results obtained in simulations (Huelsenbeck 1995).

Eriksson (2005) proposed a new topology reconstruction method, ErikSVD, based

on the work on invariants of Allman and Rhodes (2007). The underlying idea is that

organizing the joint distribution p of character patterns according to a bipartition A|B of

the set of taxa gives a matrix MA|B(p) (called the bipartition matrix from now on, see (1)

in the Methods section) of rank ≤ 4 if the bipartition is induced by an edge of the tree (and

otherwise, the rank is higher). This result holds for any set of DNA sequences evolving

under the most general Markov (GM) model of nucleotide substitution, also known as

the Barry-Hartigan model (Barry and Hartigan 1987; Jayaswal et al. 2005; Allman and

Rhodes 2008). This is the most general model assuming heterogeneity across lineages, as

it allows different instantaneous rate matrices and heterogeneous composition at different

parts of the tree, even locally along each branch (Jayaswal et al. 2011). Given the vector

p̃ of relative frequencies of columns in an alignment, ErikSVD does not use phylogenetic

invariants directly but computes the distance of the bipartition matrix MA|B(p̃) to the set
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of matrices of rank ≤ 4. The shorter the distance, the more likely is the bipartition A|B

to come from an edge of the tree underlying the data.

However, the original ErikSVD method turned out not to be accurate enough to

compete against standard methods (Eriksson 2005), especially in the presence of long-

branches and short alignments. Here we revisit ErikSVD by adjusting the bipartition

matrix: we normalize it by column (respectively, row) sums so that we obtain the transi-

tion matrix from the states of one side of the bipartition to the other. This adjustment is

made to take into account that the rank of the bipartition matrix obtained from empir-

ical distributions could be affected by the presence of long-branch attraction situations.

Indeed, in these situations the probability of observing the same nucleotide at two non-

sister species a and b can be large, so the corresponding row at the bipartition matrix

Mab|others(p̃) has large entries, which can distort its theoretical rank (see Appendix 1 for

an example). The original ErikSVD was already statistically consistent (that is, as the

empirical distribution approaches the theoretical distribution, the probability of correctly

reconstructing the tree goes to one) and so is the method proposed here (see the Methods

section) which will be called Erik+2.

Erik+2 is model-based as it assumes a general Markov model of evolution (and it

could also be redesigned to incorporate either more restrictive Markov models or amino

acid substitution models), but is non-parametric in the sense that it does not attempt to

recover the parameters of the model. Moreover, the theoretical background of Erik+2 al-

lows it to be applied on heterogeneous data across sites evolved on the same tree topology

under the GM model (Jayaswal et al. 2014): that is, a parameter m can be introduced

so that Erik+2 considers the sites of the alignment to be divided into m categories, each

evolving on the same topology but with (possibly) different Markov substitution matrices

and nucleotide distribution at the root –this is often called an m-mixture (Stefankovic

and Vigoda 2007). For example, discrete-gamma rates or the heterogeneous tree in Ko-

laczkowski and Thornton (2004) are instances of mixtures, and ML is known to fail under

4



these conditions even when consistent underlying homogeneous models are considered

(Kolaczkowski and Thornton 2004; Kück et al. 2012). For m-mixtures, the rank of the

bipartition matrix induced by an edge is not larger than 4m (Rhodes and Sullivant 2012,

e.g.) so that in this case we compute the distance to matrices of rank ≤ 4m.

We develop Erik+2 on 4-taxon trees and study its performance on simulated and

real data. Using computer simulations we compare it to the classical methods ML, NJ,

MP and to the original ErikSVD in many different scenarios. We chose quartets because

they are the smallest building blocks of phylogenetic reconstruction (Ranwez and Gascuel

2001) and they are widely used as a hint of efficiency and robustness of the method under

study (Huelsenbeck 1995). Another reason to focus on quartets is that the number of

possible patterns increases exponentially with the number of leaves, thus producing poor

estimations of the pattern distribution for large number of leaves. Erik+2 evaluates the

three possible quartet topologies and returns a system of weights that can be used as

input for quartet-based methods (see the Methods section).

