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Progressive damage in brittle heterogeneous materials produces at the macroscopic level striin
softening from which theoretical ditficulties arise (c.g. ill-posedness and multiple bifurcation points).
This characteristic behavior favours spurious strain localization in numerical analyses and calls for the
implementation of localization limiters, for instance nonlocal damage constitutive relations. The issuc
of possible (stable or unstable) equilibrium paths, muiltiple localization zones. and of the detection of
bilurcation points has. however, never been addressed in the context of nonlocal constitutive laws. We
extend here the eigenmode analysis and perturbation method proposed by De Bosst to the study of the
bifurcation and post-bifurcation response of discrete nonlocal strain softening solids. Numerical
applications on beams show that bifurcation and instability may occur in the post-peak regime. As
opposed to the case of local constitutive relations. the number of possible solutions at a bifurcation
point is restricted due to the constraint introduced by the localization limiter and these solutions are
shown 10 be mesh independent.

1. Introduction

Progressive cracking in concrete, ceramics and fiber-reinforced composites 1s often treated
as strain softening in continuum mechanics. However, such constitutive relations favour
spurious strain localization with an arbitrary wave length, failure without energy dissipation,
and more generally ill-posedness of boundary value problems. These issues have been
extensively discussed over the past years (sce e.g. |1] for a recent state of the art survey). A
possible remedy to spurious strain localization is the implementation of so-called localization
limiters, i.e. constraint conditions which remove the indetermination on the size (width) of the
localization zone. Different sorts of limiters exist: some of them are purely numerical
techniques such as the artificial rate dependence |2|. or the spectral overlay method in which
the minimum band-width of the localization zone (or shear band) can be fixed arbitrarily 3].
Since the ‘*missing length’, namely the width of the localization zone (or shear band), is
assumed to be a material property, to incorporate this parameter directly in the constitutive



(5. Pijaudier-Cabot, A. Huerta, FE analysis of bifurcation in nonlocal strain softening yolids

relations appears to be a more elegant method. As a consequence, the material becomes
micropolar [4] or nonlocal [5-7]. In these types of constitutive relations, there is an internal
length called characteristic length which controls the minimum width of the localization zone
[8]. Numerical applications demonstrated that failure without energy dissipation could not
occur with nonlocal models and that the results were mesh independent |7, 9]. Nevertheless, it
is interesting to point out that in most example problems, the region in which strain
localization occurs is always known in advance because of the presence of triggering defects or
stress concentration. Localization is forced to develop in a specific region of the structure.

If the purpose of a localization limiter is to prevent strain localization to develop in an
arbitrarily small volume of the solid, it does not prevent bifurcation to occur although it
should restrain the number of possible solutions at a bifurcation point. The issue of possible
(stable or unstable) equilibrium paths, of multiple localization zones, and of the detection of
the inherent bifurcation points is addressed here in the context of nonlocal constitutive
relations. We apply the numerical technique developed by De Borst [10, 11] for usual (local)
constitutive relations to the study of the bifurcation and of the post-bifurcation response of
nonlocal strain softening solids by the finite element method. The material is assumed to
follow the nonlocal damage constitutive equation [12] which is easily implemented in a
standard finite ¢lement code. This model is briefly presented in Section 2. The computation of
the tangent stiffness operator of the discrete structure is also detailed. The bifurcation and
stability analyses are developed in Section 3. The issue of non-symmetric tangent stiffness
matrices is discussed and the original eigenvalue analysis due to De Borst is extended to this
case. Numerical implementations in a layered beam finite element code are presented in the
last section. The results demonstrate the usefulness of bifurcation analysis and of stability
checking in computational failure mechanics.

