Modeling toward control strategies for anoxic biotrickling filtration

Fernando Almenglo, Martín Ramírez, José Manuel Gómez, Domingo Cantero, Xavier Gamisans and Antonio David Dorado

aDepartment of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cádiz, 11510 Puerto Real (Cádiz), Spain. Campus de Excelencia Agroalimentario ceiA3.
bDepartment of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240 Manresa, Spain.

Correspondence to Fernando Almenglo
Tel. +34956016865
Fax: +34956016411
E-mail: fernando.almenglo@uca.es

Keywords: biotrickling filter; biogas; hydrogen sulfide; anoxic; model
Abstract

A dynamic model has been developed to describe the performance of an anoxic biotrickling filter for biogas desulfurization. The model considers the most relevant phenomena involved in the biotrickling filter operation: convection, absorption, diffusion and biodegradation. The model also considers that a fraction of the liquid phase is stagnant – an assumption that increases the importance of diffusion phenomena for low liquid flow rates. The model was calibrated and validated using experimental data from a pilot-scale plant installed in a WWTP. In the calibration stage a set of periods with a wide range of operating conditions was used; i.e., biogas flow rate in the range 1–5 m3 h$^{-1}$, recirculation flow rate in the range 1–3 m3 h$^{-1}$, and nitrate concentration in the range 1–423 gN–NO$_3^-$ m$^{-3}$. The predictions obtained on using the model were consistent with experimental data and the divergence was less than 2%. The model was subsequently validated using two faultless periods (recirculation flow rates of 1.5 and 3 m3 h$^{-1}$, biogas flow rate in the range 1–5.2 m3 h$^{-1}$, and inlet H$_2$S concentration steps in the range 3600–5500 ppmV). An ANOVA study was carried out in order to quantify the suitability of the predictions. The results indicated that the differences between experimental and simulated outlet H$_2$S concentrations were not statistically significant. The model was also able to predict simultaneously the dynamic concentrations of sulfide and nitrate in the liquid phase. Once the model had been validated, six control strategies were analyzed for different scenarios and purposes: i.e., to minimize the nitrate consumption and/or to maximize the H$_2$S removal efficiency. The developed model is a potential tool to enhance and optimize the performance of biotrickling filters for the anoxic removal of H$_2$S.
1. Introduction

The use of biogas as a renewable energy source is a promising alternative to conventional fossil fuels. However, biogas contains some impurities such as reduced sulfur compounds (RSC), ammonia, siloxanes, aromatics, halogenated compounds and other volatile organic compounds (VOCs) [1]. Among these impurities, hydrogen sulfide (H$_2$S) is the most important RSC and it is present in concentrations between 0.05–2% v/v [2]. In recent years, BTFs have been used to ‘sweeten’ biogas under both aerobic [3-7] and anoxic [6, 8-10] conditions.

In anoxic BTFs, nitrate (NO$_3^-$) or nitrite (NO$_2^-$) are used as electron acceptors instead of oxygen (O$_2$). Hence, the advantages of anoxic BTFs over aerobic systems include the reduction of the explosion risk, dilution and the negligible mass transfer limitations for nitrate as an electron acceptor [6, 8, 11]. However, the cost and availability of large amounts of nitrate lead to a slight increase in the treatment cost in comparison to aerobic BTFs [8]. Thus, optimization of nitrate dosing without affecting the abatement efficiency is an important aspect to improve the economic viability of this technique.

The main concern with anoxic BTFs is related to the control strategy with regard to the nitrate (or nitrite) dosage. Consequently, it is necessary to optimize the anoxic BTF performance and the development of a rigorous model would be useful for the design of control system strategies. However, to date only empirical models for anoxic BTFs have been developed [12, 13]. The applications of these models are limited to the specific equipment and conditions for which they were developed [12] and their use to evaluate control strategies is not possible. As an alternative, dynamic models were developed to represent the transient phenomena commonly found in the industrial field (start-up and inlet concentration peaks) [14]. In these models, the changes in pollutant concentration over time and space are described by a set of partial differential equations for each component [15].

The development of a dynamic mathematical model provides a better understanding of the fundamental mechanisms that occur in biofiltration and allows the parameters that are most influential in its performance to be identified. Moreover, several operating conditions can be simulated and the experimental time can therefore be minimized, thus avoiding costly modifications to the system [16]. The use of dynamic models for the control of nitrate dosing or for other control strategies has not been studied to date with the aim of improving anoxic BTF operation. The main aim of the work described here was to develop, calibrate and validate a dynamic model for an
anoxic BTF by monitoring an industrial plant located at the WWTP ‘Bahía Gaditana’ (San Fernando, Spain) for year-round operation. The model was developed by the application of mass balances and the definition of the main processes that occur in a BTF: advection, absorption, diffusion and biodegradation.