Some of our computer simulations are generated under the general Markov process

that underlies Erik+2 and some are based on the most general time-reversible (GTR) and

homogeneous across lineages model (homGTR from now on). We also simulate heteroge-

nous data across sites by generating either 2-mixtures on the same topology evolving under

the GM model or gamma continuously distributed rates across sites under the homGTR

model. Throughout the paper NJ has been considered with the paralinear distance, and

ML computations have been based on continuous-time models (with parameters to be esti-

mated by the method) considering homogeneity or heterogeneity across lineages and sites

depending on the situation.

The performance of Erik+2 on real data is analyzed on the eight species of yeast

studied in Rokas et al. (2003) with the concatenated alignment provided by Jayaswal et al.

(2014). We investigate whether the quartets output by Erik+2, ErikSVD and ML support

the tree T of Rokas et al. (2003) or the alternative tree T ′ of Phillips et al. (2004), and
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the mixture model proposed by Jayaswal et al. (2014).

Methods

ErikSVD and Erik+2 methods

Erik+2 arises as a variation of the method described by Eriksson (2005) by normalizing

certain matrices obtained from an alignment of nucleotide sequences. As in the original

method, the information contained in the alignment is recorded as a vector p̃ whose

coordinates are the observed relative frequencies of possible patterns at the leaves. In the

case of an alignment of four taxa 1,2,3,4, each possible (trivalent) topology is determined

by a bipartition of the taxa: 12|34, 13|24 or 14|23. For each bipartition A|B, a matrix

MA|B(p̃) is considered by rearranging the coordinates of p̃ according to it, so that the

rows of the matrix MA|B(p̃) are indexed by all possible observations at the taxa in A, and

similarly for columns and observations at the taxa in B. For example, the (AG,CT )-entry

of M12|34(p̃) is the relative frequency p̃AGCT of the pattern AGCT in the alignment. The

same entry in M13|24(p̃) corresponds to the relative frequency p̃ACGT of ACGT .

∗∗AA ∗∗AC ∗∗AG . . . ∗∗TT

M12|34(p̃) =

AA ∗ ∗

AC ∗ ∗

AG ∗ ∗

..

.

TT ∗ ∗



p̃AAAA p̃AAAC p̃AAAG . . . p̃AATT

p̃ACAA p̃ACAC p̃ACAG . . . p̃ACTT

p̃AGAA p̃AGAC p̃AGAG . . . p̃AGTT

...
...

...
...

p̃TTAA p̃TTAC p̃TTAG . . . p̃TTTT


(1)

Assume that the coordinates of p̃ are the empirical estimates of the theoretical

joint distribution p at the leaves of a tree T evolving under the GM model, say T = 12|34.

Then the key point is Theorem 19.5 of Eriksson (2005) (see also Casanellas and Fernández-

Sánchez (2010)) that claims that the rank of MA|B(p) is 4 if A|B = 12|34, and 42 otherwise
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(if the substitution matrices that generated p were general enough). Eriksson’s idea is to

compute the Frobenius distance (that is, the Euclidean distance if we view the matrices

as elements in R42×42 , Demmel 1997) d4 of the three matrices M12|34(p̃), M13|24(p̃) and

M14|23(p̃) to the space of matrices of rank ≤ 4. In this manner, one derives which of the

three matrices is closer to having rank ≤ 4. Note that the Frobenius distance of a matrix

M to the set of matrices of rank ≤ k, dk(M), is easily computed in terms of the singular

values of M (Eckart and Young 1936).

The main motivation for the variation introduced in Erik+2 arises from the ob-

servation that the presence of short branches may seriously affect this distance when it is

computed from short alignments. For example, for a tree with small a and large b (a tree

in the Felsenstein zone; Figure 1.a), the distance of M13|24(p̃) to 4-rank matrices can be

smaller than that of M12|34(p̃) (see also Appendix 1). The reason is that a small a implies

that the probability of observing the same nucleotide at leaves 2 and 4 is high, so columns

in M13|24(p̃) indexed by ∗A∗A, ∗C∗C, ∗G∗G, or ∗T∗T capture most of the non-zero entries in

the matrix, while other columns may only have few nonzero entries. Thus M13|24(p̃) is

not far from having rank 4, even if 13|24 is not the correct topology.

