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Abstract

This paper introduces a preconditioned variational multiscale stabilization (P-VMS) method for

compressible flows. In this introductory paper we focus on inviscid flow and steady state problems.

The Euler equations are solved on fully unstructured grids and discretized using the finite element

method. The P-VMS method can be decomposed in three parts. First, a local preconditioner is

applied to the continuous equations to reduce the stiffness while covering a wide range of Mach

numbers. Then, the resulting preconditioned system is discretized in space using finite elements

and stabilized with a variational multiscale stabilization method adapted for the preconditioned

equations. In this paper, the solution is advanced in time using a fully explicit time discretization,

although P-VMS is general and can be applied to fully implicit solvers. The proposed method is

assessed by comparing convergence and accuracy of the solutions between the non-preconditioned

and preconditioned cases, in particular for van Leer-Lee-Roe’s [1] and Choi-Merkle’s [2] precondi-

tioners, in some selected examples covering a large range of Mach numbers.

Keywords: Local preconditioning, variational multiscale method, finite elements, Euler

equations, compressible flow, steady flow problems.

1. Introduction

As it is well known, the characteristic propagation speeds of the Euler system of equations,

{cM, c(M + 1), c(M − 1)}, being c the speed of sound and M the Mach number, lead to highly

disparate values especially when the Mach number approaches 0 or 1. This disparity is paired

with a strong increase in the system’s stiffness and a consequent loss in convergence speed. As this

behavior precedes the discretization, it happens regardless of the numerical method that is used.
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The goal of local preconditioning is the uniformization of the characteristic propagation speeds

of the system. This entails a gain in the convergence speed to a steady state or to the transient

solution at a given time step when a pseudo-time technique [3, 4] is used. Local preconditioning

also gives accuracy to the solution as it is shown, for example, in [5] for finite difference methods.

Local preconditioning is applied to the set of equations before any discretization is done. The

extra computational cost is minimal. It consists of transforming the original convective jacobians

of the Euler system into the preconditioned ones, in such a way that the non-preconditioned and

the preconditioned equations have different time evolution but reach the same steady state.

Based on the idea of artificial compressibility of Chorin [6], local preconditioning is first set up

by Turkel [7] for incompressible and low speed compressible flow. Other local preconditioners have

been presented since then. Van Leer-Lee-Roe’s (VLR) preconditioner [1, 8] is introduced by van

Leer et al. for Euler steady flow covering a wide range of Mach numbers. It is extended to Navier-

Stokes in [9, 10]. In [2], Choi-Merkle’s (CM) preconditioner is presented for low Mach number

steady flow, suitable for both the Euler and Navier-Stokes equations with a single parameter

change. It is extended to transient flows in [11]. Weiss and Smith [12] propose a preconditioner

to solve incompressible and variable density transient flows in transonic and low-speed regimes.

The diagonal preconditioner defined by Briley et al. [13] is applicable to unsteady viscous flows,

for Mach numbers ranging from essentially incompressible to supersonic. Local preconditioning

is independent of the space discretization method; in all the references listed above the finite

differences and finite volumes methods are used. In the context of the finite volume discretization,

the Roe’s flux is adapted to the preconditioned equations, for example, in [14, 15] for the VLR

preconditioner. For the central difference scheme, the artificial viscosity should be based on the

preconditioned equations as well [16]. As far as we know, there are two precedents in the use of

finite elements (FE) and local preconditioners: [11] and [17], where the CM preconditioner is used

for the solution of compressible viscous flow in steady and transient problems, respectively.

In this work, we introduce a FE space discretization of a locally preconditioned system, using

the so-called variational multiscale stabilization (VMS) method. The VMS term of the original

(non-preconditioned) equations is modified in order to stabilize the preconditioned system. We

will show that due to both the way VMS is designed and how local preconditioning acts upon

the hyperbolic set of equations, their combined effect leads to a robust and precise numerical
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method, which we call preconditioned VMS, or P-VMS. For the sake of simplicity, in this paper

we present the method by focusing on the compressible Euler equations for steady state problems.

Its performance is assessed on linear explicit schemes where global and local time-stepping are

compared. Inviscid VLR and CM preconditioners are used and tested for low Mach, transonic, and

supersonic regimes. A Fourier stability analysis of the P-VMS method for the Euler equations of

steady flow, and some improvements, are presented in a companion paper [18]. Preliminar results

of the P-VMS method applied to the Navier-Stokes equations and transient flow problems can be

found in [19]. First results on the use of an implicit time scheme are obtained as well [20], showing

great improvement in the convergence rate.

It is important to notice that local preconditioning comes before any discretization method is

applied to the equations. Once discretized, the resulting algebraic system could eventually present

disparities in its eigenvalues, related for example to different element sizes on the mesh, different

values of velocity, density, etc. over the domain. Therefore, local preconditioning effects could even

improve if additional algebraic preconditioners are applied as well. We will describe this strategy

in a future paper, where the implicit P-VMS scheme is presented.

The paper is organized as follows. The Euler equations of compressible flows are presented in

Section 2. The condition number of the Euler equations and the stiffness problem is discussed in

Section 3. In Section 4 we introduce the preconditioned Euler equations. Two preconditioners,

VLR and CM, are also introduced in this section and their condition numbers are discussed.

The discrete formulation of the system and the P-VMS method are presented in Section 5. The

improvement of local preconditioning in terms of rate of convergence and accuracy of the steady

solution is shown through the examples of Section 6. The paper ends with a group of appendices

where useful algebra is made explicit.

2. Euler equations

Given a bounded domain Ω ⊂ R
3, the three dimensional Euler equations for compressible flow

can be written in the conservative form as follows:

∂Φ

∂t
+
∂Fi(Φ)

∂xi
= 0 , (1)
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for i = 1, . . . , 3 which label the space dimension. We use the Einstein summation convention that

implies summation over repeated indexes in the same term. In (1), Fi are the convective fluxes:

F1 =














U1U1

ρ + p

U2U1

ρ

U3U1

ρ

U1

U1

ρ (E + p)














, F2 =
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ρ
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U3U2

ρ

U2

U2
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, F3 =
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ρ

U2U3

ρ

U3U3

ρ + p

U3

U3

ρ (E + p)














, (2)

and Φ is the vector of the unknowns in conservative variables:

Φ = (U1 U2 U3 ρ E)T , (3)

where U1, U2, U3 are the components of the momentum in the three space directions, ρ is the density,

and E is the total energy per unit volume. All the unknowns are functions of space x = (x1, x2, x3)

and time t. We note U the momentum vector, that is U = (U1, U2, U3). The superscript T

represents the transposed vector. Other important physical variables are: the velocity u = U

ρ , the

Mach number M = ‖u‖
c , the pressure p = R

cv
(E − 1

2
UkUk

ρ ), the temperature T = 1
cvρ

(E − 1
2
UkUk

ρ ),

where R = cp − cv is the constant of perfect gases, and cp and cv are the coefficients of specific heat

at constant pressure and volume, respectively. In this paper ‖ · ‖ represents the L2 norm.

Using the Jacobian matrices, Ai(Φ) = ∂Fi

∂Φ , whose explicit expression can be found in Appendix

A, the three-dimensional Euler equations can be re-written in non-conservative form as follows:

∂Φ

∂t
+Ai(Φ)

∂Φ

∂xi
= 0 . (4)

The problem is to find Φ(x, t) satisfying Eq. (4) with proper initial and boundary conditions,

for all (x, t) ∈ Ω × R
+. The Euler equations (4) are hyperbolic equations because for any linear

combination of the form Ak = kiA
i, with ki ∈ R, Ak is diagonalizable with real eigenvalues. In

this work, (4) is discretized in time using a first order forward finite difference scheme, leading to

an explicit formulation. An explicit time integration is used to introduce the method for the sake

of simplicity. However this is not the best choice in terms of convergence speed of the method.
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3. Stiffness and condition number

3.1. One-dimensional case

In order to fully understand the effect of local preconditioning, let us first analyze the one-

dimensional case. A system of the form

∂Φ

∂t
+A(Φ)

∂Φ

∂x
= 0 , (5)

is called hyperbolic if the matrix A is diagonalizable with real eigenvalues. These eigenvalues are

called the characteristic propagation speeds of the system. It is widely known that marching in time

an hyperbolic system containing different propagation speeds presents some problems. By the CFL

condition [21] the time step should be ∆t ≤ h
|λ|max

, where h is a characteristic length of the grid and

|λ|max the largest absolute value of the eigenvalues of the matrix A. A common time step for all

the equations means that some modes would use a time step that is not the best not only in terms

of accuracy but also in terms of efficiency; this is because the fast waves impose their small time

steps to the slow ones. In the one dimensional case, the propagation speeds are the eigenvalues of

the convective jacobian: λ(A) = {|u| − c , |u|+ c , |u|} = c {M − 1, M + 1, M}. When M → 0 or

M → 1 a large disparity occurs between the eigenvalues, resulting in a non efficient time marching

of the equations.

