

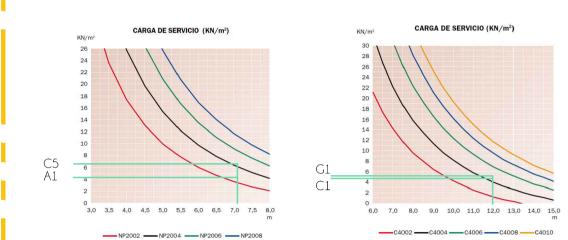
DEFINICION DEL ESTADO DE CARGAS :

DEFINICIÓN DEL ESTADO DE CARGAS SUPERFICIALES GRAVITATORIAS:

- Peso propio forjado (NP 2006) = 3,00KN/m² + 1,5KN/m² - Peso propio forjado (NP 4006) = 5,35KN/m² + 1,5KN/m²

- Cargas permanentes:

x Peso propio pavimento 3mm (Levantina hydra plomo TECHLAN) = 0,80 KN/m² x Solera de cemento 5cm = 0,12 KN/m²


x Carga de tabiques = 0,50 KN/m² x Falso techo = 0,13 KN/m² x Instalaciones = 0,15 KN/m²

- Sobrecarga de uso $A1 = 2,00 \text{ KN/m}^2$ - Sobrecarga de uso C1= 3,00 KN/m² - Sobrecarga de uso C5= 5,00 KN/m² - Sobrecarga de uso G1= 1,00 KN/m² + 2,50 KN/m² de nieve

DEFINICIÓN DE LAS CARGAS LINEALES (h =4.5):

Placa de hormigón vibrado $= 2,80 \text{ KN/m}^2$ Aislamiento térmico (8 cm) = 0,02 KN/m² Tabique técnico Aquapanel indoor W386 = 0,48 KN/m²

Total carga lineal: 2,8 + 0,02 + 0,48 = 3,3 KN/m² * 4,5m = 14,85 KN/m

CALCULO DE CANTO DE FORJADO:

PRIMERA APROXIMACIÓN SEGÚN LOS DATOS DEL FABRICANTE

- Peso propio forjado (NP 2006) = $3,00KN/m^2 + 1,5KN/m^2$ - Peso propio foriado (NP 4006) = 5,35KN/m² + 1,5KN/m² Para calcular el cante de forjado se ha de tener en cuenta la losa mas deficiente. A partir de la formula siguiente: hmin (canto mínimo forjado) $\geq \delta 1 \cdot \delta 2 \cdot \frac{L}{C}$

donde: $-\delta 1 = \sqrt{\frac{9}{7}}$ - L = ∥∪z $-\delta 2 = 4\sqrt{\frac{1}{5}}$ -C = coeficiente c de losas alveolares (36)

- Zona A1 (NP 2006) L: 7,2m = 2,00 KN/m² + 3,00 KN/m² + 1,5 KN/m² + 0,92KN/m² + 0,78 KN/m² = 8,2 Zona C1 (NP 4006) L: 12,0m = 3,00 KN/m² + 5,35KN/m² + 1,5KN/m² + 0,92KN/m² + 0,78KN/m² = 11,55

- Zona C5 (NP 2006)L: 7,20m = 5,00 KN/m² + 3,00KN/m² + 1,5KN/m² + 0,92KN/m² + 0,78KN/m² = 11,2

- Zona G1 (NP 4006) L: 12,0m = 1,00 KN/m² + 2,50 KN/m² + 5,35KN/m² + 1,50KN/m² + 0,92KN/m² + 0,78KN/m² = 12,05

SEGUNDA APROXIMACIÓN A 1

 $\delta 1 = \sqrt{2} = 1,08$ $\delta_2(A) = 4 \sqrt{\frac{1}{6}} = 1$

hmin ≥ δ1 · δ2 · $\frac{L}{C}$ = 1,08· 1 · (7,2/36) ≈ 0,22 m

Como el canto actual de 20+6 es superior a 0,22 nos quedamos con el canto

SEGUNDA APROXIMACIÓN C1

 $\delta 1 = \sqrt{9} = = 1,28$ $\delta_2(A) = 4 \sqrt{\frac{1}{6}} = 1,17$

hmin ≥ δ1 · δ2 · $\frac{L}{C}$ = 1,28· 1,17 · (12,0/36) ≈ 0,45 m

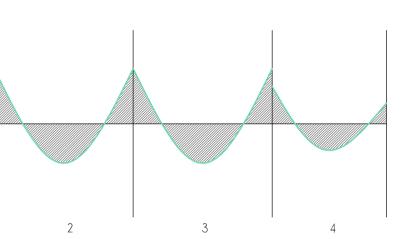
Como el canto actual de 40+6 es superior a 0,45 nos quedamos con el canto