Moreover, if p evolves on the 12|34 topology, the sum of the entries of a column of

M12|34(p) depend on the substitution matrices at the branches 3,4. In the spirit of produc-

ing a more robust score that is less influenced by the peripheral substitution processes (see

for example the idea of using Markov invariants in Holland et al. (2013)), we normalize

these sums. By dividing any non-zero column by the sum of its entries, all the non-zero

columns become of the same weight. As the same situation may occur with rows, we also

need to normalize the matrix by row sums. In this way, each matrix MA|B(p̃) gives rise to

a pair of transition matrices MA→B(p̃) and MA←B(p̃), obtained by column and row sum

adjustment, respectively:
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M12→34(p̃) =



p̃AAAA

p̃AA++

p̃AAAC

p̃AA++
. . . p̃AATT

p̃AA++

p̃ACAA

p̃AC++

p̃ACAC

p̃AC++
. . . p̃ACTT

p̃AC++

p̃AGAA

p̃AG++

p̃AGAC

p̃AG++
. . . p̃AGTT

p̃AG++

. . . . . . . . .


M12←34(p̃) =



p̃AAAA

p̃++AA

p̃AAAC

p̃++AC
. . . p̃AATT

p̃++TT

p̃ACAA

p̃++AA

p̃ACAC

p̃++AC
. . . p̃ACTT

p̃++TT

p̃AGAA

p̃++AA

p̃AGAC

p̃++AC
. . . p̃AGTT

p̃++TT

. . . . . . . . .


.

We give a score to any tree TA|B as

sc(TA|B) :=
d4 (MA→B(p̃)) + d4 (MA←B(p̃))

2
.

Erik+2 outputs the topology with smallest score (notice that the smaller the score, the

more reliable the topology TA|B is). As the empirical distribution p̃ approaches the theo-

retical distribution p, the transition matrices MA→B(p̃) and MB→A(p̃) approach the theo-

retical transition matrices. These have rank 4 for the correct topology because they have

the same rank as the theoretical bipartition matrices (as they are obtained from them by

dividing rows/columns by scalars). Therefore d4 (MA→B(p̃)) and d4 (MB→A(p̃)) tend to 0

when p̃ approaches the theoretical distribution (as the Frobenius distance is a continuous

function) and thus Erik+2 is statistically consistent.

In order to avoid bias in the rank of the bipartition matrices due to insufficient

data, in the adjustment by rows we disregard rows whose sum is not larger than 2/N

where N is the alignment length (same for columns).

Erik+2 also provides normalized weights that can be used as input for weighted

quartet-based methods (Strimmer and von Haeseler 2006). Indeed, the score above is

turned into a confidence weight by inverting it and normalizing so that the overall sum

of weights is 1:

w(TA|B) :=
sc(TA|B)

−1∑
T sc(T )−1

.

The basic model underlying Erik+2 and ErikSVD assumes that all sites in the alignment

are independently and identically distributed according to a general Markov model. There

is no extra assumption about the shape of the substitution matrices (nor stationarity, nor
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time-reversibility, nor global or local homogeneity). But in Erik+2 we relax the i.i.d

hypotheses and allow heterogeneity across sites by considering mixtures in the sense of

Kolaczkowski and Thornton (2004) and Stefankovic and Vigoda (2007). That is, a single

tree topology T is considered but we allow m categories of Markov processes on T defined

by m sets (σ1, . . . , σm) of substitution parameters and nucleotide distribution at the root.

The proportion of sites contributed by the i-th tree (T, σi) is denoted by pi and the

joint distribution at the leaves of T follows an m-mixture distribution:
∑

i piP (T, σi). A

parameter m ∈ {1, 2, 3} can be passed to Erik+2 to adapt the method to consider m

categories. In this case, we compute the distance d4m to matrices of rank ≤ 4m (for m-

mixtures the bipartition matrices can be viewed as the sum of m matrices which have rank

≤ 4 if the bipartition is an edge split, so that the bipartition matrix has rank ≤ 4m). The

restriction to up to 3 categories is only due to theoretical results about non-identifiability

for quartets with four or more categories (there would be 255 parameters in a 4-mixture,

which already fills the whole space of pattern distributions, see Casanellas et al. (2012));

but for up to 3 categories the quartet is known to be identifiable (Allman and Rhodes

2006).

We had also developed different modifications of the original method of Eriksson,

all of them showing lower success than the version considered here. For example we have

tried different options to provide a single value from the distances d4 of the two transition

matrices: the 2-norm, the ∞-norm or even the minimum. We also tried normalizing by

rows and columns at the same time (with poor results), and also considering the 2-norm

instead of the Frobenius norm (similar results). Therefore in this paper we only present

the results corresponding to the method Erik+2 explained here.