2. Material and Methods

2.1. Experimental set-up

An anoxic BTF at pilot scale [17] was built and operated for 360 days. The BTF was built from fiberglass-reinforced polyester and the diameter and bed heights were 0.5 and 0.85 m, respectively. The liquid recirculating volume was 0.09 m³, the treated biogas flow rate ranged between 1–5 m³ h⁻¹ (corresponding to loading rates from 33 to 193 gS m⁻³ h⁻¹) and the recirculating flow rate was in the range 1–3 m³ h⁻¹.

A digital Multimeter 44 (Crison Instruments, Spain) was used for ORP measurement and pH control at 7.4, which was achieved by the addition of NaOH (48/50 w/w, Haupold, Spain). The H₂S concentration in the biogas stream was measured using a gas chromatograph with a thermal conductivity detector (GC-450, BRUKER, Germany). A specific gas sensor (GasBadge® Pro, Industrial Scientific, United States of America) was used for H₂S concentrations below 500 ppmv. Sulfate, nitrite, nitrate, total solids and total organic nitrogen were determined according Clesceri, et al. [18].

2.2. BTF operational period

Several studies were performed in the anoxic BTF operational period. Firstly, the start-up stage and three regimes for nitrate supply were evaluated, namely manual, continuous and controlled by ORP [17]. Secondly, the effect of biogas flow rate and recirculation medium were tested [12]. Thirdly, a comparison was made between two flow operation modes, namely co-current and counter-current [19].

The model was calibrated by studying the effect of changes in the flow rate of biogas and recirculation medium [12] in the period from day 173 to 224. For the validation stage, in order to corroborate that the model was able to describe general operation of anoxic BTFs, two independent and separate operational periods, without failures, were selected. The first period was from day 135 to day 146 [17] and the second period was from day 230 to day 242 [19]. The nitrate solution (500 g NaNO₃ L⁻¹, BASF, Germany) was added in discontinuous mode and this process was automated by ORP. The ORP is directly related to the ion concentrations in an aqueous medium. In the presence of sulfide, the ORP value can be used to estimate this ion concentration [20].
When the anoxic BTF system is working properly, the increase in the sulfide concentration (or decrease in ORP) is caused by the depletion of nitrate. Therefore, when the ORP reaches the set-point (−360 mV) two sequential steps begin. Firstly, the discharge valve is open for the time necessary to purge the desired volume. Secondly, when the purge is finished, the pump for the nitrate solution and the industrial water feed valve are simultaneously activated. The pump for the nitrate worked for a fixed time in order to achieve the desired nitrate concentration in the recirculation liquid. The feed valve was open until the working volume was reached. After the nitrate supply had finished, the ORP returned to normal (set-point) values.

Simultaneous autotrophic desulfurization and denitrification can occur through complete or partial reaction and this results in the formation of sulfate and nitrogen gas (for complete reaction) or elemental sulfur and nitrite (for partial reaction) [21]. The production of elemental sulfur, by partial desulfurization, depends on the ratio of supplied nitrate and sulfide removed and this has a linear relationship [8]. The production of nitrite in the pilot anoxic BTF was negligible [17]. Hence, partial and complete desulfurization and complete denitrification were considered. The partial equations for the complete denitrification with sulfide as the electron donor were described by Mora, et al. [22] and can be expressed as:

\[
\begin{align*}
\text{HS}^- + 0.35 \text{NO}_3^- + 0.013 \text{NH}_4^+ + 0.059 \text{HCO}_3^- + 1.40 \text{H}^+ + \\
+0.004 \text{CO}_2 \rightarrow 0.013 \text{C}_3\text{H}_7\text{O}_2\text{N} + 0.175 \text{N}_2 + \text{S}^0 + 1.21 \text{H}_2\text{O}
\end{align*}
\]

(1)

\[
\begin{align*}
\text{S}^0 + 0.876 \text{NO}_3^- + 0.080 \text{NH}_4^+ + 0.379 \text{HCO}_3^- + 0.023 \text{CO}_2 + \\
+0.343 \text{H}_2\text{O} \rightarrow 0.080 \text{C}_3\text{H}_7\text{O}_2\text{N} + 0.44 \text{N}_2 + \text{SO}_4^{2-} + 0.824 \text{H}^+
\end{align*}
\]

(2)

2.3. Model assumptions

The main assumptions made for the model were based on information from well-established models [15, 23-26]. The model presented here includes the assumptions published by Kim and Deshusses [25] with the following exceptions:

1. The biofilm is completely developed over the carrier, is homogeneously distributed along the bed height and is fully wetted.

2. The liquid phase is considered to be divided into two fractions: flowing and stagnant (both of which can be considered as liquid hold-up). Moreover, both fractions are homogeneously distributed along the bed height.

3. The area fraction in contact with the flowing liquid phase (\(\alpha\)) is related to the liquid flow rate by a linear function.
4. The liquid layer thickness is constant, for both liquid phases and along the bed, for each F_L.