Although this happens regardless of the time-space discretization that is utilized, its effect is

blatantly observed in the discretized form, because any discretization of the system would be more

robust if all the modes traveled at the same speed. A system of hyperbolic equations is said to

be stiff or ill-conditioned when it exists a big disparity between its eigenvalues or characteristic

speeds. In that case, convergence problems arise regardless of the discretization method that is

used. The stiffness of a system is measured by the so-called condition number or characteristic

condition number, defined in the following.

Let us recall that the condition number of a matrix A is defined as

κ(A) =
|λ(A)|max

|λ(A)|min

, (6)

where |λ(A)|max and |λ(A)|min are respectively the maximum and the minimum absolute values of

the eigenvalues of A. In one dimension, the characteristic condition number, κ, of the Euler system
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of equations (5) corresponds to the condition number of its jacobian matrix, κ(A), that is

κ =







M+1
M M < 1

2

M+1
1−M

1
2 ≤M ≤ 1

M+1
M−1 1 < M .

(7)

3.2. Multi-dimensional case

In the multi-dimensional case, if d is the space dimension, there is one Jacobian Ai for each

space direction i = 1, . . . , d. Therefore, the definition of the condition number is not as obvious

as it is for the one dimensional case and wave analysis becomes a necessary mathematical tool to

evaluate the stiffness of 2D and 3D hyperbolic equations as the Euler equations (4). Examples of

its use can be found in [8, 10, 1, 22, 14]. The idea is to compute the condition number by analyzing

the wave propagation (or wave speed) of plane waves. The basic rationale is the following. A plane

wave of the form Φ(n · x− λt) is plugged into (4), where n is a unit vector defining the direction

of propagation and λ is the propagation speed of the plane wave. Thus we find the eigenvalue

problem

(An − λ I)Φ′ = 0 , (8)

where An =
d∑

i=1
Ai ni and I is the d× d identity matrix. Then, the wave speeds in the propagation

direction n are the eigenvalues λj(An), j = 1, . . . , d+ 2.

As in the one-dimensional case, to respect the CFL condition the time step should be

∆t ≤ h

|λ|max

, (9)

where h is a characteristic length of the grid and

|λ|max = max
j,n

|λj(An)| , (10)

is the maximum absolute value of the eigenvalues of the problem. The characteristic propagation

speeds of the Euler equations in the reference coordinates are:

λ1,...,d = u · n

λd+1,d+2 = u · n± c .

(11)
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In streamline coordinates (in Appendix C) they write:

λ1,...,d = cMn1

λd+1,d+2 = c(Mn1 ± 1) .

(12)

As we consider all the unit vectors n, the ensembles (11) and (12) turn to be the same. In fact, the

reference coordinates and the streamline coordinates always give the same ensemble of eigenvalues.

The largest absolute value of the eigenvalues is

|λ|max = c(M + 1) , (13)

defining the time steps for the marching scheme. The goal of preconditioning is therefore to cluster

the eigenvalues (12) as much as possible.

The natural extension of expression (6) to the multi-dimensional case is

maxi,n |λi(An)|
mini,n |λi(An)|

. (14)

However this is not a good measure of the problem stiffness. This is because the values λ1,...,d(An)

are zero when n is orthogonal to the velocity u, so the denominator mini,n|λi(An)| is always zero
regardless of the local Mach number. Therefore, the group velocity is instead used in precondition-

ing analysis [8, 22] to define the condition number. The group velocity is the propagation speed of

the envelope of a plane wave defined as

gi(n) = ∇n(‖n‖λi(n)) . (15)

For an equivalent way of computing the group velocity, refer to Appendix E. The condition number

is defined as the ratio of the largest and the smallest magnitude of the group speeds

κ =
maxi,n ‖gi(n)‖
mini,n ‖gi(n)‖

. (16)

Regardless of the space dimension, by plugging (12) into (15) (or into (E.1)-(E.4) from Appendix

E), the group velocities, g(n), for the Euler system (4) are

g1,...,d = (cM, 0, . . . , 0)T

gd+1,d+2 = (M ± n1, n2, . . . , nd)
T ,

(17)

7



and their magnitudes are

‖g1,...,d‖ = cM

‖gd+1,d+2‖ = c
√
M2 + 1± 2Mn1 .

(18)

Therefore the condition number of system (4) is

κ =







M+1
M M < 1

2

M+1
1−M

1
2 ≤M ≤ 1

M+1
M−1 1 < M .

(19)

4. Local preconditioning

The preconditioned Euler system reads

∂Φ

∂t
+PAi(Φ)

∂Φ

∂xi
= 0 , (20)

where P is the preconditioner. As noted in [10, 22], assuming that P has non-zero determinant

and (20) converges to a steady state solution, the time derivatives go to zero and (4) and (20) will

share the same steady solution. In this section, the VLR and CM preconditioners are described

and briefly analyzed.

A preconditioner is said to be optimal if it reduces the stiffness of the system to the minimum

attainable. Optimality is, in fact, the main goal of preconditioning. However, some essential

considerations have to be taken into account [10, 22]:

• Positivity. The preconditioner should not reverse the direction of the propagation speeds of

the system. Otherwise incoming and outgoing waves would inverse roles and cause problems

for the imposed boundary conditions. This requirement is satisfied if P is a positive-definite

matrix.

• Symmetrizability. In order to guarantee that the energy of the system remains bounded, the

system of equations should remain symmetrizable after preconditioning. This means that it

exists a symmetric, positive definite matrix S, such that SPAi is a symmetric matrix for all

i = 1, . . . , d.
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• Continuity. The preconditioner should satisfy some continuity conditions through all Mach

number regimes. This is especially sensitive at the sonic point (i.e.: when M = 1) where a

smooth transition between the subsonic and the supersonic preconditioners is required.

As explained in [1, 8], in the one-dimensional case, the optimal condition number we can obtain

when preconditioning is 1, in two dimensions it is 1 for supersonic flow and 1√
1−M2

for subsonic

flow, and in three dimensions it is 1√
1−M2

for subsonic and M√
M2−1

for supersonic flow. This is

summarized in Table 1.

No precond. Optimal preco

1D 2D 3D

Subsonic M+1
min {M,1−M}

1 1√
1−M2

1√
1−M2

Supersonic M+1
M−1

1 1 M√
M2−1

Table 1: Condition number of the non-preconditioned Euler equations and optimal condition num-

ber of the preconditioned Euler equations.

We express and solve the Euler equations in conservative variables (3), which are used in

our simulation code. However the preconditioners are designed and introduced through different

variables sets. These sets are the so-called symmetrizing variables, symmetrizing variables with

streamline coordinates, and primitive variables, which are described in Appendix B, Appendix C,

and Appendix D, respectively.

Condition number. In the same way as it is done in Section 3 for the non-preconditioned Euler

equations (4), wave analysis is used for the preconditioned case (20). The characteristic propagation

speeds, group velocities, and condition number of (20) are defined in this paragraph, and its value

for the VLR and CM preconditioners is computed in Subsections 4.1 and 4.2, respectively.