Maximum likelihood

Heterogeneity across lineages.— In order to estimate a heterogeneous across lineages
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model we used the software bppml of the Bio++ package (Dutheil and Boussau 2008).

The software had to infer a GTR rate matrix per edge, the branch lengths, and the

equilibrium distribution on a rooted quartet tree with either

- homogeneity across sites, ML(GTR) henceforth, or

- discrete gamma rates with two/three categories, ML(GTR+2Γ) / ML(GTR+3Γ), or

- two categories plus invariable sites, ML(GTR+2Γ+I).

Homogeneity across lineages.— When we restricted the likelihood computations to homo-

geneous across lineages continuous-time models, we used PAML (Yang 1997) to estimate

the rate matrix Q (a unique rate matrix for the whole tree), the equilibrium distribution,

and the branch lengths on a rooted quartet tree. Depending on the setting, the method

infers either

- an unrestricted rate matrix Q (model UNREST in PAML documentation) leading

to the most general continuous-time homogeneous Markov model, which is denoted

as ML(homGMc), or

- a rate matrix Q restricted to the GTR model, ML(homGTR), with possibly auto-

discrete gamma rates, ML(homGTR+Γ).

For the ML computations we waited up to 60 seconds for convergence on each tree

topology and if it did not converge, we treated it as failed (because we cannot compare

likelihoods in this case). It is worth pointing out that, usually, ML was not convergent

only for the incorrect topologies.

Neighbor-joining

10



As far as neighbor-joining is concerned, the paralinear distance (Lake 1994) was used

throughout the paper to estimate pairwise divergences in NJ. This distance is based on

the GM model and has shown to be very useful for phylogenetic inference when nucleotide

sequences are nonstationary (Gu and Li 1996). We also tested NJ with the other distances

proposed in this last reference but the best results in the scenarios considered (always on

homogenous across sites data) were invariantly obtained by the paralinear distance.

Description of the data

In order to test different methods, we simulated data under different scenarios:

Felsenstein zone.— We consider trees subject to long-branch attraction, also known as

trees in the Felsenstein zone. To this end, on the tree of Figure 1.a we fix a = 0.05,

b = 0.75, and let the internal branch length c vary in the range [0.01, 0.4] (or either we

fix c = 0.05 and call it the Felsenstein tree). For each set of branch lengths, we generated

one hundred alignments of different lengths.

Tree space.— We adopt a similar approach to Huelsenbeck (1995) to test different meth-

ods. More precisely, we evaluate the methods on a tree space (see Figure 1.b) where the

quartets are as in Figure 1.a with c = a, and the branch lengths a and b vary between 0

and 1.5 in steps of 0.02. For each pair a, b we generate one hundred alignments of a fixed

length and represent the success of different methods in recovering the right topology.

Farris tree.— We also consider trees with two incident pendant edges of length equal to

0.5 and the other three edges of equal length varying from 0.01 to 0.05 (Figure S5 in

Appendix 2).

Mixture data.— As mentioned above, one of the main features of Erik+2 is that it can

deal with different categories of evolutionary rates. In order to test its accuracy on such

setting, we use the approach of Kolaczkowski and Thornton (2004). We consider two
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categories of the same size both evolving under the GM model on the tree of Figure 1.a:

the first category corresponds to branch lengths a = 0.05, b = 0.75, while the second

corresponds to a = 0.75 and b = 0.05. The internal branch length takes the same value

in both categories and varies from 0.01 to 0.4 in steps of 0.05.

Simulations under the GM model.— To generate data under the general Markov model,

we have used GenNon-h (Kedzierska and Casanellas 2012). Given a set of branch lengths

(understood as the expected number of substitutions per site) and the tree topology of Fig.

1 rooted at the parent node of leaves 3 and 4, this software generates a random distribution

of nucleotides at the root and random substitution matrices with the expected amount

of substitutions per site, and lets nucleotides evolve according to this Markov process on

the tree (Casanellas and Kedzierska 2013).