5. Mass transfer between flowing liquid and stagnant liquid, and between liquid phases and biofilm are described by diffusion phenomena.

6. The H_2S mass transfer in the gas-liquid interface occurs in both liquid phases, i.e., flowing and stagnant, and is defined by Ondas’s equation [27].

The model describes the dynamic of the main species involved in an anoxic BTF (H_2S concentration in the gas, liquid and biofilm phases; nitrite and sulfate concentrations in the liquid and biofilm phases and the elemental sulfur production in the biofilm).

The system of partial differential equations was solved by discretizing the height and biofilm thickness, thus converting them to ordinary differential equations. The scheme for the model and the discretization along the bed and within the biofilm is shown in Figure 1. The bed height and biofilm thickness were divided into ‘nvs’ and ‘nb’ slices, respectively, and the discretization was optimized to reduce the computational resolution time. The numerical solution was obtained using MATLAB 7.7 (Mathworks, Natik, MA). The main equations for the model are listed in section 2.4.

2.4. Mass balances

The main mass balances are described by the following equations. The conceptual scheme is represented in Figure 1, in which the relationship between phases (gas, liquids and biofilms) is shown along with the transport phenomena between phases and the coefficients used in the interfacial mass transfer.

The model equation for the bulk gas phase describes advective transport and mass transfer between gas and liquid phases. The gas-liquid mass transfer occurs in both liquid phases, considering the specific area in contact with the flowing liquid phase (a\cdot\alpha) and with the stagnant liquid phase (a\cdot(1-\alpha)).

\[
\frac{dC_{G,H,S}}{dt} = -v_G \frac{\partial C_{G,H,S}}{\partial z} - \frac{a}{\varepsilon} \cdot K_{FL,H,S} \cdot \alpha \cdot \left(C_{FL,H,S}^* - C_{FL,H,S} \right) - \frac{a}{\varepsilon} \cdot K_{SL,H,S} \cdot (1-\alpha) \cdot \left(C_{SL,H,S}^* - C_{SL,H,S} \right)
\]

with the following boundary conditions:

for z = 0, \(C_G = C_{G,IN}\);

for t = 0, \(C_G = 0\);
The flowing liquid phase is in contact with the gas phase, the stagnant liquid phase and
the biofilm. These phenomena can be described as follows:

\[
\frac{dC_{FL,k}}{dt} = v_z \frac{\partial C_{FL,k}}{\partial z} + \frac{a}{\varphi_F} K_{FL,k} \cdot \alpha \left(C_{FL,k}^* - C_{FL,k} \right) - \frac{a}{\varphi_F} \cdot (1 - \alpha) \cdot \frac{D_{L,k}}{(LSL/2)} \cdot \frac{LT}{LSL} \cdot \left(C_{FL,k} - C_{SL,k} \right) - \frac{a}{\varphi_S} \cdot \frac{D_{L,k}}{(FT/nb)} \cdot (1 - \alpha) \cdot \left(C_{FL,k} - C_{Fb,k,1} \right)
\]

(4)

The second term in equation 4, which describes mass transfer at the gas-liquid
interface, is valid only for H₂S because the model does not consider gas-liquid transfer
for nitrate, sulfate and elemental sulfur. The third term describes the diffusion at the
‘flowing’ and ‘stagnant’ liquid interfaces using Fick’s law; this term considers the
specific interfacial area as \((a \cdot (1 - \alpha) \cdot LT/LSL)\) and the average length as \((LSL/2)\); in
which LT is the liquid thickness and LSL is the stagnant liquid length (Figure 1). The
mass transfer between the flowing liquid and the biofilm is described in the fourth
term, in which the specific flowing area is used \((a \cdot \alpha)\) and the length \((FT/nb)\) considers
the biofilm division. The boundary conditions were:

for \(z = z_{max}\), \(C_L = C_{L,REC}\);
for \(t = 0\), \(C_{FL} = 0\);

The stagnant liquid phase is described by similar phenomena, excluding advective transport.

\[
\frac{dC_{SL,k}}{dt} = \frac{a}{\varphi_S} \cdot K_{SL,k} \cdot (1 - \alpha) \cdot \left(C_{SL,k}^* - C_{SL,k} \right) + \\
+ \frac{a}{\varphi_S} \cdot (1 - \alpha) \cdot \frac{D_{L,k}}{(LSL/2)} \cdot \frac{LT}{LSL} \cdot \left(C_{FL,k} - C_{SL,k} \right) - \frac{a}{\varphi_S} \cdot \frac{D_{L,k}}{(FT/nb)} \cdot (1 - \alpha) \cdot \left(C_{SL,k} - C_{Sb,k,1} \right)
\]

(5)

With the boundary condition:

for \(t = 0\), \(C_{SL} = 0\);

Mass balances in the biofilm are divided into ‘flowing biofilm’ (which is in contact
with flowing liquid, equation 6) and ‘stagnant biofilm’ (which is in contact with
stagnant liquid, equation 7). The mass transfer is due to diffusional processes and is
described by Fick’s law. Moreover, the biological reactions (equations 17 and 18)
occur in both biofilms.