2. Nonlocal continuous damage

Brittle heterogeneous materials such as concrete undergo progressive microcracking due to
increasing applied strain. The macroscopic effect of damage can be represented by a single
internal state variable, denoted as D, within the realm of continuous damage mechanics.
Among the various constitutive equations which were proposed to model the response of
conerete [13], we choose the simplest model in which D is assumed to be a scalar variable.
Thus, the stress—strain relation reduces to

o = (1= D)e, (1)
in which o, and g, are the stress and strain components (i, j, k,1 €[1, 3]), and C,,, are the
stiffness moduli of the undamaged (isotropic) material. The damage variable, D, ranges from
[) initially to 1 when the material cannot sustain any stress (failure). At this point we can
remark that more realistic formulations exist [13] in which damage induced anisotropy and
damage induced inelastic strains are taken into account. The technique presented here uses,
without loss of generality, (1), due to its simplicity; nevertheless, its extension to more
sophisticated models is straightforward.

The growth of damage is a function of the average damage energy release rate Y, and of the
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damage loading surface defined as
FY)=Y-, (2)

if (Y)<O0orif F(Y)=0and F(Y)<0 then D=0, (3a)

if (Y)=0and F(Y)=0,thenD=FfY)=1-(1+b,(Y-Y,)+b,(Y—-Y,)") ".
(3b)

In (2), X is the hardening-softening parameter. At each point of the solid % =sup(Y. Y,)
for all the previous history of loading. Y, is the initial threshold of damage, b, and b, are
material parameters. In the paper, the following numerical values identified from a tension
test on concrete have been chosen: Y, =610 MPa, b, = 605.4MPa "', b, =5.4-10" MPa "’
with £ =32000MPa and »=0.2. E and » are the Young's modulus and Poisson ratio of
concrete, respectively. The corresponding response of the material under uniaxial tension is
shown in Fig. 1(a).

The key difference between the classical (local) and nonlocal damage model 1s that damage
is a function of the average damage energy dissipation rate Y instead of the local energy
dissipation rate y. Y is defined as

1
V.(x)

Y(x) = J; als —x)¥(s)ds . V.i(x)= ﬁ a(s — x)ds . (4)

where V (x) is the so-called representative volume at point x, V is the volume of the structure
and the local energy release y is by definition (see e.g. [13])
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Fig. 1 (a) Stress-strain curve for concrete in tension. (b) Evolution of the minimum eigenvalue of K and S with the
loading history for a clamped bar,
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The physical justification for defining damage as a function of a nonlocal, i.e. average,
quantity is fundamented by the existence of interactions among microcracks and between
microcracks and heterogeneities (e.g. aggregate) in the material. The energy released when a
microcrack propagates depends on these interactions and as a consequence the macroscopic
effect of microcracking becomes nonlocal [14, 15]. From micromechanics, it is also possible to
obtain the weighting function a(s — x) corresponding to simple crack configurations [14]. In
this model, which was first proposed by Pijaudier-Cabot and Bazant [12], « is a weighting
function that is chosen gaussian for numerical reasons: the rate of convergence of the finite
element solution with respect to mesh refinement was observed to be maximum with a
gaussian function compared to the rectangular or triangular weighting functions usually chosen

[8].
a(s — x)=exp(=2||s — x||’/1*) . (6)

|| || designates the euclidean norm and / is the characteristic length of the material which can
be measured experimentally [16]. The weighting function is chopped in finite calculations:
weights that are less than 0.001 are set to zero. Therefore, the actual volume of integration in
(4) does not span over the entire volume of the solid. This assumption simplifies the
computation of the average damage energy release rate in numerical applications: the number
of neighboring points is greatly reduced and calculations are less time and memory consuming.
Trial examples have shown that this assumption had very little effect on numerical results.

These constitutive relations have been implemented in a layered beam finite element code
which uses a secant stiffness algorithm to solve the nonlinear system of equations (for details
on the finite element model, see [17]). The nonlocal model is relatively easy to implement
since the equilibrium equations are standard. The integral equation (4) is discretized accord-
ing to the finite element mesh used for the analysis and a usual quadrature rule is employed
for its evaluation. Since a(s — x) is independent of the boundary conditions, the numerical
evaluation of (4) is further simplified: prior to initiate the calculations, the average weights are
computed at each quadrature point and stored in a special file once and for all.