Simulations under a time-homogeneous GTR model.— In order to generate data evolving

under a homGTR model (with or without continuous gamma-rates) we have used Seq-gen

(Rambaut and Grassly 1997). We used uniform equilibrium distribution, and the rate

matrix underlying Seq-gen alignments on the tree space used in Fig. 4 and Appendix

2.S2 had rates 2 (A→C), 7 (A→G), 4 (A→T), 3 (C→G), 1 (C→T), 5 (G→T). The rate

matrix underlying GTR+Γ had rates 2 (A→C), 5 (A→G), 3 (A→T), 4 (C→G), 1 (C→T),

2 (G→T) and the sites were varied according to a gamma distribution with parameter

α = β in the range [0.1, 2] varying in steps of 0.1. Small values of this parameter indicate

a lot of variation across sites (Yang 1993).

Real data.—We considered the data provided by Jayaswal et al. (2014) with 42 337 second

codon positions of 106 orthologous genes of Saccharomyces cerevisiae, S. paradoxus, S.

mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. The

phylogenetic tree of these species was originally studied in Rokas et al. (2003), where a tree

topology T was identified with 100% bootstrap support for the concatenated alignment
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of these genes. This tree is widely accepted by the community but its correct inference

is known to depend on the consideration of heterogeneity across lineages (Rokas et al.

2003; Phillips et al. 2004; Jayaswal et al. 2014). For example, Phillips et al. (2004) obtain

an alternative tree T ′ with 100% bootstrap using the method of minimum evolution, but

identified the incorrect handling of compositional bias as responsible for this inconsistency.

Moreover, according to Jayaswal et al. (2014) these data are best modeled by taking into

account heterogeneity across lineages plus two different rate categories 2Γ and invariable

sites I. In our setting, this would involve a 3-mixture distribution.

Results

The source code of Erik+2 is publicly available via Dryad at doi:10.5061/dryad.mh850.

It is also available at the webpage http://geomap.ma1.upc.edu/links/erik2.

We present the performance of the new method Erik+2, ErikSVD, ML, NJ and MP,

on quartet reconstruction on different simulated data.

Homogeneity across sites

First of all we evaluate Erik+2, ML, MP and ErikSVD on the Felsenstein zone on data

generated under the GM model (Fig. 2). In this figure two models underlying ML com-

putations have been considered: the most general homogeneous continuous-time model,

ML(homGMc), and a (heterogeneous across lineages) GTR model, ML(GTR). ML has a

similar performance with both models. We observe that Erik+2 is more accurate than

ErikSVD in general and especially when the interior branch length is short (only for length

1 000 and c ∈ (0.13, 0.25) ErikSVD outperforms slightly Erik+2). Both versions of ML per-

form better than Erik+2 for 1 000 bp., Erik+2 and ML perform similarly for 10 000 sites,

but Erik+2 outperforms ML (in its both versions) for 100 000 sites and short internal
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branch. Notice incidentally that the accuracy of MP does not seem to increase as the

length of the alignment grows.

In a more complete study, the methods Erik+2, ML, and NJ have been tested on

the tree space for data generated under the GM model (Fig. 3) and under a homogeneous

GTR model (Fig. 4). Both ML(homGMc) and NJ have lower accuracy than Erik+2 (Fig.

3), as was expected under data that violates the assumptions of ML and NJ. While Erik+2

and NJ drastically increase their accuracy when the alignment length is multiplied by 10,

ML does not (Fig. 4 and, very specially, Fig. 3 where the substitution model assumed

by ML is incorrect). Under the homogenous GTR model and for length 10 000 (Fig. 4),

Erik+2 performs slightly better thatn ML(homGTR) (although the difference does not

seem significant). One possible explanation is suggested by the presence of long branches,

which may distort the performance of ML even when the correct model is assumed (Kück

et al. 2012). Erik+2 also outperforms ErikSVD on this tree space (Fig. 1.b and Fig. S1

in Appendix 2). We also present the average success achieved by these methods on this

tree space for alignments of length 500 bp. and 1 000 bp. (Table 1).

It is worth pointing out that, for alignments of 1 000 bp. evolving under the ho-

mogeneous GTR model, ML seems to outperform Erik+2 in the Felsenstein zone when it

estimates exactly this model, ML(homGTR) (Fig. 4). However, for length 10 000, Erik+2

already outperforms ML(homGTR). Moreover, the global accuracy of ML(homGMc) drasti-

cally drops when applied to data obtained under the GM model (Fig. 3). Notice also that

whereas the accuracy of NJ and ML drops when all branches are long (top right corner),

the performance of Erik+2 seems less sensitive to long-branches.