\[
\frac{dC_{Fb,k}}{dt} = D_{b,k} \frac{\partial^2 C_{Fb,k}}{\partial x^2} - Y_{k/H_2S} R_{H_2S,Fb} - Y_{k/S}^0 R_{S,Fb}
\]

(6)

\[
\frac{dC_{Sb,k}}{dt} = D_{b,k} \frac{\partial^2 C_{Sb,k}}{\partial x^2} - Y_{k/H_2S} R_{H_2S,Sb} - Y_{k/S} R_{S,Sb}
\]

(7)
The mass balance in the recirculating volume is described by equation 8 for the concentration in the recirculated liquid and by equation 9 for the volume of the recirculated liquid.

\[
\frac{dC_{RL,k}}{dt} = \frac{F_L}{V_R} \left(C_{FL,k,1} - C_{RL,k} \right) + \frac{F_{MM}}{V_R} C_{MM,k} - \frac{F_P}{V_R} C_{RL,k} + \frac{F_w}{V_R} C_{W,k} \tag{8}
\]

\[
\frac{dV_R}{dt} = F_{MM} - F_P + F_W \tag{9}
\]

2.5. Determination of mass transfer coefficients

Onda’s equations [27] were used to calculate the local individual liquid (k_L) and gas (k_G) mass transfer coefficients. In equation 10, the area in contact with the flowing liquid ($a\cdot\alpha$) was used instead the wetted area described by Onda, et al. [27]:

\[
k_G = 5.23 \cdot a \cdot D_G \cdot Re_G^{0.7} \cdot Sc_G^{3/2} \cdot Er^2 \tag{10}
\]

\[
k_{FL} = 0.0051 \left(\frac{L_F}{a \cdot \alpha \cdot \mu_L} \right)^{2/3} \cdot Sc_L^{-1/2} \cdot Er^{-0.4} Sh_L^{3/2} \tag{11}
\]

The individual mass transfer coefficient for the stagnant liquid was calculated using an equation similar to equation 11. In this equation, the stagnant area ($a \cdot (1 - \alpha)$) was considered instead of the flowing area (equation 12).

\[
k_{SL} = 0.0051 \left(\frac{L_F}{a \cdot (1 - \alpha) \cdot \mu_L} \right)^{2/3} \cdot Sc_L^{-1/2} \cdot Er^{-0.4} Sh_L^{3/2} \tag{12}
\]

Overall mass transfer coefficients were obtained with the following well-known expression, using the dimensionless gas-liquid equilibrium constant (m):

\[
\frac{1}{mK_G a} = \frac{1}{K_{FL} (a \cdot \alpha)} = \frac{1}{k_{FL} (a \cdot \alpha)} + \frac{1}{mK_G (a \cdot \alpha)} \tag{13}
\]

\[
\frac{1}{mK_G a} = \frac{1}{K_{SL} (a \cdot (1 - \alpha))} = \frac{1}{k_{SL} (a \cdot (1 - \alpha))} + \frac{1}{mK_G (a \cdot (1 - \alpha))} \tag{14}
\]

It is necessary to consider the dissociation of H$_2$S in the liquid phase and the concentrations of the dissociated species depend on the pH (equations 15 and 16).

\[
H_2S_{(g)} \leftrightarrow H_2S_{(aq)} \leftrightarrow H^+ \leftrightarrow HS^- \leftrightarrow S^{2-} + 2H^+ \tag{15}
\]

\[
m = \frac{C_{H_2S,g}}{C_{H_2S,aq} + C_{HS^- aq} + C_{S^{2-},aq}} = \frac{H}{1 + \frac{k_{a1}}{10^{-pH}} + \frac{k_{a2} \cdot k_{a2}}{10^{-2\cdot pH}}} \tag{16}
\]

2.6. Biological reaction rates
The kinetic model proposed by Mora, et al. [22] was used and this concerned a sulfide oxidant/nitrate reducing mixed culture obtained from an anoxic BTF [19]. For sulfide oxidation a multi-substrate equation was employed and this included a Haldane-type term to describe substrate inhibition by sulfide, while a Monod-type term was used to describe the nitrate contribution (equation 17). For the elemental sulfur oxidation two Monod-type terms were used for both elemental sulfur and nitrate, along with an inhibition term that considered sulfide (equation 18).

The biomass concentration \((X) \) (gN m\(^{-3}\)) was considered to be constant along the bed.