Although it has never been pointed out, there is a major reason for using a secant stiffness
algorithm and not a usual tangent stiffness procedure for which the convergence properties
can be checked. We can illustrate this by looking at the rate constitutive equations:

oy = Coi(l~— D)éy— C‘.,.Hg“[) : )
When the damage variable increases (i.e. when condition (3b) is satisfied), the rate of damage
is

afy) 1

R Y  V(x) Jv

als —x)Cp 8, (5)E, (5) ds . (8)

We see that D(x) depends not only on the strain rate at point x but also on the strain rate at
any point of the solid. Thus, a matrix of tangent material moduli cannot be calculated since
the stress rate at point x depends on the strain rate everywhere in the solid. As a consequence,
local conditions for strain localization such as the loss of ellipticity (singularity of the acoustic
tensor) [18] or the complementing conditions [19] are difficult to derive. In the case of a
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nonlocal solid, the rate equations of equilibrium are a system of nonlinear integral equations
for which analytical solutions do not exist in the general case of a finite two-dimensional or
three-dimensional solid. As it could be expected from the nature itself of the constitutive
equations, the conditions for bifurcation and stability should derive from a global analysis of
the boundary value problem, and cannot be approximated by local failure-detection criteria
[18,20].

Finally, we can also remark that the kernel in the integral equation (8) is non-symmetric.
This property was first noticed in the study of strain localization in a one-dimensional bar
whose material follows the nonlocal damage model [8]. Therefore, the tangent stiffness
operator K which relates the nodal velocities to the rate of loading applied to the structure
should also be non-symmetric,

Within the finite element method, the calculation of the tangent stiffness matrix K requires
a special procedure. For simplicity, we will use in the following the customary contracted
NOALION: @y =0y, 0« i o Toy= 43 + i 14833 =Bay + 4 . 2€3 = &5, etc. Stresses and strains are
denoted as the vectors o dnd E, respecuvely wnh six components cach and the stiffness
matrix is denoted as C. Consider the incremental equations of equilibrium:

f‘_B'-f'rdx=j' withé =B -a , (9

where B is the strain-nodal displacement matrix, « 1s the vector of nodal velocities, superscript
t denotes the transposition and fis the rate of loading (at each node). Substitution of the rate
constitutive equations (7) into (9) yields

Jv (1- D)B'-(C-B)dxd—J; B'-(C-e)Ddx=f. (10)

In this equation, the first integral on the left hand-side vields the secant stiffness matrix: we
substitute now (8) into the second integral of (10):

a(s — x)

V.(x)

£(s) -C-é(s)ds] dx .
(11)

L_B"(Cvs(x))D(x)dx JB' (C s(x))[ f()’)>ﬁ

( ) in (11) stand for a condensed notation of the damage evolution conditions at points x.
(AYy=A fDX)>0, (A)=0 ifD(x)=0

The strain rates can now be expressed in function of the nodal velocities u:
L B'-(C &(x))D(x) dx

=LB'-(C-&'( )[< {i(]}: >J; a(vs'(—x;) £(s) - (C-B)ds|dx-u. (12,

The above integrals as well as the first integral in the left-hand side of (10) are computed
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for each element and assembled into the matrix K such that Ka = f After some algebra, the
generic expression of the stiffness matrix K, of element k in the local coordinates attached to
this element is

K. = =D =Dision s Coo =Phrisr i =% (13)
with

D*’=J;‘k B'-(C-e(x))l<aj;(:)>j" a(‘j(-x)x) e'(s)-(C-B)ds|dx

and (14)
ck=ﬁ (1-D)B'-C Bdx,
»

in which V, and V, are the volumes of element j and &, respectively, and n is the total number
of finite elements in the mesh. For layered beam elements with 3 degrees of freedom per node
(2 nodes per element), matrix K, is a 6 X 3(n + 1) rectangular matrix and D,,, C_ are 6 X 6
matrices. D, is the matrix of the moduli of interaction from element j on element k.