We have also evaluated the version of Erik+2 with 2-mixtures (m = 2) on the

same data (Fig. S3 in Appendix 2). The accuracy obtained for alignments of 1 000 bp. is

similar to that of Erik+2 with m = 1 (the means are 0.790 and 0.803, respectively), and

hence the choice m = 2 appears as a good option when alignments are long enough and

we ignore whether the data comes from mixtures or not (see also Fig. S4 in Appendix 2).
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For completeness, we also include results on the performance of Erik+2 and ML

(GTR) on the Farris tree with data simulated under the GM model (Fig. S5 in Ap-

pendix 2). In this case, ML performs slightly better than Erik+2.

Heterogeneity across sites

We also generated data under the homogeneous GTR model with sites varying according

to a gamma distribution on the Felsenstein tree. While this setting violates the hypotheses

of the model underlying Erik+2 and ErikSVD, in this case maximum likelihood is estimat-

ing a homogeneous GTR model with rates varying according to the auto-discrete gamma

model ML(homGTR+Γ) (Yang 1994). We observe that Erik+2 manages to overcome the

violation of its hypotheses giving 100% success already for 10 000 bp., while ErikSVD gives

terrible results for 1 000 and 10 000 bp., but excellent results for 100 000 bp. (Figure

5.a). ML is more successful than Erik+2 for 1 000 bp., but both methods have a similar

performance on longer alignments. On the same data we also tested MP, obtaining in all

cases the incorrect tree 13|24 (and therefore we do not represent the corresponding 0%

line in the figure).

In order to check the accuracy of Erik+2 on data with two categories of evo-

lutionary rates, we have tested various methods on the mixture data described in the

Methods section. We present the performance of Erik+2 (with m = 1 and m = 2), MP,

ML(homGMc), and ML estimating a (heterogeneous across lineages) GTR model with dis-

crete gamma rates with 2 categories, ML(GTR+2Γ) henceforth (Fig. 5.b). We included MP

in this study because, as stated in Kolaczkowski and Thornton (2004), it performs better

than ML estimating a single category model. This claim is confirmed by the results in

our simulations with both versions of ML. It is worth pointing out that even Erik+2 with

m = 1 performs better than ML(homGMc) for internal branch length ≤ 0.25, and than

ML(GTR+2Γ) for internal branch length ≤ 0.15. Also, notice that for length 10 000 and
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larger, the accuracy of Erik+2 with m = 2 is always greater than 33%, even if the internal

branch length is small. This does not happen for ML or MP, which are not statistically

consistent in this setting.

Performance on real data

We applied ErikSVD, Erik+2 withm = 1, 2, 3, ML (GTR+2Γ+I), and ML (GTR+3Γ)

to 4-taxon subalignments of the real data described above and investigated the proportion

of output quartets that are compatible with T or T ′. Erik+2 and ML support the tree T

and the model suggested by Jayaswal et al. (2014) (m = 3 for Erik+2 and GTR+2Γ+I

for ML), whereas ErikSVD gives more support to the alternative tree T ′ (Table 2).

We also represented the weights of each quartet output by Erik+2 with m =

3 and ML (GTR+3Γ) (figure S6 in the Appendix 2). It is interesting to observe that

Erik+2 provides powerful discrimination between quartets and that the weights of the

quartets that are incompatible with T are the lowest. Indeed, while Erik+2 exhibits

strong support for the correct topology and its weights vary from 0.3066 to 0.6700, ML

weights are essentially equal and vary from .3314 to .3365. It is interesting to note that

both methods tend to fail with the same quartets.

Execution time

We have compared the execution time of the different reconstruction methods used in our

simulations with 100 alignments of length 1 000 bp. on a 3.2GHz processor. The results

obtained show that NJ is the fastest method (1.324s), ErikSVD and Erik+2 take 1.928s

and 2.148s respectively, and MP takes 3.984s. Increasing the number m of categories in

Erik+2 does not increase running time (instead, it avoids some computations). Finally,

ML is the slowest method by far because it has to infer the model parameters: on the same

100 alignments, ML(homGMc) and ML(homGTR) of PAML need about 10 seconds, and
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ML(GTR) and ML(GTR+2Γ) of bppml (Bio++ package) need about 200 minutes (probably

due to the large number of parameters)– we should point out that bppml allows many

options and more experienced users may obtain better execution times.

