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ABSTRACT

When approximating linear systems by means of a
finite set of parametsrs, it can be useful the use of
first and second order information; that is, information
of impulse response and correlation. Wien that
information is not available “ut one disposes of same
samples of a random process which are the result of
filtering white noise through the system, same approach
must be carried out. Besides the approach taken into
account, it seems to be a logical election, as first
step, that of estimating the autocorrelation function
associated to the random process. This paper deals with
one of such approaches which, starting from one estimate
of the autocorrelation function, gives rise to an ARMA
model for the underlined system. The derivation of the
model is achieved fram an ootimization point of view.

I.- INTRODUCTION

In this paper, it will be assumed that a windowad
realization of a widely sense random process is given,
obtained by filtering white gaussian noise through the
linear system we are trying to identify. From that
sequence of random numbers, it is desirad to obtain
certain information ooncerning the system and this
information must be as deterministic as possible.

In order to obtain a more deteministic
information, the first guess we think over is the
autocorrelation function r(n).

If x(n) are the data values of the randam process
at lags n = 0,1,...,N-1, one way of estimating the
autocorrelation function is by means of the biased
estimator (1):

- N-1-1n|
¥(n) = ¥ x(m)x(m+ini) n
m=0 N

where T(n) is the estimated value and N the number of
available data points.

So, it will be assumed that the starting point is
the autocorrelation estimate underlined in (1); then,
speaking either of pericdogram or autocorrelation
estimate will be the same, because they are related
trough the Fourier transform.
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If h(n) denotes the impulse response of the linear
system, the next identity will hold:

r(n) = h(n) * h(-n) (2)
where r(n) is the actual autocorrelation function.

- Thus, given T(n), one way of obtaining an estimate
h(n) of the impulse response is by using any
deconvolution technique.

Although when h(n) is given, the associated r(n)
is unique, it does not appears to be the same when
estimating h(n) fram r(n); so, when performing
deconvolution, it uses to be quite comon to regard as
solution the minimum phase one. That is, among all
possible sequences h, (n) such that r(n) = h.(n) * h, (-n),
select the minimum one. Then, it can be performed
by the hamamorphic deconvolution algorithm, quite easy to
use /1/.

An inportant point that must be taken into account
is that of the statistical stability and feasibility of
the current information, i.e. T(n) and h(n). It seems to
be logical that, besides the bias of the estimator, the
uncertainty of the values T(n) grows up as the index "n"
becares larger; it is because when the index "n" becames
greater, the number of averages in (1) decreases. So,
first values of r(n) are better estimated than the
others; however, it is not clear at all, which is the
influence of errors in T(n) over the h(n) estimate .

One approach that can be carried cut, in order to
improve the statistical behaviour is that of matching an
AR model of great order to the spectra of the time
series. Thus, if it is considered that the autoregresive
model obtained from M values of the autocorrelation (M <
N) can approximate well enough the spectra, it will be
possible to obtain an estimate of the impulse response
with less variance (because the impulse response will
Jjust depend on M parameters). These two ways of cbtaining
the first_oprd)r information will be compared in the
results section.

The organization of the paper is as follows. In
section II, it will be studied the interest of using
first and second order information in  the
characterization of 1linear systems, and necessary
conditions will be stated. Section III deals with the
specific procedure proposed to identify the system. The
method developed is enclosed into the variational
framework: among all the rational transfer functions that
agree with some impulse response ard correlation values,
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it is selected that one which achieves a minimm for the
r(0) value. In section IV, it is derived the algorithm to
obtain the solution to the procedurs proposed in the
previous section. In sections V and VI same examples will
be presented as well as the bibliographic references.

II.- FIRST AND SBCOND ORDER INFORMATION /2/

when one is trying to approximate the impulse
regponse of a discrete linear system just regarding same
values: h(0),h(1),...,h(Q) of such response, it is clear
that many solutions can be achieved. Because mno
information is reported concerning the "tail" of the h(n)
sequence, stability is no guaranteed "a priori®. So, it
appears, as a , the necessity of taking into
acoount the r(0) value; then, if a finite value of r(0)
is fulfilled, stability is guaranteed. Besides that
value, the inclusion of more information: r(1),... can
report knowledge of the global behaviour of the h(n)
sequence.

There are, however, two particular cases where
just one kind of information can be enough:

* When an AR model is desired, second order
information becames sufficient.

* when a MA model
information becomes sufficient.

is desired, first order

In the more general case of considering as
oconstraints (i.e. parameters to be fulfilled) the values:
h(0,...,h(Q),r(0),e..,r(P) and if it 1is desired a
rational mdel (3) for the transfer function H(z) of the
discrete system, same consistency test must be carried
out over the available information.

b(0)4b(1)Z L. +b(Q)z 2
H(z) =

(3)
1+a(1)z_1+. . .+a(P)z—P

The consistency test sets the necessary conditions
that must be fulfilled for the pretended parametric
model, in order to a solution exist.

