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Abstract: In the last years, the dynamic control of switched systems have attracted considerable interest, because
these systems arise in many engineering fields. Controllability and observability of such systems, which are fun-
damental qualitative properties, have been studied by various researchers. In this work we focus on structural
controllability/observability, using geometrical techniques as miniversal deformations.
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1 Introduction
Switched systems constitute a particular kind of hy-
brid systems which have been studied with increas-
ing interest because of the great number of areas
from which they arise (electric, mechanic, robotic and
hydraulic systems or communication networks and
chemical processes, for example) and their interesting
properties.

Roughly speaking, a switched system is a family
of continuous-time (or discrete-time) dynamical sub-
systems and a rule that determines the switching be-
tween them.

In the last decade, many theoretical and numeri-
cal tools have been developed to study these systems:
stability, controllability/observability, ... In particular,
structural controllability/observability, which was first
considered by Lin ([10]), in the case of standard linear
time-invariant systems, have been studied in the case
of switched systems in [2], [4], [6], [7], [8], [11], [12],
[13], among others. In most cases, tools from graph
theory are used.

In this work we study structural controllabil-
ity/observability of switched linear systems using a
different approach: miniversal deformations (versal
deformations with minimum number of parameters),
introduced in [1] in the case of square matrices. Versal
deformations provide a parametrization of the space
of matrices defining the family of subsystems and
are an effective tool to do perturbation analysis. V.I.
Arnold in [1] gave a method to find such deforma-
tions, since he proved (and the proof can be gener-
alized to many cases) that versality is equivalent to
transversality. The key point in order to apply this

is to view a natural equivalence relation in the space
of matrices as the one induced by the action of a Lie
group.

The structure of the paper is as follows.
In Section 2, the basic definitions of switched lin-

ear systems are provided, and we recall the concepts
of controllability/observability. Section 3 is devoted
to recall the basic definitions of versal and miniversal
deformations and compute them explicitly in our par-
ticular set-up. Section 3 is devoted to the application
of miniversal deformations to the study of structural
controllability/observability, illustrating this relation-
ship with an example.

We will restrict ourselves to the case of a contin-
uous system. The discrete case can be handled analo-
gously.

Throughout the paper, IR, IC, will denote the fields
of real and complex numbers, Mn×m(IR) (respec-
tively Mn×m(IC)) the set of matrices having n rows
andm columns and entries in IR (respectively in IC). In
the case where n = m, we will simply write Mn(IR)
and Mn(IC). Gln(IR) (respectively Gln(IC)) will de-
note the group of non-singular matrices in Mn(IR)
(respectively in Mn(IC)). Given A ∈ Mn×m(IR),
At will denote the transpose of A and given A ∈
Mn×m(IC), A∗ will denote the conjugate transpose of
A.

2 Switched linear systems
As said in the Introduction, a switched system is a sys-
tem which consists of several subsystems and a rule
that orchestrates the switching between them. More
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concretely, its definition is as follows in the continu-
ous case.

Definition 1 A switched system is a system which
consists of several subsystems and a and a piece-
wise constant map taking values into the index set
M = {1, ...,m} which indexes the different subsys-
tems and determines the changes between them.

ẋ(t) = Aσx(t) +Bσu(t)
y(t) = Cσx(t)

}
(1)

where Aσ ∈ Mn(IR), Bσ ∈ Mn×m(IR), Cσ ∈
Mp×n(IR) and ẋ = dx/dt.

Given an initial time t0, a switching path is a func-
tion of time θ : [t0, T ) −→ M , T > t0, M =
{1, . . . , `}.

A switching path θ is said to be well-defined on
[t0, T ) if it is defined in [t0, T ) and for all t ∈ [t0, T ),
both lim

s→t+
θ(s) and lim

s→t−
θ(s) exist and the set

{
t ∈ [t0, T )

∣∣∣∣ lim
s→t+

θ(s) 6= lim
s→t−

θ(s)

}
is finite for any finite sub-interval of [t0, T ) (in the
case where t = t0, we will consider lim

s→t−0
θ(s) =

θ(t0)).
A well-defined switching path is uniquely deter-

mined by a switching sequence

{([t0, t1), σ(t+0 )), . . . , ([t`, t`+1), σ(t
+
` ))}

being σ(t) = σ(t+i ) = lim
s→t+i

σ(s) if t ∈ [ti, ti+1) for

0 ≤ i ≤ `, t`+1 = T .
We will denote byM the set of all triples of ma-

trices (Ai, Bi, Ci), i ∈ {1, ...,m} defining the subsys-
tems.