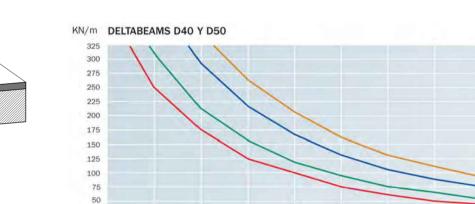
SEGUNDA APROXIMACIÓN C5

 $\delta 1 = \sqrt{9} = = 1,26$ $\delta_2(A) = 4 \sqrt{\frac{1}{6}} = 1$

hmin ≥ δ1 · δ2 · $\frac{L}{C}$ = 1,26· 1 · (7,2/36) ≈ 0,25 m

Como el canto actual de 20+6 es superior a 0,25 nos quedamos con el canto


Como ejemplo de cálculo de una Jácena DELTABEAM, calcularemos una jácena del pórtico 1 cuyo momento flector sea más desfaborable. Luces: 6,7m o 5,5m


<u>CÁLCULO CARGA TRANSMITIDA</u>

Carga superficial total transmitida por el forjado = $11,5 \text{ kN/m}^2$ Carga lineal total del forjado y de cerramientos = $11,55 \cdot (4,87 + 0) + 14,85 = 71,09 \text{ kN/ml}$

<u>:ULO DE MOMENTOS EN JÁCENA</u>

¹/₁₄ · 71,09 · 5,5² M1centro = M1dcha = 10 · 71,09 · 5,5² M2izq = $\frac{1}{10} \cdot 71,09 \cdot 6,7^2$ M2centro = 14 · 71,09 · 6,7² M2dcha = [⊥]₁₀ · 71,09 · 6,7² M3izq = ¹/₁₀ · 71,09 · 6,7² $M3centro = \frac{1}{14} \cdot 71,09 \cdot 6,7^{2}$

CALCULO DE ARMADURA DE REPARTO

Al calcular las armaduras de reparto tenemos que diferenciar entre los forjados de capa de compresión de 4 y 6 cm

- Como armado base usaremos barras de Ø5mm Distancia mínima entre barras 35cm
- Acero B500S

Capa de compresión de 4cm. de espesor

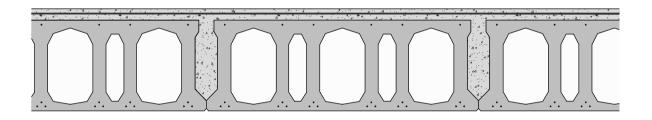
Armadura perpendicular a la bigueta:

Ø 5 cada 30cm

Armadura paral·lela a la bigueta: $A2 \ge (2'5 \cdot h0) / fyd = \frac{(2.5 \cdot 40 \text{ mm})}{(500/(1.5))} = 0.23 \text{ cm}^2/\text{m} \qquad \emptyset = 0.23 \text{ cm}^2 / 0'196 \text{ cm}^2 = 1.17 \text{ }\emptyset 5 \approx 2 \text{ }\emptyset 5 \text{ }0.5\text{m}$

Ø 5 cada 35cm

Capa de compresión de 6cm. de espesor


Armadura perpendicular a la bigueta: $A1 \ge (5 \cdot h0) / fyd = \frac{5 \cdot 60 \text{ mm}}{500/1.15} = 0.52 \text{ cm}^2/\text{ml}$ $\emptyset = 0.52 \text{ cm}^2/0.196 \text{ cm}^2 = 2.66 \text{ } \emptyset 5 \approx 3 \text{ } \emptyset 5 \text{ } 0.333 \text{ } \text{m}$

 \emptyset 5 cada 30cm

Armadura paral·lela a la bigueta: $A2 \ge (2'5 \cdot h0) / fyd = \frac{(2.5 \cdot 60 \text{ mm})}{(500/1.15)} = 0,345 \text{ cm}^2/\text{ml} \qquad \emptyset = 0,345 \text{ cm}^2/\text{ 0'196 } \text{ cm}^2 = 1,76 \text{ } \emptyset 5 \approx 2 \text{ } \emptyset 5 \text{ } 0,5\text{m}$