The characteristic propagation speeds or eigenvalues of system (20) are the propagation speeds

of a plane wave solution of the system, which are the eigenvalues of PAn =
d∑

i=1
PAi ni, that is:

λj(PAn), j = 1, . . . , d + 2, where n is a unit vector defining the direction of propagation of the

plane wave. The largest eigenvalues absolute value of the preconditioned problem (20), defined by

|λ|max = max
j,n

|λj(PAn)| , (21)
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is the one expected to determine the time step for this problem. This subject is discussed in more

detail in Subsection 5.3.

In an analogous fashion as it is defined in Subsection 3.2, the group velocities of the precondi-

tioned Euler system (20) are defined by

gi(n) = ∇n(‖n‖λi(n)) , (22)

where λi(n)) = λi(PAn), for i = 1, . . . , d. An equivalent way to compute the group velocities is

found in Appendix E. The condition number is defined by Eq. (16) that we repeat here for the

sake of clarity:

κ =
maxi,n ‖gi(n)‖
mini,n ‖gi(n)‖

. (23)

In (23), the group velocities of the preconditioned Euler system (22) are used.

The expressions of the eigenvalues, the maximum absolute value of the eigenvalues, and the

condition number for the unpreconditioned system and for the VLR and CM preconditioned sys-

tems are summarized in Tables 2 and 3 for the two and three dimensional cases, respectively. These

values do not depend on the set of variables that we chose to express our system of equations.

4.1. VLR preconditioner

The VLR preconditioner for the Euler equations is obtained by imposing a general precondi-

tioning matrix that satisfies a number of properties such as: optimality, accuracy, continuity at

the sonic point, preservation of the decoupled entropy equation, positivity, and symmetrizability.

The VLR preconditioner is introduced in [8, 10] using the symmetrizing variables with streamline

coordinates, dΦSS =
(

dq1 dq2 dq3
dp
ρc ds

)
T

, defined in Appendix C.

The VLR preconditioner in the symmetrizing variables and streamline coordinates reads

Pss

VLR
=
















τ
β2 + 1 0 0 − τM

β2 0

0 τ 0 0 0

0 0 τ 0 0

− τM
β2 0 0 τM2

β2 0

0 0 0 0 1
















, (24)
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where

τ = min

{

β,
β

M

}

=







β M < 1

β
M M ≥ 1

(25)

and β =
√

|1−M∗2|. In order to avoid division by zero in (24), M∗ is defined as

M∗ =







M M ∈ (0, 1− ǫ1) ∪ (1 + ǫ1,+∞)

1− ǫ1 M ∈ (1− ǫ1, 1)

1 + ǫ1 M ∈ [1, 1 + ǫ1) ,

(26)

where ǫ1 = 0.01. For the problems that we solved so far, (26) has proven to be fine. However a

more sophisticated way of avoiding the sonic-point discontinuity is found in [23]. Other articles

of reference for the VLR preconditioner are [10, 9, 22, 14, 15]. The importance of the eigenvec-

tors structure of the preconditioned system is explained in [24]. An extension of the Euler VLR

preconditioner to the Navier-Stokes equations is found in [10, 25, 26, 27].

The VLR preconditioner in the conservative variables (3) is

PVLR =
∂Φ

∂Φss

Pss

VLR

∂Φss

∂Φ
. (27)

An explicit expression of (27) is found in Appendix F, Eqs. (F.1)-(F.2).

2D condition number. In two dimensions, the characteristic propagation speeds or eigenvalues for

the VLR preconditioned system are

λ1,2 = cMn1

λ3,4 = 1
2cMτ

[

(1 + M2−1
β2 )n1 ±

√

(1 + M2−1
β2 )2n21 + 4

1−M2n2
1

β2

]

.
(28)

Using (28) into (22) (or into (E.1) from Appendix E), the group velocities of the VLR precondi-

tioned system are

g1,2 = (cM, 0)T

g3,4 =







± cM√
1−M2n2

1

((1−M2)n1, n2)
T M < 1

c(
√
M2 − 1,±1)T M > 1 ,

(29)
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and their norms are

‖g1,2‖ = cM

‖g3,4‖ =







cM

√

1−M2(2−M2)n2
1

1−M2n2
1

M < 1

cM M > 1 .

(30)

By Eqs. (30) and (16) the condition number is

κ =







1√
1−M2

M < 1

1 M > 1 .

(31)

3D condition number. Using the same definitions and following the path of the two-dimensional

case, we proceed here in three dimensions. The eigenvalues of the system are

λ1,2 = cMn1

λ3 = cMτn1

λ4,5 = 1
2cMτ

[

(1 + M2−1
β2 )n1 ±

√

(1 + M2−1
β2 )2n21 + 4

1−M2n2
1

β2

]

,

(32)

the group velocities g(n) are

g1,2 = (cM, 0, 0)T

g3 =







(cM
√
1−M2, 0, 0)T M < 1

(c
√
M2 − 1, 0, 0)T M > 1

g4,5 =







± cM√
1−M2n2

1

((1−M2)n1, n2, n3)
T M < 1

(
√
M2 − 1,± n2√

1−n2
1

,± n3√
1−n2

1

)T M > 1 ,

(33)

and their norms are

‖g1,2‖ = cM

‖g3‖ =







cM
√
1−M2 M < 1

c
√
M2 − 1 M > 1

‖g4,5‖ =







cM

√

1−M2(2−M2)n2
1

1−M2n2
1

M < 1

cM M > 1 .

(34)
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The condition number of the VLR preconditioned system is then

κ =
1

√

1−min{M2,M−2}
. (35)

For both the two and three-dimensional cases, the largest eigenvalues absolute value of the

VLR preconditioned system in all regimes is

|λ|max = cM = ‖u‖ . (36)

4.2. CM preconditioner

The CM preconditioner is introduced for viscous and inviscid flow in [2] using the primitive

variables, ΦP = (u1 u2 u3 p T )
T. The matrices of variable change between the primitive and the

conservative variables are found in Appendix D. The CM preconditioner is not optimal (i.e.: it

does not provide an optimal condition number) and its benefits only exist for low Mach numbers.

However, it has the advantage to be easily adapted to viscous flow [2] and transient problems [17].

If we write the preconditioned Euler equations as

∂ΦP

∂t
+ Γ−1 Ai ∂Φ

∂xi
= 0 , (37)

the CM preconditioner (as presented in [2]) reads

Γ−1 =
















1
ρ 0 0 −u1

ρ 0

0 1
ρ 0 −u2

ρ 0

0 0 1
ρ

−u3

ρ 0

0 0 0 βM2
r 0

−u1

cpρ
−u2

cpρ
−u3

cpρ
1

cpρ

(
1
2‖u‖2 − cpT + βM2

r

)
1

cpρ
















; (38)

its inverse is

Γ =
















ρ 0 0 u1

βM2
r

0

0 ρ 0 u2

βM2
r

0

0 0 ρ u3

βM2
r

0

0 0 0 1
βM2

r
0

ρu1 ρu2 ρu3
1

βM2
r

E+p
ρ cpρ
















, (39)
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where β = kβc
2, kβ = 1 for inviscid problems, and

Mr =







ǫ0 M < ǫ0

M ǫ0 < M < 1

1 1 < M ,

(40)

where ǫ0 = 10−5, as it is defined in [2]. For the problems that we solved so far, (40) has proven to

be fine.

The CM preconditioner in the conservative variables (3) is

PCM =
∂Φ

∂ΦP

Γ−1 . (41)

An explicit expression of (41) is given by Eq. (G.1), in Appendix G. The CM preconditioner in

the symmetrizing variables and streamline coordinates is

Pss

CM
=
∂Φss

∂Φ
PCM

∂Φ

∂Φss

. (42)

An explicit expression of (42) is found in Eq. (H.1) from Appendix H.