The biomass-substrate yields \((Y_{X/H_2S} \text{ and } Y_{X/S_0})\) (gN (gS)\(^{-1}\)) were estimated according to equations 1 and 2.

\[
R_{H_2S,b,i,j} = \mu_{\text{MAX}} \cdot \frac{1}{\left(\frac{X}{Y_{X/H_2S}} \right)} \cdot \left(\frac{C_{H_2S,b,i,j}}{K_{S,H_2S} + C_{H_2S,b,i,j} + \left(\frac{C_{H_2S,b,i,j}}{K_{S,H_2S}} \right)^2} \right) \cdot \frac{C_{NO_3,b,i,j}}{K_{S,NO_3} + C_{NO_3,b,i,j}} \cdot X
\]

\[
R_{S^0,b,i,j} = \mu_{\text{MAX}} \cdot \frac{1}{\left(\frac{X}{Y_{X/S^0}} \right)} \cdot \left(\frac{C_{S^0,b,i,j}}{K_{S,S^0} + C_{S^0,b,i,j}} \right) \cdot \frac{C_{NO_3,b,i,j}}{K_{S,NO_3} + C_{NO_3,b,i,j}} \cdot \frac{K}{K + C_{H_2S,b,i,j}} \cdot X
\]

2.7. Model calibration

The parameters that describe the anoxic BTF are given in Table 1. The specific bed surface was calculated according to equation 19 – this equation relates the specific packing surface, the packing volume and total volume of the bed. The biofilm thickness was estimated from the measured biomass volume (31.27 cm\(^3\)), contained in a packing cube (125 cm\(^3\)), and the specific packing surface (600 m\(^2\) m\(^{-3}\)) (equation 20). The total organic nitrogen, in a cube of packing, was 0.068 gN (g packing\(^{-1}\)). The biomass concentration was estimated by considering a planar geometry for the biomass volume (equations 21 and 22). The liquid volume and the purge flow rate were experimentally estimated as a function of the liquid flow rate (equations 23 and 24). The liquid layer thickness was calculated as a function of the liquid volume, supposing...
planar geometry (equation 25). The flowing liquid fraction (α) was considered as a linear function of the liquid flow rate (equation 26).

\[a = a_p \frac{V_p}{V_T} \] \hspace{1cm} (19)

\[FT = \frac{V_{b,lc}}{V_{lc} \cdot a_p} \] \hspace{1cm} (20)

\[gN_b = gN_p \cdot gP \] \hspace{1cm} (21)

\[X = \frac{gN_b}{a \cdot V_T \cdot FT} \] \hspace{1cm} (22)

\[V_L = (4.27 - 2.14 \cdot F_L) \cdot 10^{-3} \] \hspace{1cm} (23)

\[F_D = 2.41 - 0.46 \cdot F_L \] \hspace{1cm} (24)

\[LT = \frac{V_L}{a \cdot V_T} \] \hspace{1cm} (25)

\[\alpha = p_{a} \cdot F_L \] \hspace{1cm} (26)

The developed model was calibrated by means of only two parameters and these are difficult to determine experimentally: the length of the stagnant liquid layer (LSL) and the proportional coefficient (p_{a}) for the flowing fraction calculation. The deviations in the H$_2$S outlet concentration between experimental data and those predicted by the model were used to obtain these parameters. Therefore, the objective function (OF) to minimize for each period simulated was:

\[OF = \sum_{j=1}^{M} \left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \left(C_{G,OUT} (LSL, p_{a}^j) - C_{G,OUT}^{EXP} \right)^2 \right] \] \hspace{1cm} (27)

2.8. Control strategies

Six control strategies (CS) for dosing the nitrate solution were proposed (Table 2) and the control variables were the concentration of H$_2$S in the gas outlet and/or sulfide in the recirculated liquid. Two dosing modes for the nitrate solution were evaluated, namely discontinuous mode and continuous mode. In discontinuous mode two sequential steps occur: (i) the purge of the recirculated liquid and (ii) the dosage of the nitrate and industrial water up to the working volume. In continuous mode the nitrate solution was added continuously and its flow rate was varied to maintain the set-point of the controlled variable. Similarly, the industrial water flow was constant in order to keep the sulfate concentration below the desired value. For all the CSs the recirculation
flow rate was 3 m3 h$^{-1}$, the simulated period was 100 h (i.e., longer than a complete cycle) and the volume purged was ten times the volume of the nitrate concentrate solution. It was considered that the inlet H$_2$S concentrations fluctuated with time in order to represent the behavior of an industrial effluent by means of a sine function. The conditions for all CSs were within the calibration range: the calibration liquid flow rate was between 1 and 3 m3 h$^{-1}$, the input load was between 20.1 and 176.5 g S Nm$^{-3}$ h$^{-1}$ and the nitrate concentration between 1.4 and 423.7 g N–NO$_3^-$ m$^{-3}$. Likewise, the liquid flow rate and the input load were within the range of the validation experiments; liquid flow rate of 1.5 and 3 m3 h$^{-1}$ and input load between 35 and 193 g S Nm$^{-3}$ h$^{-1}$.

To evaluate the most appropriate CS, the average and maximum H$_2$S concentrations in the outlet gas, the total nitrate consumption and the total nitrate purged were considered as target variables.