To see which one must be the consistency test, let
us consider that the Q+l impulse response measures and
the P+l of correlation belong effectively to a system
which transfer function is given by (3). If the numerator
and denominator polynamials are B(z) and A(2)
respectively, H(z) will be:

B(z) -1
H(z) = — =h(0) + h(l)z ~ + ... (4)
A(z)

Matching coefficients, in the previcus identity, a
matrix expression can be obtained which relates the
numerator and denaminator vectors. The mentioned identity
will be the following:

©] [ho] 1
a1 | |h() a(1)
.= 15
s | -

h(Q) he-1) hoN]late)
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where it has been assumed that the number of poles P is
greater than the number of zerces Q ard, because of this
fact, there are P-Q colums of zerces in the matrix.

If G denotes the impulse response matrix and, vectors b
and"a are given by b = (b(0),b(1),eee/b(Q))” ard a =
(1,a(1),...,a(P)) (where "T" denotes transpose),
equation (5) can be written down in a more compact
fashion as:

b=Ga (6)
To find a solution for the b and a vectors,
another matrix equation is needed relating both vectors.

The next identification that can be carried cut becomes
from the correlation:

B(z)B(1/2)
R(z) = H(z)H(1/z) = (7.a)
A(z)A(1/z)
B(1/z)
R(z)A(z) = B(2) (7.b)
A(1/2)

Identifying coefficients with equal powers of z in (7.b),
expression (8) is obtained.

r(0) r(l) ... x(P) 1
r(1) r(0) ... r(p-1)f Ja(l)

\_rZP) r(P-1) ... r(0) aZP)

Th(0) h(1) ... h(Q)] [b(o
h(0) ... h(g-D)| | b(1)

. . . (8)

o) | o

This last equation can be written in a more
campact form as:

T
where R is regarded as the correlation matrix.

Equations (6) and (9) conform a matrix equations system.
Substituting (6) into (9) yields

Ras= gT Ga (10.a)
(R-G' @ a=0 (10.b)

Equation (10.b) implies that vector a, which defines the
denominator of the model, must belong to the kernel of
the _5_(P,Q) matrix:

K(P,Q) = (R-G Q) an
The numérator of the model would be obtained thm_gh‘ (6).
Before making system identification by using
impulse response and correlation estimated values other

than exact ones, same considerations must be taken into
account concerning K(P,Q) matrix.



It can be readily shown that K(P,Q) matrix can be
expressed as underlined in (12): -

h(k)
o .
K(P,Q) = Y o | [p0)ees ,h(k—Pi
= ko | .
h(k-P) (12)

Therefore, K(P,Q) matrix must be a semidefinite
positive matrix. This means that when estimated values
are used as entries in (11), solutions can not exist if
the semidefinite positive condition is not achieved. It
is easy to verify that K(P-1,0-1) is the matrix that
would result when suppressing the first row and the first
colum in K(P,Q). Remind that K(P-1,Q-1) would be formed
as K(P,Q) but regarding just the first Q-1 impulse
response values and the first P-1 correlation ones. It
can be shown /3/ that when K(P,Q) is semidefinite
positive (necessary condition) and K(P-1,0-1) is definite
positive then, all the roots of the A(z) polynamial lie
inside the unit circle and may be, sameone of them, on
the unit circle. Clearly, the solution for the a vector
will be unique in the situation just denoted. However,
constraints will only be verified if the A(z) polynomial
is strictly minimum phase. In the case that A(z) displays
sare of its roots on the unit circle, it is clear that
mt all the constraints can be fulfilled although
equations (6) and (9) are still holding; in this
situation, it can not be achieved a finite value for r(0)
and hence the r(0) constraint can not be fulfilled. If
the matrix equations are verified but solution does not
exist, means that pole-zero cancellations must occur on
the unit circle.

From these considerations, it turns out to be
clear which must be the necessary and sufficient
conditions such that a set of Q+1 impulse response
measures and P+l correlation ones, can be fulfilled by a
model of P poles and Q zeroes.

It is important to remark that K(P,Q) matrix
contains PHQ+2 constraints while the model depends only
over P+Q+l parameters. So if it is not included same
freedom degree to the issue of the constraints, the
necessary condition noted before will rarely occur. Thus,
knowing the necessity for same freedam degree, the
problem of finding a model could be stated as the
optimization of an dbjective function subject to
oconstraints. Then, it would be desirable that the value
of the objective function (freedom degree) were the
parareter vhich could guarantee the necessary condition
of the K(P,Q) matrix for a solution to exist. The
strictly minimum phase condition for the denaminator
polynomial is not controllable "a priori" just regarding
the K(P,Q) matrix. In the next section, it will be
developed a system identification procedure fram the
variational point of view.