2D and 3D condition numbers. The eigenvalues of the CM preconditioned system are

λ1,...,d = cMn1

λd+1,d+2 = 1
2c
(

Mn1(1 +M2
r )±

√

M2n21(1 +M2
r )

2 + 4M2
r (1−M2n21)

)

.
(43)

where n is a unit vector defining the wave propagation direction. As it is pointed out in [22],

above Mach numbers of approximately 0.4, the CM preconditioner has worse condition number

than the unpreconditioned Euler equations. When M > 1 we have Mr = 1 and we found the same

eigenvalues as for the non-preconditioned case. For this reason CM is a preconditioner for low

Mach number regimes and it could be switched off when M > 0.4. The maximum eigenvalue in

absolute value in all regimes is

|λ|max =
1

2
c
(

M(1 +M2
r ) +

√

M2(1 +M2
r )

2 + 4M2
r (1−M2)

)

. (44)

Taking definition (22) (or equivalently, expressions (E.1)-(E.4) from Appendix E) and using
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the values of (43), the group velocities are

g1,...,d = (cM, 0, . . . , 0)T

gd+1,d+2 =







1
2c

(

M(1 +M2
r )± n1

M2(1−M2
r )

2+4M2
r√

M2n2
1(1−M2

r )
2+4M2

r

,±n2 4M2
r√
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r )
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r

, . . . ,
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r√
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r )
2+4M2

r

)
T

M < 1

(M ± n1, n2, . . . , nd)
T M > 1 ,

(45)

and their norms are

‖g1,...,d‖ = cM

‖gd+1,d+2‖ =







1
2c

[(

M(1 +M2
r )± (M2(1−M2

r )
2+4M2

r )n1√
M2n2

1(1−M2
r )

2+4M2
r

)2

+

(

4M2
r (1−n2

1)√
M2n2

1(1−M2
r )

2+4M2
r

)2
] 1

2

M < 1

c
√
M2 + 1± 2Mn1 M > 1 .

(46)

Then, from (46) and definition (16), the condition number of the CM preconditioned system is

κ =







M(1+M2
r )+

√
M2(1−M2

r )
2+4M2

r
∣

∣

∣
M(1+M2

r )−
√

M2(1−M2
r )

2+4M2
r

∣

∣

∣

M < 1

M+1
M−1 M > 1 .

(47)

5. Numerical formulation

In this section we set the bases for the P-VMS method to solve the compressible Euler equa-

tions. The preconditioned equations (20) are discretized in space using finite elements with VMS

stabilization and, in time, using a first order forward finite difference scheme.

5.1. Finite element space discretization

Let Ωh be a polyhedral approximation of Ω, the domain of the continuous problem (20). We

consider a partition Ph = {Km}m=1,...,Nel
of Ωh in Nel elements, Km ⊂ Ωh, of characteristic length
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r
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M > 1
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Table 2: 2D eigenvalues, their maximum, and the condition number of the NP (non preconditioned),

VLR, and CM preconditioning options.

hm. In this work, hm is defined as the shortest edge of the element. Let {xp}p=1,...,N be the N

nodes of the grid associated to Ph and ψh
p the Lagrange polynomial corresponding to node xp,

for p = 1, . . . , N . We consider W h, the functions space generated by {ψh
p}p=1,...,N , and project

the system (20) onto W h by the L2 scalar product, where L2 is the space of square-integrable

real-valued functions. In this way we obtain the finite elements weak form of (20) as

∫

Ωh

ψh ∂Φ
h

∂t
dΩh +

∫

Ωh

ψhPAi(Φ)
∂Φh

∂xi
dΩh = 0 ∀ψh ∈ W h . (48)

The function Φh is defined as the projection of Φ onto W h and it can be expressed as

Φh(ξ, t) =
N∑

p=1

ψh
p (ξ)Φ

h
p(t) , (49)

where ξ ∈ Ωh and Φh
p(t) is the value of Φh at nodes xp and time t.
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r
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M > 1
M+1
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Table 3: 3D eigenvalues, its maximum and the condition number of the NP (non preconditioned),

VLR, and CM preconditioning options.

5.2. P-VMS: Stabilization by the variational multiscale method

When convection dominates, as it is the case of the Euler equations, the finite elements dis-

cretization (48) presents some instabilities that should be treated in order to avoid non-physical

oscillations or blow-up of the solution [28]. These instabilities can be treated by means of differ-

ent stabilization procedures. Pioneering work on stabilization techniques for finite elements for

compressible flows are the Streamline Upwind Petrov-Galerkin (SUPG) [29, 30, 31, 32] and the

Galerkin/Least-Squares (GLS) [33] methods. A complete survey of both stabilization procedures

can be found in [34].

The unresolved scales is the part of the solution that is under the resolution of the grid and

consequently can not be solved by the numerical method. In the 90’s a group of researchers lead

by Hughes state that the instabilities come from the fact that its effect on the solution is not

captured by the numerical method. They conclude that the effects of the unresolved scales must

be introduced in the formulation of the discrete problem, by modeling them in some way, using
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the information that we have at the grid scale level. Based on this idea they designed a new

stabilization framework, the so-called variational multiscale stabilization method. VMS was firstly

introduced for the advection-diffusion equations in [35, 36]. This approach allows the development

of new schemes but also the understanding of previous stabilization techniques as SUPG and GLS.

VMS has been widely applied to the incompressible equations, being its application to com-

pressible flow problems more recent. To our knowledge, VMS for compressible flows appears in

[37, 38, 39, 40, 41, 19]. Hybrid VMS-LES approaches for large eddy simulation of turbulent com-

pressible flows can be found in [42, 43, 44, 45, 46, 47]. Due to its high efficiency, robustness, and

validity at all Mach regimes, in this paper we focus on the variational multiscale approach. The

method introduced in [19] is used in this paper and adapted for the preconditioned problem (20).

A fundamental concept of VMS is that the unknown consists of two components, the large scale

Φh, and the unresolved part or subscale Φ̃:

Φ = Φh + Φ̃ . (50)

The large scale is the part of the unknown that is solved explicitly, while the subscales and their

effect on the large scale problem (48), are modeled by the VMS method. Introducing split (50) in

Eq. (48), we obtain the VMS stabilized problem: ∀ψh ∈ W h,

∫

Ωh

ψh ∂Φ
h

∂t
dΩh+

∫

Ωh

ψhPAi(Φ)
∂Φh

∂xi
dΩh +

∑

K∈Ph

∫

K
ψh

(

∂Φ̃

∂t
+PAi(Φ)

∂Φ̃

∂xi

)

dK = 0 . (51)

The effect of the subscale on the large scale is represented by the stabilization term, consisting of

the last two terms in Eq. (51). We use
∑

K∈Ph

∫

K instead of
∫

Ωh in the stabilization term of (51)

because the subscales are defined inside the elements but not necessarily on their boundaries. In

what follows, we enumerate some approximations that we consider in Eq. (51). (A) We consider

orthogonal subscales, as it is done in [48, 49] in the context of advection-diffusion and incompressible

flow equations. Under this assumption,
∫

K ψh ∂Φ̃
∂t dK = 0. (B) In the interest of algorithmic

simplicity, we make the approximation PAi(Φ) ≈ PAi(Φh) and simply write PAi from now on.

This approximation is usually done among VMS practitioners (see, for example, [37]) and implicitly

done in the case of SUPG or GLS stabilization, where the concept of subscale and the decomposition

(50) do not exist. In the context of incompressible flow, the exact form PAi(Φ) is preserved in

[49]; this requires the storage of the subscale at each iteration. (C) As it is commonly done in

the VMS community, in order to avoid the space derivatives of the subscale, we integrate by parts
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the last term of (51) and we suppose the arising boundary term to be zero. Finally, consider that

the test functions space W h is generated by {ψh
p}p=1,...,N . Then, imposing Eq. (51) to hold for all

ψh ∈ W h is equivalent to imposing it to hold for all ψh
p , p ∈ {1, . . . , N}. The last assumptions

and considerations lead to the reformulation of (51) as:

∫

Ωh

ψh
p

∂Φh

∂t
dΩh +

∫

Ωh

ψh
p PA

i ∂Φ
h

∂xi
dΩh

︸ ︷︷ ︸

Galerkin term

−
∑

K∈Ph

∫

K

(

∂ψh
p

∂xi
PAi + ψh

p

∂(PAi)

∂xi

)

Φ̃ dK

︸ ︷︷ ︸

Stabilization term

= 0 ,

(52)

holding for all p ∈ {1, . . . , N}. A model for the subscales is explicitly defined in the paragraph

Subscale approximation below. Eq. (52) is the weak stabilized form of Eq. (20). In the current

implementation of the method, we neglect term
∫

K ψh
p

∂(PAi)
∂xi

Φ̃ dK in Eq. (52). This simplifi-

cation is standard, however we should consider this term in future implementations of P-VMS.