<near Table 2>

In CS#A the nitrate dosage was discontinuous and the sulfide concentration in the recirculating liquid was used as a control variable. In CS#B the dosage was also discontinuous but the outlet H$_2$S concentration in the biogas was used as a control variable. As the set-point a value of 0.4 g S Nm$^{-3}$ (around 300 ppmV) was selected and this set-point is below the limit required in cogeneration engines (500–800 ppmV, depending on the manufacturer). In both cases, the maximum nitrate concentration was established as 2000 g N–NO$_3^-$ m$^{-3}$.

In CS#C and CS#D, the nitrate solution dosage was carried out in continuous mode. In CS#C the flow of the nitrate solution was varied according to the outlet H$_2$S concentration; the set-point was established to maintain an outlet H$_2$S concentration of 0.4 g S Nm$^{-3}$. However, in CS#D the sulfide concentration in the recirculating liquid was the control objective and it was established at 5 g S m$^{-3}$.

In CS#E and CS#F a variable biogas flow rate was evaluated with discontinuous nitrate dosage used once again, with the same set-points as in CS#A and CS#B, respectively. The variable biogas flow rate was controlled by the outlet H$_2$S concentration. This control mode keeps the outlet H$_2$S concentration equal to 0.36 g S Nm$^{-3}$ (90% of H$_2$S concentration used as the set-point for CS#B, CS#C and CS#F) and the minimum biogas flow rate was 1 m3 h$^{-1}$.

3. Results and discussion

3.1. Model calibration and validation
The values for the parameters obtained in the calibration step were $2.43 \cdot 10^{-3}$ m for LSL and 0.19 h m$^{-3}$ for p_a. The model fitting, for the 9 experiments selected, using the estimated parameters is shown in Figure 2. It can be seen that the outlet H$_2$S concentration and the nitrate concentration are close to the experimental values. The largest difference between the simulated and experimental data was found at a biogas flow rate of 5 m3 h$^{-1}$ and a liquid flow rate of 2 m3 h$^{-1}$, where the mean divergence was 0.36 gS Nm$^{-3}$. The mean difference between experimental and simulated values for a biogas flow rate of 3 m3 h$^{-1}$ and a liquid flow rate of 1 m3 h$^{-1}$ was 0.20 gS Nm$^{-3}$. For the other cases the mean difference was less than 0.08 gS Nm$^{-3}$.

In terms of RE (%), the differences obtained were less than 1% when the biogas flow was 1 m3 h$^{-1}$ and they were below 2% for the remaining cases, with the exception of flow rates of 5 m3 h$^{-1}$ of biogas and 2 m3 h$^{-1}$ of liquid, which gave a value of 6%, and for 3 m3 h$^{-1}$ of biogas and 1 m3 h$^{-1}$ of liquid, which gave a value of 4%.

A sequence to emulate the automatic dosage for the nitrate solution was programmed in MATLAB. There are numerous species that contribute to the ORP value and it is difficult to consider all of these when modeling the ORP. As a result, the concentration of sulfide in the recirculation liquid was used instead of ORP and the set-point was 10 gS m$^{-3}$.

A comparison between experimental data and the model predictions in the validation step is shown in Figure 3.

The first set of experimental data used in the validation are represented in Figure 3A, where the liquid flow rate was 1.5 m3 h$^{-1}$ and the biogas flow rate was increased from 1 to 2.8 m3 h$^{-1}$; the maximum nitrate concentration was 2100 gN–NO$_3^-$ m$^{-3}$. In this set of experiments, a period without biogas feeding was also simulated between hour 143 and hour 240. The second set of validation data are shown in Figure 3B, where the liquid flow rate was 3 m3 h$^{-1}$ and the biogas flow rate was increased from 1 to 5.2 m3 h$^{-1}$; the maximum nitrate concentration was 350 gN–NO$_3^-$ m$^{-3}$. Fluctuations in the inlet conditions were observed, mainly because the biogas composition was not controlled. Inlet H$_2$S concentration and the liquid and biogas flow rates were introduced in the model as input parameters.
The range of simulated nitrate concentrations was within the range of the experimental measurements (Figure 3B). Furthermore, the simulated sulfate concentration showed a similar pattern to the experimental behavior. The key parameter to be simulated was the outlet H₂S concentration, because this is the target compound to be removed. If the prediction of the outlet H₂S concentration were imprecise the proposed model would be useless. It can be seen in Figures 3A and 3B that the accuracy of the experimental data and simulated data for nitrate and sulfate concentration is slightly lower than for the outlet H₂S concentration. Better predictions could be achieved with an improved knowledge of the initial elemental sulfur content in the packing material since this parameter has a high sensitivity in model predictions, mainly with respect to the nitrate consumption rate and sulfate production rate.