The knowledge of control properties of systems
are of great importance. Among them, we have
the concepts of controllability/observability and struc-
tural controllability/observability, as well as stability.
In short, the controllability studies the possibility of
steering the state from the input and the observability
studies the possibility of estimating the state from the
output. The set of reachable states (uncountable union
of vector subspaces) of a switched linear system can
be found in [14]. Dualizing this, we can character-
ize observability. Both properties (controllability and
observability) can be determined by the ranks of the
system matrices.

A state x is said to be controllable at time t0, if it
can be transferred to the origin in a finite time starting
from t0 by appropriate choices of input u and switch-
ing path σ.

Definition 2 The state x ∈ IRn is controllable at
the time t0, if there exist a time instant tf > t0,
a switching path σ : [t0, tf ] −→ M , and in-
puts uk : [t0, tf ] −→ IRrk , k ∈ M , such that
x(tf , t0, x, u, σ) = 0.

The controllable set of system 1 at t0 is the set of
states which are controllable at t0.

Definition 3 The switched system 1 is said to be
(completely) controllable at time t0, if its controllable
set at t0 is IRn.

Definition 4 The dynamic system ẋ(t) =
Ax(t), y(t) = Cxt) is (completely) observable
at t0 if there exists a finite t > t0 such that knowledge
of the outputs y[t0, t] suffices to determine the value
of the initial state x(0).

Remark 5 It is obvious that in the case where one
subsystem is (completely) controllable/observable,
system 1 is (completely) controllable/observable.

Let us consider the following matrices:
C0 = (B1 . . . Bm),

C1 = (I A1 . . . Am)

 C0 . . .
C0

 ,

C2 = (I A1 . . . Am)

 C1 . . .
C1

 ,
...

Ci = (I A1 . . . Am)

 Ci−1 . . .
Ci−1


O0 = (Ct1 . . . Ctm),

O1 = (I At1 . . . Atm)

O0

. . .
O0

 ,

O2 = (I At1 . . . Atm)

O1

. . .
O1

 ,
...

Oi = (I At1 . . . Atm)

Oi−1 . . .
Oi−1


The following characterization of controllabil-

ity/observability is well-known.
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Proposition 6 The switched system 1 is (completely)
controllable if and only if

rank Cn−1 = n.

And it is (completely) observable when

rankOn−1 = n.

Controllability and observability are generic
properties. That is to say, the sets of matrices
defining the subsystems of a (completely) control-
lable/observable switched linear system are open
dense sets in the space of all matrices.

3 Miniversal deformations
When tackling the problem of how small perturba-
tions of the system may lead to different structures a
classical approach is to consider miniversal deforma-
tions, which provide all possible structures which can
arise from small perturbations. Moreover, they can be
applied to the study of singularities and bifurcations.
Note that the number of parameters in any miniversal
deformation is always equal to the codimension of or-
bits. We recall here the definition of deformation and
their characterization through versality (see [1], [15]).

Definition 7 A deformation ϕ(λ) of x0 ∈ M is a
smooth mapping

ϕ : U0 −→M

such that U0 ⊆ IRl is an open neighborhood of the
origin and ϕ(0) = x0. The vector λ = (λ1, . . . , λ`) ∈
U0 is called the parameter vector.

Let G be a Lie group acting overM via an action
α, that is to say, for all g ∈ G, x ∈ M, αx(g) =
g ◦ x ∈M.

Definition 8 A deformation ϕ(λ) of x0 is called ver-
sal if any deformation ϕ′(ξ) of x0, where ξ =
(ξ1, . . . , ξk) ∈ U ′0 ⊂ IRk is the parameter vector, can
be represented in some neighborhood of the origin as

ϕ′(ξ) = g(ξ) ◦ ϕ(φ(ξ)), ξ ∈ U ′′0 ⊂ U ′0, (2)

where φ : U ′′0 −→ IR` and g : U ′′0 −→ G are differ-
entiable mappings such that φ(0) = 0 and g(0) is the
identity element of G.

When a versal deformation has the minimal num-
ber of parameters, it is called miniversal.

Locally, in x ∈M,M is isomorphic to the carte-
sian product of ϕ(U) and a submanifold of G. This
can be stated as follows.