We considered this term in [19] in the context of VMS, when solving the Euler and Navier-Stokes

equations without preconditioning. As far as we know, [19] is the only reference of VMS where this

term is taken into account. The neglected term neither appears in the SUPG or GLS formulations.

Subscale approximation. The subscales are approximated in every elementKm ∈ Ph as the product

of a parameter matrix τ times the residual of the governing equation:

Φ̃ = τ r(Φh) , (53)

where

r(Φh) = −PAj ∂Φ
h

∂xj
. (54)

It is important to see the local nature of the subscales that are meant to exist only where residuals

are important. Expression (53) is plugged into Eq. (52) to find an expression of the variational

multiscale stabilized finite element method for Eq. (20). Most of the models describe the subscale

in the form of Eq. (53). However their residual includes the time derivative term. This term does

not appear in our residual (54) because we are considering orthogonal subscales (see assumption

(A) above). The definition of the parameter τ is a topic of active research still today. There

exist, for compressible flow, many proposals in the literature. Some definitions for the stabilization

parameter τ are found in [29, 30, 31], in the context of SUPG; in [33, 50], in the context of GLS; and
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in [37], in the context of VMS. The stabilization parameter τ is here defined inside each element

as

τ =
h

|λ|max
, (55)

where h is chosen as the smallest edge length of the element and |λ|max is defined in (21) (in (10)

for the non-preconditioned case). Using expression (36) for the VLR case, (55) becomes

τ =
h

‖u‖ . (56)

The same parameter τ (56) will be used for the CM preconditioned case. Let’s call τCM the

parameter (55) defined using |λ|max from expression (44). After numerical experiments, parameter

(56) is shown to perform better for the CM preconditioned case than τCM. We observe that

τCM is always smaller than (56). This could be a reason for that phenomena that, however, is

not completely clear. In (56), if u = 0 a lower bound is used. Using expression (13) for the

unpreconditioned case, we get

τ =
h

‖u‖+ c
, (57)

where c is the speed of sound. In the unpreconditioned case, we find in the literature alternative

definitions of the parameter τ which are also based on the eigenvalues of the Jacobians Ai and

depend on the speed of sound. See for example [29, 30, 31, 33, 50].

5.3. Time discretization. Global and local time stepping

A first order explicit time discretization of (52) gives

∫

Ωh

ψh
p

Φh,n+1 −Φh,n

∆t
dΩh+

∫

Ωh

ψh
p PA

i ∂Φ
h,n

∂xi
dΩh −

∑

K∈Ph

∫

K

∂ψh
p

∂xi
PAi Φ̃n+1 dK = 0 , (58)

holding for all p ∈ {1, . . . , N}. The superscripts n + 1 and n indicate the value at the current

and the previous time step, respectively. The value of Φ̃n+1 is computed from (53) using the

information of the previous time step, i.e.: Φ̃n+1 = τn r(Φh,n).

In this paper, both local and global time stepping are considered. From the CFL condition [21]

a time step inside each element is defined as

∆t el = C
h

|λ|max

, (59)
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where C ∈ (0, 1) is the CFL number, h is the smallest edge length of the element, and |λ|max is

the maximum eigenvalue in absolute value, defined by (21) and (10) for the preconditioned and

the non-preconditioned cases, respectively.

The elementary time step (59) is interpolated on the nodes of the grid, obtaining a local time

step ∆t p, p = 1, . . . , N , at each node xp. When using a local time stepping, the solution at each

node of the grid advances in time with its own time step, ∆t p, computed with local parameters.

Then, the local time step is different at each node of the grid and it is the same for all the equations

of our system. We note that no time synchronization is needed since the steady solution is sought.

When using a global time stepping, we advance in time the solution with a unique time step

for the whole domain. The global time step is computed as the minimum time step of the domain

as

∆t = min
p=1,...,N

{∆t p} . (60)

For the VLR preconditioner, we use (36) in Eq. (59) and the elementary time step becomes

∆t el = C
h

‖u‖ . (61)

The same time step (61) is here used for the CM preconditioned case, as it is seen to perform

better than the one using its own |λ|max, defined in (44). The same phenomena happened with

the τ parameter definition (56) for the CM case. In (61), if u = 0 a lower bound is used to avoid

division by zero. Using expression (13), the time step for the unpreconditioned case is computed

inside each element as

∆t el = C
h

‖u‖+ c
. (62)

From the definitions, it can be observed that, especially in low-Mach regimes, the time step for

the preconditioned case could be orders of magnitude larger than the non-preconditioned one. It

will be shown in the numerical results that this fact entails a speed up of the convergence for the

preconditioned system.

Inserting equality (49) in (58), a linear system of N(d+ 2) equations is obtained:

M
Φh,n+1 −Φh,n

∆t
= G(Φh,n) + S(Φh,n, Φ̃n+1) , (63)

where
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1. Φh is here the nodal vector of unknowns of dimension N(d + 2). It is made by assembly of

the vectors Φh
p , for p = 1, . . . , N , where Φh

p is Φh evaluated at node xp.

2. M is the global Mass matrix, it has dimension N(d + 2) × N(d + 2). It is a block matrix

composed of N2 blocks Mpq of dimension (d+ 2)× (d+ 2),

Mpq =

∫

Ωh

ψh
pψ

h
q dΩ

h Id+2 , (64)

where p, q = 1, . . . , N and Id+2 is the identity matrix of dimension (d+ 2)× (d+ 2).

3. G and S are the Galerkin and stabilization vector terms, respectively. They are constructed

by assembly of N local vectors of dimension d+ 2:

Gp = −
∫

Ωh

ψh
p PA

i ∂Φ
h,n

∂xi
dΩh Sp =

∑

K∈Ph

∫

K

∂ψh
p

∂xi
PAi Φ̃n+1 dK , (65)

respectively, for p = 1, . . . , N .

All the integrals above are approximated by the Gaussian quadrature rule that, for a function

f , writes

∫

K
f(x) dK =

∫

I
f(H(ξ)) |J(ξ)| dξ ≈

NGauss∑

p=1

f(H(ξp)) |J(ξp)|ωp, (66)

where I = [−1, 1]× [−1, 1] is a reference element, H a bijection from I to the element K, J = dH
dξ

the H Jacobian matrix, |J | its determinant, NGauss is the number of integration Gauss points ξp

inside the element K, and ωp its weight.

M is diagonalized by lumping techniques [51] in order to avoid its inversion when open inte-

gration rules are used. From Eq. (63), the value of Φh,n+1 at each node of the computational grid

is obtained as

Φh,n+1 = Φh,n +∆tM−1
(

G(Φh,n) + S(Φh,n, Φ̃n+1)
)

, (67)

where we defined Φ̃n+1 = τ r(Φh,n) and Φh,n is computed using equality (49).

6. Numerical results

P-VMS performance is assessed through two well-known benchmarks for inviscid flow problems.

The first example is the flow past a two dimensional NACA 0012 airfoil at zero angle of attack
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and different Mach numbers, from subsonic flows at very low Mach numbers, up to supersonic

regimes. The second one is the three dimensional ONERA M6 wing test case at 3.06◦ angle of

attack and a Mach number of 0.8395. A first order explicit time integration scheme is used for the

time integration. The presented scheme is implemented in BSC’s in-house code: Alya.

VLR and CM preconditioners are used and compared to the non preconditioned (NP) case.