In general D, # D, ; the loss of symmetry of K can be due to different loading conditions in
element k and in element j:

(Of(Y) /Y ), 7 (af(Y) /Y )y, . (15)

In particular, this condition is satisfied when element ;j is located inside the damage
localization zone and clement £ is located outside this zone. The non-symmetry of K is also
due to the weight function (non-symmetry of the kernel in (4)).

a(s —x) [V (x) # a(x — 5)/V,(s) . (16)

For instance, when x lies near the boundary of the solid and point s is located inside the solid,
the representative volumes V (x) and V. (s) are not equal since the points lying outside the
volume of the body are ignored in the calculation of the average damage energy release rate,
and of the representative volume. Therefore, even when uniform damage exists (constant D
over the solid). the tangent stiffness matrix is always non-symmetric.

In the finite element code, the matrix K is never used because it is non-symmetric and its
bandwidth is much larger than the bandwidth of the secant stiffness operator. It is not a full
matrix because weights that are less than 0.001 are set to zero and the corresponding terms in
the interaction matrices become zero too. For the computation of equilibrium states, it
appears casier to use a secant matrix, which is always symmetric. The matrix assembly remains
standard too. Nevertheless, the tangent stiffness operator still needs to be calculated for
analyzing stability and bifurcation of the discrete structure.

3. Bifurcation and stability of discrete systems

3.1. Loss of uniqueness

Uniqueness of the solution can be assessed by considering the incremental equations of
equilibrium (9). For the sake of simplicity, attention is restricted to the case where the loading
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is not stationary as bifurcation points and limit points rarcly coincide (for a complete
treatment of this problem see e.g. [10, 11]). If the solution of the rate boundary value problem
is non-unique, the tangent stiffness matrix K should be singular:

detK=0. (17)
However, K is not a single valued matrix. Depending on the strain rate field in the solid,
damage may or may not grow in each element. Rigorously, all the possible (loading—
unloading) combinations should be investigated. In the present applications, K is calculated
for the incrementally linear comparison solid only. Our experience (for the examples

presented in this paper) shows that the loss of uniqueness for the comparison solid occurs
before it can be detected for any other loading—unloading configurations,

3.2. Loss of stability

At a state of equilibrium under dead load, a sufficient condition which guarantees stability
of the structure 1s [21]

Lli'"éd.\'>(l (18)

for all kinematically admissible strain rate field €. Therefore, the equilibrium of a discrete
system is critical if there exists a Kinematically admissible field & such that

i K a=0. (19)
Again K is assumed to be single valued. This condition is equivalent to [10]

detK=0 or wuisorthogonalto Kua . (20)

The loss of stability does not necessarily occur at a bifurcation point because the tangent

stiffness operator is not symmetric and m theory it may be possible to find a velocity field such
that the second condition in (20) is satisified. Let us write the matrix K as the sum of a
symmetric matrix 8§ and an anti-symmetric matrix 7T':

K=S+T with§=4(K+K')and T=1(K-K"). (21)
Equation (19) reduces to

# Ku=da'-Su+ta T-a=u'"S-u, (22)
and the conditions (19) for the possible loss of stability become

det §=0. (23)

Since the tangent matrix K is not symmetric, (23) must be met prior to (17). Matrix K could
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also admit complex eigenvalues although it never happened in our calculations. However, it is
not possible to demonstrate that for any solid, and any type of loading, complex eigenvalues
cannot exist.

The determinants of matrix K and matrix § can be rewritten as the product of their eigen-
values A, and A]. respectively:

N N
detk=[[a, dees=I]as, (24)

i=1 i=l

where N is the total number of degrees of freedom of the system. Figure 1(b) shows the
variation of the smallest eigenvalue as the loading progresses. The structure is a beam of
length L =4/ clamped at one end. The displacement along the neutral axis of the bar is
imposed at the other extremity which is free to rotate and deflect. The variation of the
minimum eigenvalues of K and §, in which the rows and columns corresponding to fixed
displacements have been removed. are plotted as functions of the imposed displacement. The
figure shows the evolution of the eigenvalues for a small portion of the loading history near
the peak load. We see that the condition for the loss of stability is met before the loss of
uniqueness can occur. In fact, the real parts of the eigenvalues of K are bounded by the
eigenvalues of § (see e.g. [20]):

min(A;)=min(Re(A,)). (25)

The condition for the loss of stability 1s met at the peak load and bifurcation occurs later in
the post-peak regime. The two conditions are very close to each other (K is ‘weakly’
non-symmetric), and only the criterion for loss of stability which is the lower bound will be
used alone in the finite element code. It is also important to remark that the loss of stability
(according to the criterion used) does not imply loss of uniqueness of the solution nor that the
structure is necessarily unstable. The condition for stability in (18) i1s only necessary and it is
only applied on the linear comparison solid. Conversely. at a bifurcation point, the structure
will probably (although not necessarily) be unstable and we can see in Fig. 1(b) that the
criterion which guarantees stability is not met at a bifurcation point.