Ø 5 cada 35cm

CALCULO DE LAS FUERZAS PROVOCADAS POR EL VENTO

<u>PRESIÓN DINÁMICA</u> $Qe = Qb \cdot Ce \cdot Cp$

Por lo tanto:

AREAS

CARGA DE SUCCIÓN

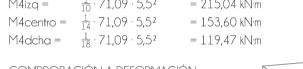
Qcub succión = 0,42 kN/m² \cdot 23,4 m² = 9,82 kN

Qb = presión dinámica del viento

Ce = coeficiente de exposición Cp = coeficiente eólico o de presión;

En nuestro caso: $Qb = 0'52 \text{ kN/m}^2 \text{ zona C}$ (según el CTE)

Ce = 2'0 en edificios urbanos de hasta 8 plantas se puede tomar el valor constante, independientemente de la altura

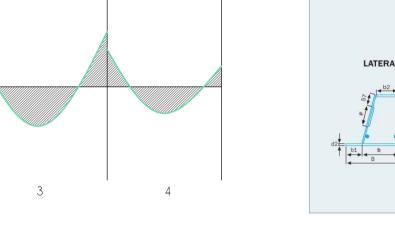

Cp (depende de la esbelteza del edificio): = (h / b) = (27 m / 34 m) = 0,79=

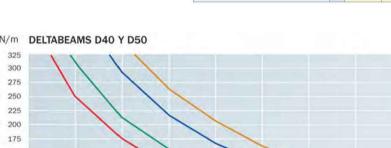
Carga lineal mayorada debido al hiperestatismo = $71,09 \cdot 1,1 = 78,2$ kN/ml

M1izq = $\frac{1}{10} \cdot 71,09 \cdot 5,5^2$ = 215,04 kN·m = 153,60 kN·m = 215,05 kN·m = 319,12 kN·m = 227,94 kN·m

= 319,12 kN·m = 319,12 kN·m = 227,94 kN·m 10 · 71,09 · 6,7² M3dcha = = 319,12 kN·m M4izq = 10 · 71,09 · 5,5² = 215,04 kN·m

COMPROBACIÓN A DEFORMACIÓN Se ha de comprobar el canto según la flecha: $fmáx \le L/250 = 4 \cdot \left\{\frac{5\cdot q!^4}{384} - \frac{1\cdot Mizq!^2}{16} - \frac{1\cdot Mder!^2}{16}\right\} \cdot \frac{1}{E}$ $6,7/250 = 4 \cdot \left\{ \frac{5\cdot78,2\cdot6,7^4}{384} - \frac{227,94\cdot6,7^2}{16} - \frac{215,04\cdot6,7^2}{16} \right\} \cdot \frac{1}{273000001}$


= 11,55 kN/m²


= 14,85 KN/m

= 18,05 kN/m²

 $= 2,50 \text{ kN/m}^2$

Jácena Deltabeam

PILAR PLANTA TERCERA

PREDIMENSIONADO POR AXIL

 $Ac = Nd/0,80 (fcd \cdot (1 + \omega'))$

 $fcd = \frac{25}{1.5} \text{ N/mm}^2$

B= 400, H= 146756,36/ 400 = 366,89mm

MOMENTO DE CARGAS GRAVITATORIAS

MOMENTO DE VIENTO

PILAR PLANTA SEGUNDA

PREDIMENSIONADO POR AXIL

 $Ac = Nd/0.80 (fcd \cdot (1 + \omega'))$

 $fcd = \frac{25}{1.5} \, \text{N/mm}^2$

B= 400, H= 205304,96/ 400 = 513,26mm

MOMENTO DE CARGAS GRAVITATORIAS

 $M = N \cdot e(min) = 1659,03 \cdot 0,015 = 24,88 \text{ kNm}$

solo tendremos en cuenta las cargas de succión

MK _{PC}= (154,66 kN·m / 3) $\cdot \frac{2}{3} \cdot 1.5 = 51,55$ kNm

M P_c = (4,91+9,82+9,82+9,82) · 4,5m = 154,66 kNm

 $\omega' = 0$

 $M = N \cdot e(min) = 1185,91 \cdot 0,015 = 17,78 \text{ kNm}$

solo tendremos en cuenta las cargas de succión

 $MP_{c} = (4,91 + 9,82 + 9,82) \cdot 4,5m = 110,47 \text{ kNm}$

MK _{PC}= $(110,47 \text{ kN/m} / 3) \cdot \frac{2}{3} \cdot 1.5 = 36,82 \text{ kNm}$

(cuantía baja, OK!)