Theorem 9 ([1])

1. A deformation ϕ(λ) of x0 is versal if, and only if,
it is transversal to the orbit O(x0) at x0.

2. Minimal number of parameters of a versal defor-
mation is equal to the codimension of the orbit of
x0 inM, d = codimO(x0).

Let {v1, . . . , vd} be a basis of any arbitrary com-
plementary subspace (Tx0O(x0))c to Tx0O(x0) (for
example, (Tx0O(x0))⊥).

Corollary 10 The deformation

x : U0 ⊂ IRd −→M, x(λ) = x0 +
d∑
i=1

λivi (3)

is a miniversal deformation.

If vj , j = 1, . . . , d, is a basis for (Tx0O(x0))⊥ then
the corresponding miniversal deformation is called or-
thogonal.

Taking into account the Closed Orbit Lemma (see
[9]), the following statement holds.

Proposition 11 Any equivalence class is a locally
closed differentiable submanifold ofM and its bound-
ary is a union of equivalence classes or orbits of
strictly lower dimension. In particular, equivalence
classes or orbits of minimal. dimension are closed.

4 Application to the study of struc-
tural controllability/observability

We consider a natural equivalence relations in the
space M of matrices defining switched linear sys-
tems, generalizing those defined in [1], [15] (see [5]).

From now on, for simplicity’s sake, we will con-
sider the case of two subsystems (M = {1, 2}). The
case where the system consists of more than two sub-
systems can be handled in an analogous way.

Then a non-singular switched linear system con-
sists of two subsystems defined by a 6−tuple of ma-
trices (A1, A2, B1, B2, C1, C2) ∈ M = Mn(IR) ×
Mn(IR) ×Mn×m(IR) ×Mn×m(IR) ×Mp×n(IR) ×
Mp×n(IR).

We will consider the following natural equiva-
lence relation inM.

Definition 12 Two systems

(A1, A2, B1, B2, C1, C2) ∼ (A
′
1, A

′
2, B

′
1, B

′
2, C

′
1, C

′
2)

(4)
are equivalent if and only if there exist T ∈ Gln(IR),
V ∈ Glm(IR), W ∈ Glp(IR), such that
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(A
′
1, A

′
2, B

′
1, B

′
2, C

′
1, C

′
2) =

(TA1T
−1, TA2T

−1, TB1V, TB2V,
WC1T

−1,WC2T
−1)

In order to make use of geometrical properties
and, in particular, miniversal deformations, we need
to identify the equivalence classes as orbits under a
suitable Lie group action.

Proposition 13 This equivalence relation above is
the one induced by the action of the Lie group:

G = {(T, V,W ) ∈
Gln(IR)×Glm(IR)×Glp(IR)

overM
being the action:

α : G ×M −→M

where ifG = (T, V,W ) ∈ G and (Aσ, Bσ, Cσ) ∈M,
then:

α(G,X) = (TA1T
−1

TA2T
−1, TB1V, TB2V,

WC1T
−1,WC2T

−1)

and αX : G −→M, αX(G) = α(G,X).

The Proposition below provides a way to obtain a
parametric description of the tangent space in a point
of a orbit and a implicit description of the normal
space by using any Euclidean scalar product inM. In
particular, when we consider the following standard
scalar products:

〈(Aσ, Bσ, Cσ), (Yσ, Zσ, Tσ)〉1 =
tr(A1Y

t
1 ) + tr(A2Y

t
2 ) + tr(B1Z

t
1) + tr(B2Z

t
2)+

tr(C1T
t
1) + tr(C2Z

t
2)

and
〈(T, V,W ), (T ′, V ′,W ′)〉2 =
tr(TT ′t) + tr(V V ′t) + tr(WW ′t)

where 〈, 〉 is defined on M and 〈, 〉2 is defined on
Mn(IR)×Mm(IR)×Mp(IR), then the following char-
acterization is obtained.

Proposition 14 Let us denote by TO(Aσ, Bσ, Cσ)
the tangent space and by NO(Aσ, Bσ, Cσ) the nor-
mal space to the orbit of (Aσ, Bσ, Cσ) at the point
(Aσ, Bσ, Cσ). Then:

(a) TO(Aσ, Bσ, Cσ) is the set
{([T,A1], [T,A2], TB1 + B1V, TB2 +
B2V,WC1 −C1T,WC2 −C2T ) | (T, V,W ) ∈
TIG}
where
TIG is {(T, V,W ) ∈ Mn(IR) × Mm(IR) ×
Mp(IR)}.