3.3. Post-peak and post-bifurcation response

During the calculation and once the conditions for stability or uniqueness are not satisfied,
it is necessary to investigate whether there exists a stable response of the structure and what
the different possible paths in the post-bifurcation regime are. As the loading progresses, the
loss of the stability condition is encountered first. For simplicity we assume that. at this point
of the loading history. there is only one eigenvector denoted as v, which is associated to the
vanishing eigenvalue of $ denoted as A}. Any velocity field & which is collinear to v, (& = yv,)
is such that

yv Kyv, = 0. (26)

Since the loading rate f is fixed in the calculation, we know that there exists also a velocity
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field denoted as u*® which is the solution to the rate equilibrium problem:

Ki*=#f.

(27)

If the criterion for uniqueness is met, i.e. if K is non-singular which is the usual situation,
then #* is unique. Consequently, the equilibrium of the structure is critical if 4 * is collinear to
v, and then the loading rate yKv, should be statically admissible and should verify the
essential boundary conditions (v is a constant to be calculated). This property can be checked
very casily: first we compute the loading vector f| corresponding to v,:

Kv, =1 .
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Fig. 2. Eigenvector of § at the peak load (A] =0): (a) Jongitudinal displacement; (b) transverse displacement;
(¢) rotation: eigenvector of § and X at the bifurcation point (A} = 0.0-152, A, =0): (d) longitudinal displacement;

(e) transverse displacement: (f) rotation.
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Then f; is compared to f to see if there exists a scalar y such that f= yf,. In all the calculations
that we have performed, f was never collinear to the loading rate. Fig. 2(a—c) shows the
eigenvector calculated when A} =() for the clamped bar used in Section 3.2. Apart from the
numerical errors, we see that the degrees of freedom which correspond to a displacement v
parallel to the neutral axis of the beam are zero, while for instance the rotation # increases
linearly. For this structure, it is easy to check that a displacement field which is collinear to v,
cannot be a solution, Since the field of damage is uniform over the bar, for any non-zero scalar
y the load vector yKv, should exhibit non-zero shear force and bending moment at the beam
end. This is impossible according to the prescribed boundary conditions. In other words. when
the distribution of damage is homogeneous over the beam, it cannot deflect if it is loaded in
the direction of the neutral axis.

Let us now investigate the case where the criterion for uniqueness is not met: Again we
know that there exists at least one solution #™ to the rate equilibrium problem. Let us call this
solution the fundamental solution. We denote as w, the right eigenvector associated to the
eigenvalue A, of K which vanish. It can be demonstrated [10, 11] that for any arbitrary scalar
B, the velocity field a™ + Bew, is also a solution of the problem

K(a*+ Bw,)=1. (29)

Practically, it is extremely difficult to find at which point of the loading history either S or K
becomes singular, During the numerical calculation, changes of sign of the eigenvalues are
detected only, which means that between two increments of load, stability or uniqueness may
be lost. Let u,  and u, be the displacement field solutions of the equations of equilibrium at
increments { — | and i, and Auw, the corresponding incremental displacement field between the
two solutions. When an eigenvalue of §,, at increment 7, has changed of sign and if stability is
lost u, | + yv, is an approximate solution at increment i. u, , + Au, + Bew, is an approximate
solution too when uniqueness is lost and K is singular at a point in between increment i — 1
and increment /. The fact that these solutions are only approximations should be stressed since
the material behavior is nonlinear and K changes from one increment of load to the other.
Nevertheless, these displacement fields are close enough to the real eigenvectors of K and §
when these matrices are singular, and can serve as a new trial input denoted as u' in the
iterative process which yields to the solution at increment 7 [10]:

“: =U;_, + YU, ¥ i Bm] - (3(])

This type of perturbation would require the calculation of eigenvectors v, and @, . K, (at
increment {) being non-symmetric, the calculation of e, is lengthy and requires a lot of
computer time and memory. The above perturbation method can be simplified.