The ANOVA study carried out to quantify the difference between the experimental data and those predicted by the model gave values for the parameters F and P of 1.03 and 0.31, respectively (5% significance level and 35 degrees of freedom). This result indicates that the difference between the concentrations of H₂S measured experimentally and those simulated by the model were not statistically significant. Thus, the model predictions were satisfactory to describe the performance of the anoxic BTF.

In order to obtain an appropriate model it is necessary to simulate correctly the influence of both the nitrate concentration and the recirculation flow rate, which increases the distribution of liquid along the bed and the accessibility of nitrate to the biomass. The model simulates, as monitored in the industrial anoxic BTF, the increase in the outlet H₂S concentration when the nitrate is depleted in the liquid. Once the availability of the final electron acceptor decreases below the threshold limit, the RE drops instantly until a new cycle starts again with further dosing of nitrate solution (Figure 3). Soreanu, et al. [10] detected similar RE drops for nitrate concentrations below 20 g m⁻³ when the inlet load was 4.9 gS Nm⁻³ h⁻¹ and the TLV was 1.7 m h⁻¹. Depending on the final use of the treated biogas, the fluctuations in H₂S at the outlet could be a significant limitation for its exploitation.

To overcome this drawback, several control strategies have been developed to optimize the BTF performance and these are focused on obtaining the maximum sulfide removal and on optimizing the nitrate dosing with the minimum loss of nitrate in the purge.

3.2. Control strategies
The results obtained in the simulation of each control strategy are shown in Table 3. The outlet H₂S concentration and the concentrations of nitrate and sulfide in the recirculation liquid, for the first four CSs, are shown in Figure 4.

In CS#A, when the nitrate concentration is below 60 gN−NO₃⁻ m⁻³ the outlet H₂S concentration starts to increase and similar behavior was also observed for sulfide in the recirculation liquid. The nitrate concentration in the discharge liquid for CS#A was 0.07 gN−NO₃⁻ m⁻³. CS#A showed the highest maximum outlet H₂S concentration (1.46 gS Nm⁻³) of the first four control strategies and the lowest amount of nitrate purged during the simulation period.

CS#B showed similar behavior but, as the outlet H₂S concentration was used as a control variable, the maximum outlet H₂S concentration was controlled so that it did not rise above the limit of 0.4 gS Nm⁻³. Nevertheless, the nitrate concentration in the purged liquid was higher than in CS#A (25.52 gN−NO₃⁻ m⁻³) and this represents an undesirable waste of reagent.

In CS#C and CS#D, the addition of the nitrate solution in continuous mode avoids sudden peaks in the outlet H₂S concentration (Figure 4). In CS#C, the nitrate concentration was in the range 11.9−80.8 gN−NO₃⁻ m⁻³ depending on the inlet sulfide concentration. The outlet H₂S concentration was constant and was equal to 0.4 gS m⁻³ h⁻¹. The sulfide in the liquid recirculation medium showed similar behavior to that observed with the nitrate. In CS#D, the use of sulfide concentration in the liquid as a variable to control the flow of the nitrate solution allowed a constant sulfide concentration to be achieved in the liquid phase (Figure 4C). As shown in Figure 4A for CS#D, when the inlet H₂S concentration was low, the base outlet H₂S concentration was the highest. This unexpected behavior is related to the lower nitrate concentration in the liquid phase (Figure 4B), which is fixed by the constant sulfide concentration in the liquid medium (Figure 4C).

In CS#E and CS#F (Figure 5A), the biogas flow rate was increased if the outlet H₂S concentration did not rise above the limit of 0.36 gS Nm⁻³. The fluctuations in the biogas flow rate could have two consequences. Firstly, the BTF could work at maximum load regardless of the inlet H₂S concentration. Secondly, the biogas flow rate could decrease when the nitrate concentration is low in order to minimize the nitrate purged. In these cases (CS#E and CS#F), the nitrate concentration in the purge
liquid was lower than in CS#A and CS#B. More specifically, the nitrate concentration in the purge liquid was 2.9×10^{-4} and $1.65 \text{ gN} - \text{NO}_3^- \text{ m}^{-3}$ for CS#E and CS#F, respectively. The duration of the peaks in the outlet H$_2$S concentration, produced as a result of the discontinuous mode, was reduced in this case but the maximum outlet H$_2$S concentration was not reduced (1.47 and 0.38 gS Nm^{-3} for CS#E and CS#F, respectively). The sulfide concentrations for CS#E and CS#F are shown in Figure 5B. In both cases, the sulfide concentration was stable and equal to 4.7 gS m^{-3}, except when nitrate dosing occurs. Just before nitrate dosing, the sulfide concentration decreased to 3 gS m^{-3} due to the decrease in the biogas flow rate. When the nitrate dosing was controlled by the sulfide concentration (CS#E) the sulfide concentration increased to 10 gS m^{-3}. However, for CS#F an increase in the sulfide concentration, caused by the nitrate depletion, was not observed.