For these three preconditioning options (NP, VMS, and CM), both global and local time stepping

are tested, giving the following options:

• No preconditioning with global time step (NP-globalTS)

• No preconditioning with local time step (NP-localTS)

• VLR preconditioning with global time step (VLR-globalTS)

• VLR preconditioning with local time step (VLR-localTS)

• CM preconditioning with global time step (CM-globalTS)

• CM preconditioning with local time step (CM-localTS)

In what follows, when we want to specify the time stepping that is used, we will refer to the

different cases by using the above abbreviations in brackets. At the continuous stage the unpre-

conditioned and the preconditioned equations, (4) and (20), respectively, share the same steady

solution. However, both systems are different and have different condition numbers, so that they

can react differently to the numerical discretization. Consequently they can give slightly different

solutions, or one of them can converge while the other diverges. As noted in [22], local precondi-

tioning “[...] has the benefit of increasing the accuracy of the discretization”. This fact would be

seen through the following test cases.

For both test cases, a constant velocity and temperature are prescribed at the inflow and a

constant density at the outflow. The distance from the airfoil to the inflow and outflow boundaries

is taken large enough in order to avoid the numerical instabilities of reflecting waves. Slip boundary

conditions are used on the airfoil and on the walls.

Convergence rates are here represented as a normalized residual on the vertical axis over the
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iteration number on the horizontal axis. We call normalized residual the quantity Res defined as:

Res = ‖∆U‖
‖U‖ + ‖∆ρ‖

‖ρ‖ + ‖∆E‖
‖E‖ ,

‖∆U‖
‖U‖ =

√

√

√

√

∑

p=1,...,N
i=1,...,d

(Un+1
i (xp)−Un

i (xp))2

√

√

√

√

∑

p=1,...,N
i=1,...,d

(Un+1
i (xp))2

,

‖∆ρ‖
‖ρ‖ =

√

∑

p=1,...,N

(ρn+1(xp)−ρn(xp))2

√

∑

p=1,...,N

(ρn+1(xp))2
,

‖∆E‖
‖E‖ =

√

∑

p=1,...,N

(En+1(xp)−En(xp))2

√

∑

p=1,...,N

(En+1(xp))2
.

(68)

6.1. NACA 0012 airfoil

Inviscid flow past a two-dimensional NACA 0012 airfoil is solved at zero angle of attack and

inflow Mach numbers: 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.8, 2.0. The rest of the initial

conditions being: ρ = 1, u = (1, 0), T = 1, and cp and cv are determined to obtain the desired

inflow Mach numbers. An unstructured grid of 4522 triangles and 2315 grid nodes is used. The

CFL number values used for these simulations are in Table 5. It corresponds to the maximum CFL

number that can be used for each simulation, obtained through numerical experiments.

The same problem for a Mach number of 0.0001 is solved in the original paper by Choi and

Merkle [2] using central differencing in space. In [1], they solve it by finite volumes, using the VLR

preconditioner and different Mach numbers ranging between 0.01 and 1.8.

Results of pressure contours for the different inflow Mach numbers are displayed in Figs. 1 to

11. They show the final steady state solution corresponding to the NP and VLR options using

local time stepping. The results using the CM preconditioner are not shown here, they are very

similar to the VLR ones for low Mach numbers (M ≤ 0.3) and to the NP ones otherwise. CM is

in fact a preconditioner for low Mach number regimes, otherwise it does not remove the stiffness

of the non-preconditioned Euler equations. The CM preconditioned system is worse conditioned

than the non-preconditioned case when 0.4 < M < 1. When M > 1 the characteristic speeds of

the CM preconditioned system are indeed the same of the NP case (see Subsection 4.2 for more

detail). For all Mach numbers, VLR using global and local time stepping give identical steady
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results. NP-globalTS and NP-localTS options give very similar but not identical results, the same

happens between CM-globalTS and CM-localTS options.

For Mach numbers 0.001, 0.01, and 0.1 we obtain wrong results without preconditioning. How-

ever using both VLR or CM, the problem converges rapidly to a smooth solution. This is seen

from Figs. 1-3. This fact shows that the use of VLR or CM preconditioners gives enough stability

to VMS to handle low Mach number flows accurately and robustly.

As expected, non-preconditioned VMS becomes more stable as the Mach number increases.

When M = 0.3 the non-preconditioned VMS pressure contours still present some error at the

surface of the airfoil (Fig. 4), which is not at all the case for the P-VMS in either VLR or CM.

With a more refined grid the non-preconditioned VMS could give a good result, however the

object of this study is to compare the convergence and stability properties of non-preconditioned

and preconditioned options, under the same conditions. For Mach numbers 0.5 and 0.7 (Figs. 5

and 6) all the options give very similar results.

To better compare, no shock-capturing diffusion is used for the supersonic cases. Then the

result presents some oscillations near the shocks in the supersonic regions. When M = 0.9 (Fig. 7)

VLR option seems to capture the sharp shock that appears in the tail of the airfoil more accurately

than NP and CM options. We Observe in Fig. 9 that for M = 1.2 the results of NP and CM

options are different from VLR one. The front shock is formed at x = 0.5 in the VLR case and

slightly before in the NP and CM ones. The VLR pressure contours and position of the front shock

compare better with the result from [52] than the NP and CM ones. Similar discrepancy between

NP/CM and VLR options concerning the front shock position appears for Mach numbers 1.8 and

2.0 (Figs. 10 and 11).

The maximum and minimum values of the Mach number of the steady solution for the different

preconditioning and time stepping options are displayed in Table 4 for comparison. The minimum

value of the Mach number is reached at the leading edge where M should be zero. This value

represents the main disagreement between NP, VLR and CM options. The NP and CM cases

always have larger minimum values than the VLR option. In the CM case those values are at

most one order of magnitude larger than the VLR case. However, in the NP case they are most of

the times one or two orders of magnitude larger than in the VLR case. This shows the improved

accuracy properties of the P-VMS, especially in the case of the VLR preconditioner, for which the
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Mach number at the leading edge approaches zero the most. When M = 1.2, the Mach number

result for the NP-localTS option presents an overshot on a point of the outflow boundary, which

is reflected in Table 4 in the Mach number maximum value for this case. The use of local time

stepping is not as robust for the unpreconditioned case as it is when preconditioning is used.

We observe from Table 5 that the CFL number has to be reduced when a local time stepping

is used. However local time stepping improves significantly the convergence rate compared to

global time stepping, for all the preconditioning options. This improvement is less significant when

M → 0 and for the CM option when M → 1. The convergences for the global time stepping are

not shown here for the sake of brevity.

Results of convergence rates are displayed in Fig. 12. The benefits of VLR-localTS for all

Mach numbers and CM-localTS for low Mach number regimes in terms of convergence acceleration

and stability of the solution for the Euler equations is clearly demonstrated in these examples.

VLR-localTS gives the best convergence rate in all cases. CM-localTS compared to NP-localTS

performs better for low Mach numbers. However when 0.3 < M < 1, it is seen to give similar

convergence rates to the NP-localTS case, and worse convergence rates when M > 1. This is the

expected behavior from what is said in Subsection 4.2. We note that for a Mach number of 0.001,

the convergence of the VLR case (Fig. 12a) stalls at around 10−11. The same phenomena occurs

in [1] when they solve the same problem for a Mach of 0.01, they do not solve the Mach 0.001 case.

As they indicate, we believe that this happens because of the round-off errors due to the fact that

the kinetic energy of the flow is so small compared to the internal energy.

When M = 1.0 at the inflow, the convergence obtained with the VLR preconditioner is very

sensitive to the definition of the reference Mach number M∗ (Eq. (40)) around the sonic point.

This definition depends on the value of the bound parameter ǫ1 that is set to 0.01 in this paper.

If ǫ1 is set to 0.1, the VLR-localTS convergence stalls at approximately 10−6 (not shown). If it is

set to 0.001, the problem diverges.
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Figure 1: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.001 for the NP

(left) and VLR (right) cases with local time step. Due to the very small change in pressure at this

Mach number, the contours of p − pref , that is the change in pressure in relation to a reference,

pref = 714279, are plotted.