(b) NO(Aσ, Bσ, Cσ) is the vector subspace consist-
ing of
(Yσ, Zσ, Tσ) ∈M such that

[A1, Y
t
1 ] +B1Z

t
1 − T t1C1 + [A2, Y

t
2 ] +

B2Z
t
2 − T t2C2 = 0

Zt1B1 + Zt2B2 = 0
C1T

t
1 + C2T

t
2 = 0

(5)

Proof:

(a) It suffices to compute the differential at the
identity of the action map: dαX(I + εG) =
= (Aσ, Bσ, Cσ) + ε(TA1 − A1T, TA2 −
A2T, TB1 + B1V, TB2 + B2V,WC1 −
C1T,WC2 − C2T ) + ε2(. . .)
and the statement follows.

(b) For any (Yσ, Zσ, Tσ) ∈M, this switched system
is in NO(A1, A2, B1, B2, C1, C2) if and only if,
〈(TA1 −A1T, TA2 −A2T, TB1 +B1V,
TB2 + B2V,WC1 − C1T,WC2 −
C2T ), (Y1, Y2, Z1, Z2, T1, T2)〉 =
= tr((TA1−A1T )Y

t
1 )+ tr((TA2−A2T )Y

t
2 )+

tr((TB1 + B1V )Zt1) + tr((TB2 + B2V )Zt2) +
tr((WC1−C1T )T

t
1)+ tr((WC2−C2T )T

t
2) = 0

Computing this product we obtain

= 〈(A1Y
t
1 − Y t

1A1 + A2Y
t
2 − Y t

2A2 + B1Z
t
1 +

B2Z
t
2 − T t1C1 − T t2C2, Z

t
1B1 + Zt2B2, C1T

t
1 +

C2T
t
2), (T

t, V t,W t)〉2 = 0, ∀(T t, V t,W t)
Then, we obtain the equations:

[A1, Y
t
1 ] +B1Z

t
1 − T t1C1 + [A2, Y

t
2 ] +

B2Z
t
2 − T t2C2 = 0

Zt1B1 + Zt2B2 = 0
C1T

t
1 + C2T

t
2 = 0

ut
Miniversal deformations can then be obtained.

Definition 15 A deformation of (Aσ, Bσ, Cσ) ∈ M
is a differentiable map ϕ : U −→M, with U an open
neighborhood of the origin in IRd, such that
ϕ(0) = (Aσ, Bσ, Cσ).

A deformation ϕ : U −→ M of (Aσ, Bσ, Cσ)
is called versal at 0 if for any other deformation of
(Aσ, Bσ, Cσ), ψ : V −→ M, there exists a neigh-
borhood V ′ ⊆ V with 0 ∈ V ′, a differentiable map
γ : V ′ −→ U with γ(0) = 0 and a deformation
of the identity I ∈ G, θ : V ′ −→ G, such that
ψ(µ) = α(θ(µ), ϕ(γ(µ))) for all µ ∈ V ′.
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Theorem 16 The mapping

IRd −→M

(η1, . . . , ηd) 7→ (Aσ, Bσ, Cσ) +
i=d∑
i=1

ηiVi

where {V1, . . . , Vd} is any basis of the vectorial sub-
space NO(Aσ, Bσ, Cσ) is a miniversal deformation
of (Aσ, Bσ, Cσ), with regard to any equivalence rela-
tion defined onM.

We can also derive the dimension of orbits or
equivalence classes.

Proposition 17 The dimension of orbits
O(Aσ, Bσ, Cσ) is given by
rank(M(Aσ, Bσ, Cσ)) where M(Aσ, Bσ, Cσ) is
the matrix associated to the linear system yielding
the normal space to the orbit of the given switched
system.

We recall now the concepts of structural control-
lability/observability.

Structural controllability is a generalization of the
controllability concept. It is of great interest because
many times we know the entries of the matrices only
approximately. Roughly speaking, a switched linear
system is said to be structurally controllable if one can
find a set of values for the parameters in the matrices
such that the corresponding switched system is con-
trollable. More concretely, the definition is as follows.

Definition 18 The switched system 1 is structurally
controllable if and only if ∀ε > 0, there exists a com-
pletely controllable switched system ẋ(t) = Aσx(t)+
Bσu(t), of the same structure as ẋ(t) = Ax(t) +
Bu(t) such that ‖Ai − A‖ < ε and ‖Bi − B‖ < ε,
∀i ∈M .