Discussion and conclusions

The simulation studies show that Erik+2 is an accurate and robust topology reconstruc-

tion method on quartets, especially in situations where other methods systematically fail

(model heterogeneity accross sites or lineages, or long-branch attraction). In such sce-

narios, Erik+2 outperforms the method of Eriksson, ErikSVD, and common methods like

MP, NJ and ML based on models that cannot accommodate these assumptions. Erik+2

is based on the most general Markov model and hence accounts for heterogeneous data

across lineages, even locally at each edge. When its assumptions are violated, for example

in the presence of continuous gamma-distributed rates among sites, we have shown that

it is highly accurate if there is enough data. As observed, Erik+2 can also deal with

m-mixtures on the same tree topology (although for quartets the limit is m = 3). Even

more, the simulations presented suggest that Erik+2 with m = 2 seems to be a good

option to deal with large alignments when the mixture status of the data is unknown.

On the experiments we presented, the overall performance of ML is quite accurate

if model assumptions are not violated, confirming the conclusions of Kolaczkowski and

Thornton (2004); Kück et al. (2012). Also in line with these papers, we corroborate that

long sequences do not improve ML performance on data that do not satisfy the hypothesis

of the underlying model. Moreover, ML is by far the slowest among the methods tested

here, while Erik+2 is not as fast as NJ, but still fast as its computing time is nearly twice

NJ’s. Another drawback of ML is that, quite often, it does not converge when it is computed

on the incorrect topology, which makes the comparison of likelihoods impossible. Whereas

the goal of Erik+2 is to reconstruct the topology, ML is designed to estimate the parameters
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of the substitution matrices and it would probably be a good choice to use first Erik+2

and then ML to estimate the parameters. In our simulation study, NJ (with paralinear

distance) and MP have been the methods with least success, which is not so surprising

if one takes into account that they are also less adaptable to general data. It is worth

pointing out that in some cases (for example, short alignments), ErikSVD might be a

better option than Erik+2, but in order to decide which method is best in each case, a

detailed statistical study should be done.

We have only developed Erik+2 for quartets with the aim of validating it as a

successful method, and it is still a work in progress to further develop it for larger numbers

of taxa. One possibility is to apply some quartet method based on the weights provided

by Erik+2. Similar studies have been carried out by Rusinko and Hipp (2012) using

weights obtained from phylogenetic invariants. In any case, the weighting method for

the quartets plays a key role in this approach (Ranwez and Gascuel 2001). A different

possibility would be to use Erik+2 to evaluate the confidence of particular bipartitions

of large sets of taxa, and in this case one can deal with a larger number m of categories

(the maximum m allowed depends on the size of the subsets A, B of taxa involved in

the bipartition: 4min{|A|,|B|}−1 − 1). However, some more work has to be done to adapt

Erik+2 to more taxa because the lack of data (short alignments relative to the size of the

bipartition matrices) might affect the rank of the bipartition matrices. Extending Erik+2

to amino acid data is also viable, and in this case the maximum number of allowed

categories is equal to 19 for quartets (although we still have not addressed the possible

natural biases that have to be considered in this case).
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Tables

Average success of different quartet methods on the tree space of Figure 1b.

simulations base pairs ErikSVD Erik+2 NJ ML

GM 1 000 0.856 (0.21) 0.803 (0.17) 0.797 (0.18) 0.736 (0.17)

10 000 0.958 (0.13) 0.971 (0.04) 0.943 (0.09) 0.754 (0.17)

homGTR 500 0.732 (0.21) 0.748 (0.22) 0.729 (0.23) 0.880 (0.11)

1 000 0.796 (0.30) 0.843 (0.19) 0.805 (0.20) 0.934 (0.06)

10 000 0.940 (0.22) 0.992 (0.04) 0.945 (0.10) 0.980 (0.02)

Table 1: Average success of ErikSVD, Erik+2, neighbor-joining (NJ) and maximum likelihood