Figure 2: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.01 for the NP

(left) and VLR (right) cases with local time step.
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Figure 3: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.1 for the NP

(left) and VLR (right) cases with local time step.

Figure 4: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.3 for the NP

(left) and VLR (right) cases with local time step.
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Figure 5: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.5 for the NP

(left) and VLR (right) cases with local time step.

Figure 6: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.7 for the NP

(left) and VLR (right) cases with local time step.
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Figure 7: NACA 0012 test case. Pressure contours for an inflow Mach number of 0.9 for the NP

(left) and VLR (right) cases with local time step.

Figure 8: NACA 0012 test case. Pressure contours for an inflow Mach number of 1.0 for the NP

(left) and VLR (right) cases with local time step.
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Figure 9: NACA 0012 test case. Pressure contours for an inflow Mach number of 1.2 for the NP

(left) and VLR (right) cases with local time step.

Figure 10: NACA 0012 test case. Pressure contours for an inflow Mach number of 1.8 for the NP

(left) and VLR (right) cases with local time step.
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Figure 11: NACA 0012 test case. Pressure contours for an inflow Mach number of 2.0 for the NP

(left) and VLR (right) cases with local time step.
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Mach NP-globalTS NP-localTS VLR CM-globalTS CM-localTS

0.001 - - 3.22× 10−6/0.001182 1.36× 10−5/0.001181 1.00× 10−5/0.001182

0.01 - - 3.22× 10−5/0.01182 1.36× 10−4/0.01181 1.02× 10−4/0.01182

0.1 0.00397/0.1179 0.00375/0.1179 3.19× 10−4/0.1183 0.001347/0.1182 0.001271/0.1183

0.3 0.0141/0.366 0.0141/0.366 8.90× 10−4/0.359 0.00371/0.359 0.00374/0.359

0.5 0.0178/0.628 0.0178/0.628 0.00119/0.614 0.00511/0.615 0.00511/0.615

0.7 0.0174/0.945 0.0173/0.949 0.00109/0.927 0.00521/0.932 0.00519/0.933

0.9 0.0189/1.53 0.0189/1.53 0.001439/1.44 0.00719/1.50 0.00720/1.50

1.0 0.0146/1.79 0.0146/1.79 4.37× 10−4/1.45 0.00219/1.80 0.00219/1.80

1.2 0.0214/1.53 0.0223/4.77 0.00726/1.49 0.00830/1.75 0.00835/1.92

1.8 0.0545/2.09 0.0545/2.09 0.0166/1.97 0.0378/2.53 0.0378/2.53

2.0 0.0233/2.40 0.0233/2.40 0.0476/2.20 0.0377/2.88 0.0377/2.88

Table 4: NACA 0012 test case. Comparative minimum/maximum Mach numbers over the domain

once reached the steady state. The different preconditioning options using global and local time

stepping are compared for the NACA0012 test case at different inflow Mach numbers. VLR-

globalTS and VLR-localTS values are shown in the same column (VLR) as they give identical

results. The dash symbol ”-” indicates that the result didn’t converge.
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Mach 0.001 0.01 0.1 0.3 0.5 0.7 0.9 1.0 1.2 1.8 2.0

NP-globalTS 0.4 0.4 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.7

NP-localTS 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4

VLR-globalTS 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.8 0.7

VLR-localTS 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2

CM-globalTS 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.3 0.4 0.4

CM-localTS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 5: NACA 0012 test case. Comparison of the CFL numbers used for the different precondi-

tioning options at different inflow Mach numbers.
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(g) M = 0.9
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Figure 12: NACA 0012 test case. Residual-convergence rates over the time step using the three

preconditioning options (NP, VLR, and CM) with local time at different inflow Mach numbers.

We use the residual defined by equation (68).
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6.2. ONERA M6 wing

The ONERA M6 wing configuration details and experimental results are found in [53]. The

results presented here correspond to inviscid transonic flow at a Mach number of 0.8395 and an

angle of attack of 3.06◦. As in the NACA 0012 test case, the rest of the initial conditions are ρ = 1,

‖u‖ = 1, T = 1, and cp and cv are determined to obtain the desired inflow Mach numbers. An

unstructured tetrahedral mesh is used on this simulation consisting of 472026 elements and 94481

grid points. The VLR and NP options are tested for this case. The CM option only improving

performance for low Mach number regimes is not considered in this problem. The NP-localTS

option does not converge for this problem.

Convergence for the NP-globalTS and VLR-localTS cases are compared in Fig. 13. We observe

that the VLR-localTS configuration considerably accelerates the convergence compared to the

NP-globalTS one.

The pressure contours on the upper and lower surface of the wing for the VLR-localTS case

with CFL = 0.2 are shown in Fig. 14. In the upper surface contours we can identify the complex

sharp shock structure that is formed.

The pressure coefficient values of the VLR-localTS simulation at seven spanwise orthogonal

sections of the wing are compared to the experimental results in [53] in Fig. 15. The seven

sections are at 20% (y = 0.23926m), 44% (y = 0.526372m), 65% (y = 0.777595m), 80% (y =

0.95704m), 90% (y = 1.07667m), 95% (y = 1.136485m), and 99% (y = 1.184337m) of the semi-

span that goes from y = 0 to y = 1.1963m, where y is the span-wise coordinate. We observe some

differences between the results and the experimental data near the shock located at x = 0.6 on the

horizontal axis for all cases, whether preconditioned or not. Considering that we are comparing the

experimental results with an Euler solution, the obtained pressure coefficient values at the different

sections are reasonable (see for instance [54]). We also observe a difference near the trailing edge

when comparing our results with the experiments. We believe that this difference could be due to

several reasons: the way we impose boundary conditions, the lack of physical viscosity, the fact

that there is no local mesh refinement at the trailing edge, etc.
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Figure 13: ONERA M6 test case. Convergence rate comparison between the non preconditioned

case using a global time stepping (red line) and the VLR preconditioned case using a local time

stepping (green line). We use the residual defined by equation (68).

Figure 14: ONERA M6 test case. Pressure contours on the upper (left figure) and lower (right

figure) surfaces for the VLR preconditioned case with local time step.
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(g) 99% of the semi-span
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Figure 15: ONERA M6 test case. The cp values for the experimental and VLR-localTS’s results

are compared on seven span-wise sections of the wing.

7. Conclusions

In the present paper a variational multiscale stabilization for the locally preconditioned Euler

equations is introduced. This stabilization method, that we call P-VMS, is applied to the finite

element discretization of steady compressible flows. Time discretization is approached by a linear

explicit scheme in order to present and assess P-VMS in the most simple and direct way possible.

The local and global time stepping are compared.

Due to the effect of local preconditioning on the hyperbolic equations, the preconditioned system

is better suited for the computation of the VMS for a wide-range of Mach numbers. The combined

action of local preconditioning and VMS results in a robust and precise numerical method. As

local preconditioning is applied before any discretization is done, it does not necessarily add extra

computational cost compared to the non-preconditioned option. Indeed, the product PAi can be

computed analytically and the corresponding expression introduced into the code.