Recall that, a switched dynamic system ẋ(t) =
Aσx(t) + Bσu(t) has the same structure as another
switched system ẋ(t) = Aσx(t) + Bσu(t), of the
same dimensions, if for every fixed zero entry of the
triple of matrices (Ai, Bi, Ci) for all i ∈ M , the cor-
responding entry of the triple of matrices (Ai, Bi, Ci)
is fixed zero and vice versa.

Dualizing, we have the definition of structural ob-
servability.

Definition 19 The switched system 1 is structurally
observable if and only if ∀ε > 0, there ex-
ists a completely observable system ẋ(t) =
Aσx(t), y(t) = Cσx(t) of the same structure as
ẋ(t) = Aσx(t), y(t) = Cσx(t) such that ‖Ai−Ai‖ <
ε and ‖Ci − C‖ < ε, for all i ∈M .

Remark 20 It is immediate that any controllable sys-
tem is structurally controllable, but the converse is
not true. Analogously, an observable system is struc-
turally observable, but the converse is not true.

Then, to study the structural controllabil-
ity/observability of the switched system it suffices
to analyze if a system in the family consisting of
those systems in the miniversal deformation inter-
sected with the set of systems having the same struc-
ture than the giving switched system is (completely)
controllable/observable.

Example 1 Let us consider a switched linear sys-
tem consisting of two subsystems defined by matri-

ces (A1, A2, B1, B2, C1, C2) with A1 =

(
1 0
0 1

)
,

A2 =

(
2 0
0 2

)
, B1 =

(
1
1

)
, B2 =

(
2
2

)
, C1 =

(
1 1

)
and C2 =

(
2 2

)
is not completely controlable and it

is not completely observable. But the system is struc-
tutaly controllable and structuraly observable, it suf-
fices to take: (A1, A2, B1, B2, C1, C2) with A1 =(
1 0
0 1 + ε

)
, A2 =

(
2 0
0 2 + ε

)
, B1 = B1 and

C1 = C1

A miniversal deformation of this system is the fol-
lowing one.

(A1+Y1, A2+Y2, B1+Z1, B2+Z2, C1+T1, C2+

T2) with A1 + Y1 =

(
1 + y1 y2
y3 1 + y4

)
, A2 + Y2 =(

2 + y5 y6
y7 2 + y8

)
, B1+Z1 =

(
1 + z1
1 + z2

)
, B2+Z2 =(

2
2

)
, C1 + T1 =

(
1 + t1 1 + t2

)
and C2 + T2 =(

2 2
)

.
Intersecting the miniversal family with the variety

of fixed zeros of the switched system we have
(A1, A2, B1, B2, C1, C2) with A1 =(

1 + y1 0
0 1 + y4

)
, A2 =

(
2 + y5 0

0 2 + y8

)
,

B1 =

(
1 + z1
1 + z2

)
, B2 =

(
2
2

)
, C1 =

(
1 + t1 1 + t2

)
and C2 =

(
2 2

)
.

Straightforward calculations show that

C1 = (C0 | A1C0 | A2C0)

being

C0 =
(

1 + z1 2
1 + z2 2

)
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A1C0 =
(

(1 + y1)(1 + z1) 2 + 2y1
(1 + y4)(1 + z2) 2 + 2y2

)

A2C0 =
(

(2 + y5)(1 + z1) 4 + 2y5
(2 + y8)(1 + z2) 4 + 2y8

)
In any of the cases z1 6= z2, y1 6= y4, y5 6= y8, for

example, the corresponding systems is (completely)
controllable. Therefore the system in the statement is
structurally controllable.

Notice that using miniversal deformations we re-
duce the number of parameters to consider in the study
of structural controllability and structural observabil-
ity.
Example 2 Let us consider a switched linear sys-
tem consisting of two subsystems defined by matri-

ces (A1, A2, B1, B2, C1, C2) with A1 =

(
1 0
0 1

)
,

A2 =

(
1 0
0 1

)
, B1 =

(
0
1

)
, B2 =

(
0
2

)
, C1 =

(
0 1

)
and C2 =

(
0 1

)
is not completely controlable and

it is not completely observable. In this case the sys-
tem is not structuraly controllable and not structuraly
observable.

A miniversal deformation of this system is the fol-
lowing one.