(ML) obtained in the results of Figure 3, 4, and Figure S2 in Appendix 2 (this is data simulated on

the tree space of Figure 1b according to the general Markov model (GM) or the time-reversible

model homogeneous across lineages and sites (homGTR) for different lengths). In parentheses

we show the standard deviation of the set of percentages of success of each method in each

tree space. In each row, the highest success is indicated in bold font. ML(homGMc) is applied

when data are generated under the continuous GM model (that is, it estimates the most general

homogeneous continuous-time model), while ML(homGTR) is applied when data are generated

under the general time-reversible model homogeneous across lineages and sites.
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Quartet compatibility of different methods with real data.

topology ErikSVD Erik+2 Erik+2 Erik+2 ML ML

(m = 1) (m = 2) (m = 3) (GTR+2Γ+I) (GTR+3Γ)

T 91.43 84.29 87.14 92.86 97.14 91.42

T ′ 94.26 82.86 77.14 85.71 90.00 84.29

Table 2: Percentage of quartets output by ErikSVD, Erik+2 (with different mixture assump-

tions), and ML (assuming a GTR model with either 2 discrete rate categories and invariable sites,

or 3 discrete rate categories across sites) that are compatible with the yeast tree T of Rokas

et al. (2003) and the alternative tree T ′ of Phillips et al. (2004). In each column, the highest

success is indicated in bold font.

Figure captions
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Description of the quartet tree and the tree space used in our simulations

r

Figure 1: a) 4-leaf tree where the length of two opposite branches is represented by a; the other two

peripheral branches have length b; and the length of the interior branch is denoted by c. The root r is

located at the parent node of leaves 3 and 4. Branch lengths will be measured in the expected number of

substitutions per site. b) Tree space obtained form the tree in a) when the branch length c is set equal

to a and branch lengths a and b are varied from 0.01 to 1.5 in steps of 0.02 (see “Description of the data”

in the Methods section).
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Figure 2: Percentage of correctly reconstructed topologies by Erik+2, ErikSVD, maximum likelihood ML,

and maximum-parsimony MP on data generated under the general Markov model (GM) on the Felsenstein

zone tree (see “Description of the data” in the Methods section). Two types of ML inference have

been applied here: ML(homGMc) estimating the most general homogeneous continuous-time model, and

ML(GTR) estimating a GTR model (due to the execution time of this last method, we could only test it

for 1 000 bp. and 10 000 bp.).
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Figure 3: Performance in the tree space of Figure 1.b on data generated under the general Markov model

Left : 1 000 bp; Right : 10 000 bp. Black is used to represent 100% of successful topology reconstruction,

white to represent 0%, and different tones of gray the intermediate frequencies. The 95% contour line is

drawn in white, whereas the 33% contour line is drawn in black. Top: Erik+2; Middle: neighbor-joining

(paralinear distance); Bottom: ML(homGMc) estimating the most general homogeneous across lineages

continuous-time model.
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Figure 4: Performance in the tree space of Figure 1.b on data generated under the (homogeneous across

lineages) GTR model Left : 1 000 bp; Right : 10 000 bp. Black is used to represent 100% of successful

topology reconstruction, white to represent 0%, and different tones of gray the intermediate frequencies.

The 95% contour line is drawn in white, whereas the 33% contour line is drawn in black. Top: Erik+2;

Middle: neighbor-joining (paralinear distance); Bottom: ML(homGTR) estimating homogeneous GTR

model.
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Figure 5: Percentage of correctly reconstructed topologies by different methods on alignments of lengths

1 000, 10 000 and 100 000 bp. shown from top to bottom. a) Data simulated under (homogeneous across

lineages) GTR model with continuous gamma-rates and parameter α varying between 0.1 and 2 on

the Felsenstein tree (see “Description of the data” in the Methods section). Erik+2, ErikSVD, and ML

estimating the GTR model (homogeneous across lineages) with auto-discrete gamma-rates and denoted

as ML(homGTR+Γ) (MP had 0% success on this data, so we do not show it). b) Data generated under the

GM model with 2 categories according to the test designed in (Kolaczkowski and Thornton 2004), varying

the internal branch length, and recovering with Erik+2 withm = 2, Erik+2 withm = 1, MP, ML(homGMc)

estimating the most general homogeneous across lineages model, and ML(GTR+2Γ) estimating a time-

reversible model with 2 discrete-gamma categories (due to the time of execution of this last method, we

could only test it for 1 000 bp). The plot represents the logistic regression curve of the output of each

method. In all cases, ML had to estimate all parameters.
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