Since the criterion for loss of stability is the most conservative, the eigenvalues of S, (at
increment i) are monitored only. When a negative eigenvalue is detected, the corresponding
eigenvector is used in order to perturb the solution at increment /. This new trial solution is

u'=u+po,. (31)

Figure 2(d. f) shows a comparison of eigenvectors v, and @, for the example in Fig. 1(b). The
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two eigenvectors are very similar. More importantly, the eigendisplacements u(x) are non-

zero which is consistent with the loss of uniformity of the field of damage in the beam.

Therefore, the perturbation with v, instead of @, seems a reasonable approximation.

After this perturbation, a new solution is computed at increment i, Two possibilities exist:

—If a bifurcation point does not exist between increments ¢ and / — 1, the same solution u,
must be found and we must check that v, is not collinear to Au,, otherwise the structure is
unstable and the analyst may wish to use another type of load control to overcome the loss
of stability.

—1f a new (different) solution is found for the equilibrium at increment /, an eigenvalue
analysis is performed with the new value of matrix S, in order to check that all eigenvalues
are positive again (path stability).

When the symmetric operator S, possesses several negative eigenvalues at the same load

increment, the smallest eigenvalue is chosen for the perturbation and the above procedure is

repeated until all the negative eigenvalues of §, are either ignored (stability is not lost) or
disappear.

The scalar B could be chosen arbitrarily. In order to accelerate the convergence toward the
new solution, B is chosen so that the perturbed increment of the displacement field is
orthogonal to the fundamental solution

Au'=Au,+ Bv,, Au'lAn, (32)
and

B=—Au-Au/Au; v, . (33)

4. Applications

Figure 3 shows the response of bars of different lengths subjected to tension. The length of
the bar is proportional to the characteristic length of the matenal / (L = 10/, 4/, 2/). The finite
elements have a constant length equal to 0.50. All the computations are displacement
controlled and beyond the limit point the solution ‘jumps’ to complete failure. In this
example, the deflections and rotations were prevented at each node. The average stress over
the cross section of the bar is plotted as a function of the average strain over the entire bar
u/L so that the curves can be compared to the stress—strain response of the material, As
opposed to the case of local constitutive relations, the bifurcation point is always located
beyond the peak load. The precise location of the bifurcation point depends on the bar length
L. As L increases, the bifurcation point gets closer to the peak but only one eigenvalue
becomes negative. There exist only two possible solutions: one in which the strain field is
homogeneous. another one in which strains are non-uniform and tend to localize at the bar
end. This is the result of the constraint effect introduced by the spatial averaging of the
variable which controls the growth of damage. In the case of a local continuum, the number of
negative eigenvalues would be proportional to the total number of elements in the finite
clement mesh. The stable path would further correspond to damage localization in a single
finite element independently of its size [10].
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Figure 4 shows the responses calculated for a bar of length 4/. Five different meshes with
constant length elements have been used (5. 10, 20, 40 and 60 elements). We can observe a
good convergence of the finite element solution with mesh refinement. For meshes with 10
elements and more, the response of the bar is approximately the same and the location of the
bifurcation point becomes mesh independent. This result corroborates early convergence
studies [8] in which it was observed that 3 elements are sufficient in the damage localization
zone 1n order to get a close approximation of the analytical solution. The size of the damage
localization zone is seen in Fig. 5, which presents for the same bar (20 elements) the evolution
of the damage profiles at different load steps after the bifurcation point. When damage is no
longer homogeneous over the whole bar, we can remark that it tends to localize progressively
near one extremity of the bar until the limit point is reached. Then the structure becomes
unstable and failure is reached in the elements near the right-hand side extremity of the bar
where damage has reached its maximum value, 1.