N P_{anteriores} + N _{Cuarta} = 1185,91 kN + 473,12 kN = 1659,03 kN

 $Ac = 2587,94 \cdot 10^3 / 0,80 \cdot 25/1,5 (1 - 0) = 205304,96 \text{ mm}^2$

Obtenemos un pilar de 400mm x 600mm

Donde: Nd = Axil total ·1,1 · 1,5 = (1659,03 · 1,1 · 1,5) = 2737,39 kN

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>

 $\omega' = 0$

CENTRAL

D20-200 200 100

D20-400 400 130 278

D26-300 300 97,5 148

D26-400 400 130 245

D32-300 300 97,5 110

180

----- D50-600

----- D50-500 ----- D40-500

---- D40-400

12

Donde: Nd = Axil total ·1,1 · 1,5 = (1185,91 · 1,1 · 1,5) = 1956,75 kN

Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero,

 $\omega 1 = 2,5 \cdot (36,82 \text{KNm} + 17,78 \text{ kNm}) \cdot (1000000) / ((25/1,5 \text{ N/mm}^2) \cdot 400 \cdot 400^2) = 0,12$

N P_{anteriores} + N _{Cuarta} = 712,79 kN + 473,12 kN = 1185,91 kN

 $Ac = 1956,75 \cdot 10^3 / 0,80 \cdot 25/1,5 (1 - 0) = 146756,36 \text{ mm}^2$

Obtenemos un pilar de 400mm x 400mm

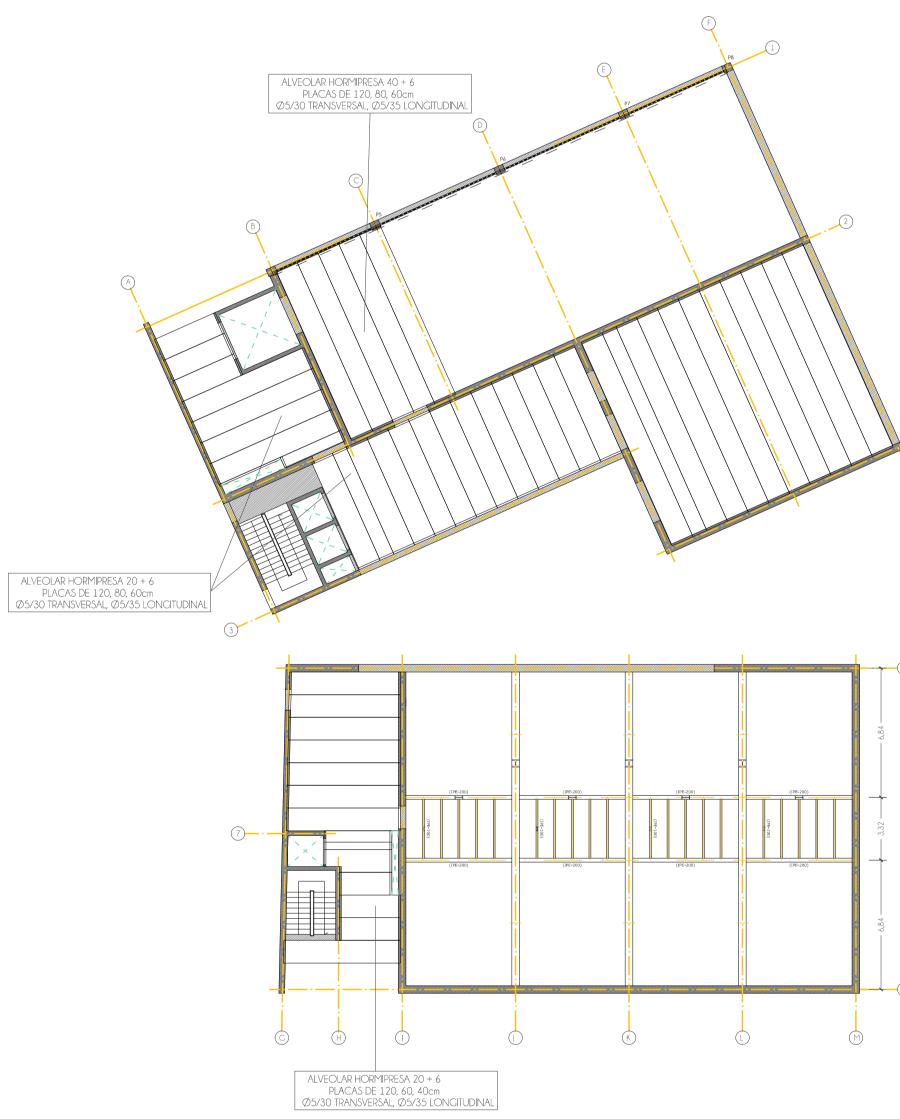
D20-300 300

D32-400 400

037-400 4

D37-500 5

040-500


DR32-b

DR37-b

DR40-b

D50-500 5

Por lo tanto, la sección de la DELTABEAM cumple a flexión

Haremos el predimensionado del pilar 7

PLANTA PRIMERA, TERCERA Y CUARTA

Cargas int Zona C1: peso propio forjado

Cargas int Zona G1: peso propio forjado

peso de cerramientos

peso propio cubierta plana

Q puntual del pilar = Q sup int = $(18,05 \cdot 33,12) + (2,50 \cdot 33,12) = 597,81 \text{ kN}$

Q puntual del pilar = Q _{jácenas} + Q _{cerramientos} = 24.4 + 14.85 + 6.1 = 114.98 kN

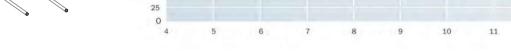
DETALLE UNION ISOSTÁTICA ENTRE PILAR Y JACENA

Peso propio de las jácenas = 0,4 · 0,4 · 6,1 · 25 kN/m³ = 24,4 kN

A. tributaria total = $33,12 \text{ m}^2$

PLANTA CUBIERTA

A. tributaria total = $33,12 \text{ m}^2$


<u>PLANTA SEGUNDA Y QUINTA</u>

ácena Deltabeam

Peso de cerramientos = 14,85 KN/m

 $0,0268 = 4 \cdot 809,01 \cdot \frac{1}{273000001}$; I = 8,889 \cdot 10^{-9} m^4