Very few studies have been carried out on CS for biogas desulfurization in anoxic BTFs and those that have include a programed feeding routine [8] and an automatic nitrate dosing using ORP [9]. In this sense, Fernández, et al. [8] found that the critical elimination capacity (EC) was 30% higher on using a programed nitrate feed than for manual nitrate dosing. In the programed feeding routine, the flow of nitrate solution was varied manually according to the H$_2$S inlet load. Monitoring of the automatic nitrate dosing by ORP has been carried out by Fernández, et al. [9]. This operation mode is closely represented by the case CS#A. Measurement of the electron acceptor concentration as the control variable has recently been implemented in an aerobic BTF for biogas desulfurization [7]. In contrast, in the work described here the electron acceptor was nitrate and an ion-selective electrode (ISE) could therefore be used to measure the nitrate concentration. However, interference with sulfide is the most significant drawback for the use of this method [8]. In the present work, all of the CSs proposed involve model-based feedback control in order to avoid the limitation of the feed-forward control system, which is more sensitive to unpredictable perturbations [35].

Among the CSs analyzed, when nitrate is dosed in discontinuous mode and the flow rate is constant, CS#A is the most economical strategy because less sophisticated equipment is required to control the operation and the nitrate purged is the lowest (Table 3). Operating at low nitrate concentrations means a higher fluctuation in the H$_2$S outlet concentration and this periodically reaches values in excess of 1 gS Nm$^{-3}$.

15
In contrast, when it is necessary to reduce the outlet H$_2$S concentration peaks, the control mode used in CS#B should be chosen because the outlet H$_2$S concentration peaks are buffered. Nevertheless, in CS#B a higher amount nitrate is purged (from 0.3 to 5 gN). The EC achieved in the CS#B case is slightly higher than in the first option (0.2 gS m$^{-3}$h$^{-1}$ higher) and markedly higher than those in the rest of the control modes at constant flow rate (up to 2% higher). However, the amount of nitrate that is not used is almost 17 times higher than in CS#A.

When the main requirement of the facility is to ensure a constant H$_2$S RE the best option is CS#C. The nitrate purged is higher than in cases CS#A and CS#B, but the outlet H$_2$S concentration is stable. It can be seen in Figure 4 that the fluctuations in outlet concentrations are completely smoothed but the EC is consequently lower. Moreover, it is expected that the continuous dosing of nitrate will reduce stress on the microbial population, which is subjected to periodic starvation when discontinuous dosing is applied – as widely reported for aerobic biofilters [36, 37].

If the main purpose of the facility is to treat the maximum load possible without reducing the performance of the BTF, strategies CS#E and CS#F should be considered. In these cases, the biogas flow rate is adjusted when the inlet H$_2$S concentration decreases in order to maximize the inlet load (Figure 5A) prior to biogas storage. Besides, the predicted EC is higher by up to 30% in comparison to the rest of the strategies (Table 3). This finding is consistent with the increase in the load treated. CS#E and CS#F are interesting alternatives when biogas can be stored before its energy exploitation. The choice of H$_2$S outlet or sulfide concentration as the control variable gives rise to marked differences in terms of operation (Figure 5A). Furthermore, CS#E and CS#F affect the instrumentation required for the control system and, therefore, the installation cost. However, outlet H$_2$S concentration is controlled in a satisfactory manner and the nitrate purged is the minimum possible.

4. Conclusions

The analysis of the different control strategies suggested in the work presented here shows that the best option depends on the characteristics of each individual scenario. However, the mathematical model developed from the description of the phenomena involved in the process is a powerful tool to evaluate all possible strategies when considering and quantifying the savings and improvements in different operation modes. Furthermore, as the model has been calibrated and validated with data obtained by monitoring an industrial plant located in a WWTP, one can expect a high level of
fitting between the behavior predicted and the results reported. The mathematical model described here can be easily adapted to the specific characteristics of each plant and can be used to analyze more efficient control strategies.

Acknowledgments

The authors wish to express their sincere gratitude to the Spanish Ministry of Science and Innovation and the European FEDER funds for providing financial support through projects CTM2012-37927-C03 and CTM2012-37927-C02, the Research Result Transfer Office of the University of Cádiz for support of this work through the project ‘Procedure for inoculation of industrial biotrickling filters’ (PROTO-05-2010) and WWTP ‘UTE EDAR Bahía de Cádiz’.

References

List of figures:

Figure 1. Model scheme and discretization.

Figure 2. Experimental data and model calibration.

Figure 3. Validation. (A) First experiment; (B) Second experiment.
Figure 4. Results of the simulation for CS#A, CS#B, CS#C and CS#D. (A) Outlet H₂S gas concentration; (B) Recirculated liquid nitrate concentration; (C) Recirculated liquid sulfide concentration.

Figure 5. Simulation results for CS#E and CS#F. (A) Outlet H₂S gas concentration and biogas flow rate. (B) Recirculated liquid sulfide concentration.