In finite element analyses of bifurcation, it is also very important to check the influence of
the shape functions used in the discretization as it may favour spurious eigenmodes or prevent
bifurcation to occur. This influence is demonstrated in Fig. 6 for the same clamped bar of
length 4/, The previous calculation is compared to the computation in which each node is kept
free 10 move perpendicularly to the neutral axis of the beam and to rotate. In the beam type
solution, the damage field s not constrained to remain uniform over the element depth.
Bifurcation occurs almost at the peak load and the distribution of damage at failure is not
symmetric in each element with respect to their neutral axis. Damage localizes in the upper
(or lower) corner of the extremity of the beam. Since the material stiffness is not uniform over
the cross-section of the beam. the beam must deflect in order to accommodate the hetero-
geneity of the damage field. Note that this result is totally realistic; it was confirmed
experimentally on tension specimens too [22|. This example underlines the importance of the
finite element discretization, especially on the failure mode: if the kinematic corresponding to
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Fig. 5. Evolution of the distribution of damage with Fig. 6. Comparison between the calculations with bar
the loading in the post-bifurcation regime for a bar. clements and beam elements on a clamped bar,

the real failure mode is not contained in the finite element model, failure computations cannot
yield realistic results. Nevertheless, it 1s expected that spurious localization due solely to the
finite clement model as observed in [23] should not be observed. In these situations, one
element or group of elements tends to exhibit a sharp localization which is not compatible with
the regularization introduced in the nonlocal continuum. The occurrence of such spurious
localization modes (eigenmodes) and their importance are presently under investigation.

Finally, Fig. 7 shows a calculation on a beam subjected to four point bending. The beam
length is 10/ and the finite element size is 0.5/. A standard finite element calculation would
show that failure occurs simultancously in all the clements between the two loads P, and P,.
Due to round-off errors, localization can be triggered in one of these elements eventually. In
the example presented here, this phenomenon occurs in the midspan element. On the
contrary, the bifurcation analysis shows that damage should localize under one of the two
points of application of the loads. This is a classical situation in which a symmetric structure
loaded by symmetric forces exhibits a non-symmetric failure mode.

load (N) without bifurcation
L =100 analysis

~_

with bifurcation
I analysis

St

oo .01 o0z b3 .04 0.65
deflection (mm)

Fig. 7. Response of a four point bending beam.
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5. Conclusions

1. Bifurcation and stability analyses of nonlocal strain softening solids have proved that
such features as loss of uniqueness and loss of stability of equilibrium solutions may exist
despite the implementation of a localization limiter — the nonlocal damage model. These
analyses require the computation of the tangent stiffness operator of the structure which
appears to be non-symmetric. The computational procedure for the calculation of this matrix
within the finite element method has been exposed.

2. The eigenmode analysis and perturbation method proposed by De Borst to study the
bifurcation and post-bifurcation response of classical (local) strain-softening structure has
been extended to the case in which the tangent stiffness operator is non-symmetric. Unique-
ness and stability yield two separate conditions: uniqueness is lost if the tangent operator is
singular, stability can be lost only when the symmetric part of the stiffness matrix becomes
singular. These conditions are rarely satisfied at the same time.

3. In numerical computations, the condition for loss of stability is monitored only. This is
also the most restrictive condition. A perturbation method which uses the eigenvector of the
symmetric part of the tangent stiffness matrix is used afterwards to obtain the stable
equilibrium path of the structure.

4. The results show that the number of possible solutions at a bifurcation point is very
restricted due to the constraint introduced by the spatial averaging in the nonlocal model. The
response of the structure is still mesh independent, including the location of the bifurcation
and loss of stability points. Nevertheless, the finite element model can still provide incorrect
results: (i) when the kinematic of the failure mode is not contained in the finite element
model, it cannot be accurately reproduced; (ii) when finite element calculations take advan-
tage of the geometrical and loading symmetries and deal only with the discretization of a
portion of structure. results should be interpreted with caution as far as the failure modes are
concerned. These modes may not belong to the stable response of the structure and the
ductility and energy dissipated at failure can be seriously overestimated.
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