IIT.- VARTATIONAL STATEMENT

If it is assumed that the measures x(n) (n =
0,1,...,N-1) are corrupted by additive white noise, the
value of r(0) will not be accurately estimated.

Then, if one is interested in obtaining an ARMA model for
the underlined system, and if no mention is made about
the reliability of the h(n) measures (h(n) is cbviously
affected by the errors in r(0)), it would appear to be a
goad statement that of wishing a model that minimizing

r(0), would verify certain values of impulse response and
correlation.

That is, it must be found out a transfer function
H(z) such that (13) is minimized subject to the
constraints (14):

1 n
r®(0) = —| (H(2)H(1/z)
2nJ—n

Vaw o (13)
z=exp( jw)

1,0 .
r(n) = —I{H(Z)H(l/z) 1™ Gw  (14.a)
2n—n z=exp( jw)
Inig P, n# 0
1 n .
hin) = —| (H(2)] 1™ aw (14.b)
2n’—n z=exp( jw)
nig Q

where, even r(n) or h(n) would be constraihts obtained as

comrented in section I or in amother fashion; and r°°(0)
is the optimum of the dbjective function.

By means of the Lagrange miltipliers technique, it
can be shown that the H(z) function that is solution to
the above stated variational problem is 1like that
underlined in (3). It can also be shown that when
solution exists, it corresponds to a minimum.

IV.-ALGORTTHM

The algoritim to find the model coefficients which
are solution of the previous variational problem, selects
the value of the objective function in such a way that
the corresponding K(P,Q) matrix becames semidefinite
nositive.

If R' is the same as R by on%g changing the
entries on the main diagonal by the r=(0) value, the
next identity must hold:

®R-¢®a=0 (15)
Writing r®(0) as (16)
£®(0) = r(0) - ar(0) (16)

Where r(0) is the measured value of r(n) at origin;
equation (15) can be rewritten as:

(R-G' @ a=4r(0) a (17)

Therefore, the value of the dbjective function, so
as the denominator of the model, depend upon spre
eigenvalue and asscciated eigen r of the R - G G
data matrix. Since the R' - G G matrix must be
semidefinite positive, the selected eigenvalue must be
the minimum one, although it could seem apparent fram
(16) that a maximum value for Ar(0) was desired.

In such manner, the algorithm would be as follows:

* Estimate in same way the r(n) and h(n) information
from the measured values of,Ithe time series.

* Construct the R - G G matrix with the previcus
information. T
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* Iook for the eigenvector associated to the minimum
eigenvalue; then, it would already be obtained the
denominator of the model.

* Find the numerator polynamial through equation (6).

If constraints are obtained as pointed out in
section I and solution exists for the model which
fulfills the constraints, the model is not guaranteed to
be minimm phase: that is, altl'nxghmeseq.xenoeh(n)
dabamed from F(n) is a minimum phase one, the sequence
h(O),...,h(Q) is not guaranteed to be it. So, if A(z) is
strictly minimum phase, solution exists, constram\:s are
fulfilled, but the final model can be non-minimum phase.

V.~ RESULTS

In this section, and just as an example, some
mumerical results related to the following experiment
will be shown. From 540 data points belonging to a
windowed realization of an ARMA (4,2) process, 5
estimates are performed by taking into account 128 data
points in each one. The initial data points are the
result of filtering white gaussian moise of power equal
to one through a linear system characterized by the
fallowing parameters:

- gain: unity
- 2eros: .6L6_0 o
- poles: .95&0.;.9@9.

From these data points, correlation values are estimated
by means of (1) and then, minimum phase impulse response
is evaluated through homomorphic deconvolution. The
constraints taken into acoount in the procedure presented
in the previous section are: h(9),h(1),h(2),r(1),x(2),
r(3) and r(4).

Figure a) depitcs the actual spectra. In figures
b), c) and d) are plotted the estimates which result
after considering the previous data in the cases of
considering no additive moise (b)), and in the cases of
considering additive white noise of power 0.01 (c)) and
0.1 (d)). By cowaring figures a), b), ¢) ad d), it is
concluded that the procedure is quite robust in front of
errors in the r(0) value.

Figures ¢) and £) are the result of matching an AR
model of order 10, before camputing the impulse response.
In these last two pictures a less variability is cbserved
as well as a greater bias. It is probably due to the fact
that ervors in r(0) affect to the AR estimate; as less
parameters are regarded, the variance seams to he

smaller.
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