VLR and CM preconditioners are tested over two benchmarks comprising an ample range

of Mach numbers. We observe that preconditioning gives improvement in terms of convergence

acceleration, stability, and smoothness of the solution even for very low Mach numbers. The use of

a local time stepping compared to a global one, accelerates the convergence to the steady solution

as well. VLR preconditioning gives better improvement than CM one on the convergence rate and
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applies from subsonic to supersonic regimes. CM preconditioning improves the convergence for low

Mach number flows.
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Appendix A. Jacobian matrices

A1(Φ) =
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Appendix B. Euler equations in symmetrizing variables

We introduce the symmetrization of the Euler equations proposed by [55]. The symmetrizing

variables are

dΦs =

(

du1 du2 du3
dp

ρc
dp− c2dρ

)
T

, (B.1)

where dp − c2dρ = p
cv
ds. They are related to the conservative variables through the expression
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and its inverse
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we then obtain the symmetric jacobian matrices in the symmetrizing variables, Ai
s
= ∂Φs

∂Φ Ai ∂Φ
∂Φs

,

i = 1, . . . , 3, which are explicitly written as:
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(B.4)

Then, (4) is equivalent to the symmetric system

∂Φs

∂t
+Ai

s

∂Φs

∂xi
= 0 . (B.5)

Appendix C. Euler equations in symmetrizing variables and streamline coordinates

System (B.5) can be simplified even more by rotating the reference coordinates, x = (x1, x2, x3),

to obtain a coordinate system ξ = (ξ1, ξ2, ξ3), in which the flow is in the positive ξ1-direction. They

are called streamline coordinates. We write ξ = Rx, where R = Rx2
Rx3

,

Rx2
=








cosα 0 sinα

0 1 0

− sinα 0 cosα







, Rx3

=








cos θ sin θ 0

− sin θ cos θ 0

0 0 1








. (C.1)

Rx2
rotates the x1x3-plane counter-clockwise (when the x2-axis points toward the observer, and

the coordinate system is right-handed), and Rx3
rotates the x1x2-plane clockwise (when the x3-axis
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points toward the observer, and the coordinate system is right-handed). The product reads:

R =








cosα cos θ cosα sin θ sinα
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. (C.2)

For the flow to be in the positive ξ1-direction, the angles θ and α or the velocity should satisfy
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(C.3)

The velocity in the streamline coordinates is q = Ru, then q1 = ‖u‖ and q2 = q3 = 0. Therefore

the symmetrizing variables with streamwise coordinates are

dΦss = (dq1 dq2 dq3
dp

ρc
dp− c2dρ)T . (C.4)

They are expressed in terms of the symmetrizing and conservative variables as dΦss =
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∂Φ dΦ, respectively, where
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its inverse is
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and where
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and its inverse is
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cv















. (C.8)

As ∂
∂xi

= ∂ξk
∂xi

∂
∂ξk

, let Ai
ss
= ∂Φss

∂Φs
Ak

s

∂Φs

∂Φss

∂ξi
∂xk

, or equivalently Ai
ss
= ∂Φss

∂Φ Ak ∂Φ
∂Φss

∂ξi
∂xk

, for i = 1, . . . , 3.

Then:

A1
ss
=














q1 0 0 c 0

0 q1 0 0 0

0 0 q1 0 0

c 0 0 q1 0

0 0 0 0 q1














, A2
ss
=














0 0 0 0 0

0 0 0 c 0

0 0 0 0 0

0 c 0 0 0

0 0 0 0 0














, A3
ss
=














0 0 0 0 0

0 0 0 0 0

0 0 0 c 0

0 0 c 0 0

0 0 0 0 0














.

(C.9)

which are very attractive to work with due to their sparseness and because Ai
ss
for i = 2, 3, are

degenerated matrices. The Euler system of equations with symmetrizing variables and stream-wise

coordinates is written as:

∂Φss

∂t
+Ai

ss

∂Φss

∂ξi
= 0 . (C.10)

Systems (C.10), (4), and (B.5) are equivalent.
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Appendix D. Primitive variables

The primitive variables are

ΦP = (u1 u2 u3 p T )
T (D.1)

The Jacobians that are used to change from primitive to conservative variables are given as:

∂Φ

∂ΦP

=














ρ 0 0 U1

p −U1

T

0 ρ 0 U2

p −U2

T

0 0 ρ U3

p −U3

T

0 0 0 ρ
p − ρ

T

U1 U2 U3
1
R

(
1
2
‖u‖2
T + cv

)

−1
2
ρ‖u‖2

T














(D.2)

and

∂ΦP

∂Φ
=














1
ρ 0 0 u1

ρ 0

0 1
ρ 0 u2

ρ 0

0 0 1
ρ

u3

ρ 0

R
cv
u1

R
cv
u2

R
cv
u3

1
2
R
cv
‖u‖2 R

cv

− u1

cvρ
− u2

cvρ
− u3

cvρ
1

cvρ

(

‖u‖2 − E
ρ

)
1

cvρ














. (D.3)

Appendix E. Group velocity of a plane wave

Appendix E.1. 2D case

Let us consider n = (n1, n2) = ‖n‖(cos θ, sin θ) in the two dimensional case, where θ =

arctan
(
n2

n1

)

is the angle of the wave propagation direction, n, relative to the x1-axis. Then the

wave speeds can be expressed as λi(θ(n)). Thus, the group velocities (Eq. (15)) can be expressed

as

gi(n) =




cos θ − sin θ

sin θ cos θ








λi(θ)

λ′i(θ)



 , (E.1)

where λ′i(θ) =
∂λi

∂θ .
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Appendix E.2. 3D case

Extended to the three dimensional case, let n = (n1, n2, n3) be the wave propagation direction

and θ and α the wave propagation angles such that







sin θ = n2√
n2
1+n2

2

cos θ = n1√
n2
1+n2

2

θ = arctan
(
n2

n1

)







sinα = n3

‖n‖

cosα =

√
n2
1+n2

2

‖n‖

α = arctan

(

n3√
n2
1+n2

2

)

,

(E.2)

or equivalently,







n1 = ‖n‖ cosα cos θ

n2 = ‖n‖ cosα sin θ

n3 = ‖n‖ sinα .

(E.3)

Then the group velocities (Eq. (15)) can be computed as

gi(n) =









cos θ cosα − sin θ
cosα − cos θ sinα

sin θ cosα cos θ
cosα − sin θ sinα

sinα 0 cosα

















λi(θ, α)

∂λi

∂θ

∂λi

∂α









. (E.4)

Appendix F. VLR in the conservative variables

The VLR preconditioner in the conservative set of variables:

PVLR =
















a u1u1 + τ a u1u2 a u1u3 b u1 c u1

a u1u2 a u2u2 + τ a u2u3 b u2 c u2

a u3u1 a u3u2 a u3u3 + τ b u3 c u3

d u1 d u2 d u3 e f

g u1 g u2 g u3 h i
















, (F.1)
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where

a = 1
‖u‖2

(

1 + τ
β2 − τ

)

+ 1
c2

(
R
cv

τ(1−M2)
β2 − τ

β2 + R
cv

)

,

b = τ(M2−1)
β2

(

1 + 1
2
R
cv
M2
)

− 1
2
R
cv
M2 ,

c = R
cv

1
c2

(
τ(M2−1)

β2 − 1
)

,

d = R
cv

1
c2

(

1− τM2

β2

)

− τ
c2β2 ,

e = 1 + τM2

β2 + 1
2
R
cv
M2

(
τM2

β2 − 1
)

,

f = R
cv

1
c2

(
τM2

β2 − 1
)

,

g = 1 +
(
1− cv

R

)
τ
β2 +

(
R
cv

− 3
2

)
τM2

β2 + 1
2
R
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M2

(

1− τM2

β2

)

,
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[(

cv
R − 1 +M2

(

1− 1
2
R
cv

))
τ
β2 + 1

4
R
cv
M2

(
τM2

β2 − 1
)

− 1
2

]

,

i =
(

1− R
cv

)
τM2

β2 + 1
2
R
cv
M2

(
τM2

β2 − 1
)

.

(F.2)

Appendix G. CM in the conservative variables

The CM preconditioner in the conservative set of variables:

PCM =
















1 + u1u1

cpT
u1u2

cpT
u1u3

cpT
u1

cpT
a − u1

cpT

u2u1

cpT
1 + u2u2

cpT
u2u3

cpT
u2

cpT
a − u2

cpT

u3u1

cpT
u3u2

cpT
1 + u3u3

cpT
u3

cpT
a − u3

cpT

u1

cpT
u2

cpT
u3

cpT
1 + 1

cpT
a − 1

cpT

u1 b u2 b u3 b a b −1
2
‖u‖2
cpT
















, (G.1)

where a = cv
R βM

2
r − 1

2‖u‖2 and b = 1 + 1
2
‖u‖2
cpT

.

Appendix H. CM in the symmetrizing variables and streamline coordinates

The CM preconditioner in the symmetrizing variables and streamline coordinates:

Pss

CM
=














1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 M2
r −M2

r

ρc

0 0 0 0 1














. (H.1)
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