(A1+Y1, A2+Y2, B1+Z1, B2+Z2, C1+T1, C2+

T2) with A1 + Y1 =

(
1 + y1 y2
y3 1 + y4

)
, A2 + Y2 =(

1 + y5 y6
y7 1 + y8

)
, B1+Z1 =

(
z1

1 + z2

)
, B2+Z2 =(

0
2

)
, C1 + T1 =

(
t1 1

)
and C2 + T2 =

(
0 1

)
.

Intersecting the miniversal family with the variety
of fixed zeros of the switched system we have

(A1, A2, B1, B2, C1, C2) with A1 =(
1 + y1 0

0 1 + y4

)
, A2 =

(
1 + y5 0

0 1 + y8

)
,

B1 =

(
0

1 + z2

)
, B2 =

(
0
2

)
, C1 =

(
0 1

)
and

C2 =
(
0 1

)
.

Straightforward calculations show that

C1 = (C0 | A1C0 | A2C0)

being

C0 =
(

0 0
1 + z2 2

)

A1C0 =
(

0 2 + 2y1
(1 + y4)(1 + z2) 2 + 2y2

)

A2C0 =
(

0 0
(1 + y8)(1 + z2) 2 + 2y8

)
There is no value of y1, y4, y5, y8 z2 for which the

switched system is (completely) controllable and/or
observable, then the corresponding systems is not
structurally controllable and not structurally observ-
able.

5 Conclusions
In this paper, structural controllability and observabil-
ity properties of switched linear systems have been
studied. The techniques used for this study are geo-
metrical techniques as miniversal deformations.

References:

[1] V.I. Arnold, On matrices depending on parameters. Us-
pekhiMat. Nauk.26, 1971.

[2] W. Borutzky, Bond Graph Model-based Fault Diagnosis of
Hybrid Systems. Springer, Switzerland, 2014.

[3] C.T. Chen, Introduction to Linear System Theor. Holt,
Rinehart and Winston Inc., New York, 1970.

[4] J. Clotet, M.I. Garcı́a-Planas, M. D. Magret, Controllability
of second-order switched linear systems Conference Pro-
ceedings of 5th International Conference on Physics and
Control (PhysCon 2011). IPACS Electronic library, 2011.

[5] J. Clotet, H. Diez-Macho, M.I. Garca-Planas, M.D. Ma-
gret, M.E. Montoro, Singular switched linear systems:
some geometric aspects , International Journal of Modern
Physics B 26, no. 25, pp. 1-10, 2012.

[6] M.I. Garcı́a-Planas, Sensivity and stability of singular sys-
tems under proportional and derivative feedback, Wseas
Transactions on Mathematics, 8, (11), pp. 635-644, 2009.

[7] M.I. Garcı́a-Planas, Analysis of the disturbance decou-
pling problem for singular switched linear systems via
feedback and output injection. Recent Advances in Cir-
cuits, Systems, Signal Processing and Communications,
pp. 41-45. Wseas Press, 2014.

[8] H. Hihi, Structural Observability of Controlled Switching
Linear Systems. International Journal of Control Science
and Engineering 2 (5), pp. 127-135, 2012.

[9] J. E. Humphreys, Linear Algebraic Groups, “Graduate
Texts in Mathematics2 21, Springer-Verlag, Berlin, (1981).

[10] C.T. Lin, Structural Controllability. IEEE Trans. Auto-
matic Control. AC-19, pp. 201–208, 1974.

[11] X. Liu, H. Lin, B.M. Chen, Graphic interpretations of
structural controllability for switched linear systems, 11th
International Conference on Control Automation Robotics
and Vision (ICARCV), pp. 549 - 554, 2010.

[12] M. Perera, S. Anushka, B. Lie, C.F. Pfeiffer, Structural
Observability Analysis of Large Scale Systems Using Mod-
elica and Python, Modeling, Identification and Control, 36,
pp. 53-65, 2015.

6



[13] C. Sueur, G. Dauphin-Tanguy, Structural controllabil-
ity/observability of linear systems represented by bond
graphs. Journal of the Franklin Institute 326, Issue 6, pp.
869-883, 1989.

[14] Z. Sun, S.S. Ge, Switched Linear Systems. Springer, Lon-
don, 2005.

[15] A. Tannebaum, Invariance and System Theory: Alge-
braic and Geometric Aspects, Lecture Notes in Mathemat-
ics 845, Springer-Verlag, Berlin, 1981.

7