0,0268 ≤ 16,48

PILAR PLANTA PRIMERA

N P_{anteriores} + N _{Segunda} = 1659,03 kN + 114,98 kN = 1774,01 kN

PREDIMENSIONADO POR AXIL

 $Ac = Nd/0,80 (fcd \cdot (1 + \omega'))$

Donde: Nd = Axil total ·1,1 · 1,5 = (1774,01 · 1,1 · 1,5) = 2927,11 kN $fcd = \frac{25}{1.5} \text{ N/mm}^2$ $\omega' = 0$

 $Ac = 2927,11 \cdot 10^3 / 0,80 \cdot 25/1,5 (1 - 0) = 219533,73 mm^2$

B= 400, H= 219533,73/ 400 = 548,83mm

Obtenemos un pilar de 400mm x 600mm

MOMENTO DE CARGAS GRAVITATORIAS

M = N . e(min) = 1774,01 · 0,015 = 26,61 kNm

<u>MOMENTO DE VIENTO</u>

Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero, solo tendremos en cuenta las cargas de succión

MP_c = (4,91+9,82+9,82+9,82+9,82) · 4,5m = 198,85 kNm MK _{PC}= (198,85 kN·m / 3) $\cdot \frac{2}{3} \cdot 1.5 = 66,28$ kNm

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>

 $\omega 1 = 2.5 \cdot (66.28 \text{KNm} + 26.61 \text{ kNm}) \cdot (1000000) / ((25/1.5 \text{ N/mm}^2) \cdot 400 \cdot 600^2) = 0.096$

(cuantía baja, OK!)

PILAR PLANTA BAJA

N P_{anteriores} + N _{Primera} = 1774,01 kN + 473,12 kN = 2247,13 kN

PREDIMENSIONADO POR AXIL

 $Ac = Nd/0,80 (fcd \cdot (1 + \omega'))$

Donde: Nd = Axil total ·1,1 · 1,5 = (2247,13 · 1,1 · 1,5) = 3707,76 kN $fcd = \frac{25}{1.5} \text{ N/mm}^2$ $\omega' = 0$

Ac = 3707,76 · 10³ / 0,80 · 25/1,5 (1 - 0) = 278082,33mm²

B= 400, H= 278082,33/ 400 = 675,20mm

Obtenemos un pilar de 400mm x 700mm

MOMENTO DE CARGAS GRAVITATORIAS

M = N . e(min) = 2247,13 · 0,015 = 33,70 kNm

<u>MOMENTO DE VIENTO</u>

Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero, solo tendremos en cuenta las cargas de succión

MP_c = (4,91+9,82+9,82+9,82+9,82+ 4,91) · 4,5m = 220,95 kNm MK $_{PC}$ = (220,95 kN·m / 3) $\cdot \frac{2}{3} \cdot 1.5$ = 73,65 kNm

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>

 $\omega 1 = 2.5 \cdot (73.65 \text{KNm} + 33.70 \text{ kNm}) \cdot (1000000) / ((25/1.5 \text{ N/mm}^2) \cdot 400 \cdot 700^2) = 0.082$

(cuantía baja, OK!)

Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero, MK _{PC}= (66,28 kN·m / 3) $\cdot \frac{2}{3} \cdot 1.5 = 22,09$ kNm ω1 = 2,5·(22,09KNm + 10,69 kNm)·(1000000)/((25/1,5 N/mm²)·400·400²) = 0,076

(cuantía baja, OK!)

 $Ac = Nd/0,80 (fcd \cdot (1 + \omega'))$ Donde: Nd = Axil total ·1,1 · 1,5 = 597,81 · 1,1 · 1,5 = 986,38 kN $fcd = \frac{25}{1.5} N/mm^2$ $\omega' = 0$ Q puntual del pilar = Q sup int + Q lineal = $(11,55 \cdot 33,12) + (14,85 \cdot 6,1) = 473,12$ kN Ac = 986,38 $\cdot 10^3 / 0,80 \cdot 25/1,5 (1 - 0) = 73978,5$ mm²

B= 400, H= 73978,5/ 400 = 184,94mm

MOMENTO DE CARGAS GRAVITATORIAS

Obtenemos un pilar de 400mm x 400mm

PILAR PLANTA QUINTA

N_{Cubierta} = 597,81 kN

PREDIMENSIONADO POR AXIL

M = N . e(min) = 597,81 · 0.015 = 8,96 kNm <u>MOMENTO DE VIENTO</u>

Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero, solo tendremos en cuenta las cargas de succión

 $MP_{c} = 4,91 \cdot 4,5m = 22,095 \text{ kNm}$ MK _{PC}= (22,095 kN·m / 3) $\cdot \frac{2}{3} \cdot 1.5 = 7,365$ kNm

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>

ω1 = 2,5·(7,365KNm + 8,96 kNm)·(1000000)/((25/1,5 N/mm²)·400·400²) = 0.038

(cuantía baja, OK!)

PILAR PLANTA CUARTA

N_{Cubierta} + N _{Quinta} = 597,81 kN + 114,98 kN = 712,79 kN PREDIMENSIONADO POR AXIL

 $Ac = Nd/0,80 (fcd \cdot (1 + \omega'))$

 $\omega' = 0$

Donde: Nd = Axil total ·1,1 · 1,5 = (712,79 · 1,1 · 1,5) = 1176,10 kN $fcd = \frac{25}{1.5} \text{ N/mm}^2$

 $Ac = 1176, 10 \cdot 10^3 / 0,80 \cdot 25/1,5 (1 - 0) = 88207,76 \text{ mm}^2$

B= 400, H= 88207,76/ 400 = 220,51mm

Obtenemos un pi**l**ar de 400mm x 400mm

MOMENTO DE CARGAS GRAVITATORIAS

M = N . e(min) = 712,79 · 0,015 = 10,69 kNm

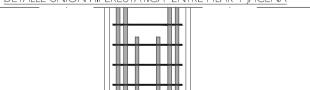
<u>MOMENTO DE VIENTO</u>

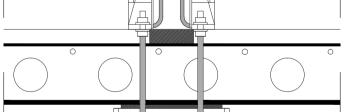
solo tendremos en cuenta las cargas de succión

 $M P_c = (4,91 + 9,82) \cdot 4,5m = 66,28 \text{ kNm}$

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>

 $\omega 1 = 2,5 \cdot (51,55 \text{KNm} + 24,88 \text{ kNm}) \cdot (1000000) / ((25/1,5 \text{ N/mm}^2) \cdot 400 \cdot 600^2) = 0,079$


(cuantía baja, OK!)


Debido a que el muro expuesto a las cargas de presión del viento es un muro medianero,

<u>CUANTIA (MOMENTO VIENTO + GRAVITATORIO)</u>


MOMENTO DE VIENTO

PLANTAS DE ESTRUCTURA E: 1 / 200

PFC E. Calafell I. Sanfeliu M. Jimenez M.L. Sanchez ESCUELA TEATRO BECKETT DERLIN

Aida Marcos Fuentes ETSAD abril 2016