LYUBEZNIK TABLE OF SEQUENTIALLY COHEN-MACAUAY
RINGS

JOSEP ÀLVAREZ MONTANER†

Abstract. We prove that sequentially Cohen-Macaulay rings in positive characteristic, as well as sequentially Cohen-Macaulay Stanley-Reisner rings in any characteristic, have trivial Lyubeznik table. Some other configurations of Lyubeznik tables are also provided depending on the deficiency modules of the ring.

1. Introduction

Let \((R, \mathfrak{m})\) be a regular local ring containing a field \(k\) and \(I\) an ideal of \(R\). Some finiteness properties of local cohomology modules \(H^i_I(R)\) where proved by C. Huneke and R. Y. Sharp [13] when the field \(k\) has positive characteristic and G. Lyubeznik [18] in the characteristic zero case (see also [20] for a characteristic-free approach). In particular, they proved that Bass numbers of these local cohomology modules are finite. Relying on this fact, G. Lyubeznik [18] introduced a set of numerical invariants of local rings containing a field as follows:

Theorem/Definition 1.1. Let \(A\) be a local ring containing a field \(k\), so that its completion \(\widehat{A}\) admits a surjective ring homomorphism \(R \to \widehat{A}\) from a regular local ring \((R, \mathfrak{m}, k)\) of dimension \(n\) and set \(I := \ker(\pi)\). Then, the Bass numbers\(^1\)

\[
\lambda_{p,i}(A) := \mu_p(\mathfrak{m}, H^{n-i}_I(R)) = \mu_0(\mathfrak{m}, H^p_m(H^{n-i}_I(R)))
\]

depend only on \(A\), \(i\) and \(p\), but neither on \(R\) nor on \(\pi\).

We refer to these invariants as **Lyubeznik numbers** and they are known to satisfy the following properties:

(i) \(\lambda_{p,i}(A) = 0\) if \(i > d\).
(ii) \(\lambda_{p,i}(A) = 0\) if \(p > i\).
(iii) \(\lambda_{d,d}(A) \neq 0\).

where \(d = \dim A\). Therefore we can collect them in the so-called **Lyubeznik table**:

\[
\Lambda(A) = \begin{pmatrix}
\lambda_{0,0} & \cdots & \lambda_{0,d} \\
\vdots & \ddots & \vdots \\
\lambda_{d,d}
\end{pmatrix}
\]

2010 **Mathematics Subject Classification.** Primary 13D45, 13A35.

Key words and phrases. Lyubeznik numbers, Sequentially Cohen-Macaulay rings.

\(^{†}\)Partially supported by SGR2009-1284 and MTM2010-20279-C02-01.

\(^{1}\)The last equality follows from [18, Lemma 1.4].
Despite its algebraic nature, Lyubeznik numbers also provide some geometrical and topological information as it was already pointed out in [18]. For instance, in the case of isolated singularities, Lyubeznik numbers can be described in terms of certain singular cohomology groups in characteristic zero (see [11]) or étale cohomology groups in positive characteristic (see [6], [5]). The highest Lyubeznik number $\lambda_{d,d}(A)$ can be described using the so-called Hochster-Huneke graph as it has been proved in [21], [28]. However very little is known about the possible configurations of Lyubeznik tables except for low dimension cases [14], [27] or the just mentioned case of isolated singularities.

Local cohomology modules have a natural structure over the ring of k-linear differential operators $D_{R|k}$ (see [18], [19]). In fact they are holonomic $D_{R|k}$-modules so they have finite length [4, Thm. 2.7.13]. One may check that Lyubeznik numbers are nothing but the length as $D_{R|k}$-module of the local cohomology modules $H^p_m(H^n_{I^i}(R))$, i.e.

$$\lambda_{p,i}(A) = \text{length}_{D_{R|k}}(H^p_m(H^n_{I^i}(R))).$$

From now on we will denote the $D_{R|k}$-module length simply as $e(-)$. A key fact that we will use is that the $D_{R|k}$-module length is an additive function, i.e. given a short exact sequence of holonomic $D_{R|k}$-modules $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ we have

$$e(M_2) = e(M_1) + e(M_3).$$

The following property of Lyubeznik numbers will play a crucial role in our main result. It was shown to us by R. García López in a graduate course [10] but we will sketch the proof for the sake of completeness:

Proposition 1.1. Lyubeznik numbers satisfy the following Euler characteristic formula:

$$\sum_{0 \leq p, i \leq d} (-1)^{p+i} \lambda_{p,i}(A) = 1.$$

Proof. Consider Grothendieck’s spectral sequence

$$E_2^{p,n-i} = H^p_m(H^n_{I^i}(R)) \Rightarrow H^{p+n-i}_{m}(R).$$

We define the Euler characteristic of the E_2-term with respect to the $D_{R|k}$-module length e as

$$\chi_e(E_2^{\bullet,\bullet}) = \sum_{p,i} (-1)^{p+n-i} e(E_2^{p,n-i}).$$

We can also define the Euler characteristic of the graded R-module $H^*_m(R)$ as

$$\chi_e(H^*_m(R)) = \sum_j (-1)^{j} e(H^j_m(R)).$$

It is a general fact of the theory of spectral sequences that $\chi_e(E_2^{\bullet,\bullet}) = \chi_e(H^*_m(R))$ due to the additivity of the $D_{R|k}$-module length.

Therefore, since $e(E_2^{p,n-i}) = e(H^p_m(H^n_{I^i}(R))) = \lambda_{p,i}(A)$ and $e(H^*_m(R)) = 1$ we get

$$\chi_e(E_2^{\bullet,\bullet}) = \sum_{0 \leq p, i \leq d} (-1)^{p+n-i} \lambda_{p,i}(A) = (-1)^n = \chi_e(H^*_m(R))$$
and the result follows.

The first example one may think of Lyubeznik tables is when there is only one local cohomology module different from zero. Indeed, assume that \(H^r_I(R) = 0 \) for all \(r \neq \text{ht } I \). Then, using Grothendieck’s spectral sequence we obtain a trivial Lyubeznik table.

\[
\Lambda(R/I) = \begin{pmatrix}
0 & \cdots & 0 \\
\ddots & \ddots & \ddots \\
1 & & & \\
\end{pmatrix}
\]

This situation is achieved, among others, in the following cases:

- \(R/I \) is Cohen-Macaulay and contains a field of positive characteristic.
- \(R/I \) is Cohen-Macaulay and \(I \) is a squarefree monomial ideal in any characteristic.

Remark 1.2. When \(R/I \) is Cohen-Macaulay containing a field of characteristic zero the previous result is no longer true. For example, consider the ideal generated by the \(2 \times 2 \) minors of a generic \(2 \times 3 \) matrix. Its Lyubeznik table was computed in [1]:

\[
\Lambda(R/I) = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \\
0 & 0 & 1 & & \\
& 0 & & 1 & \\
& & 1 & & \\
\end{pmatrix}
\]

We point out that K. I. Kawasaki already proved in [15] that the highest Lyubeznik number \(\lambda_{d,d} \) of a Cohen-Macaulay ring (or even \(S_2 \)) is always one.

The main result of this note is Theorem 3.2 where we prove that the previous result still holds true replacing the Cohen-Macaulay property for sequentially Cohen-Macaulay, in particular, assuming that we may have more than one local cohomology module different from zero. For example, consider the ideal \(I = (x_1, x_3) \cap (x_2, x_3) \cap (x_4) \) in \(R = k[x_1, x_2, x_3, x_4] \). The local cohomology modules \(H^1_I(R) \) and \(H^2_I(R) \) are different from zero so \(R/I \) is not Cohen-Macaulay but it is sequentially Cohen-Macaulay since it corresponds to a simplicial tree (see [9] for details).

In the spirit of [26], we give a unified proof of both cases using the theory of modules over skew-polynomial rings. We point out that the case of squarefree monomial ideals is already treated in a joint work with K. Yanagawa [3] using the description of Lyubeznik numbers of squarefree monomial ideals in terms of the linear strands of the Alexander dual ideal given in [2]. Finally, in the last section, we use the same techniques to provide some configurations of Lyubeznik tables depending on the so-called deficiency modules

\[
K^i(R/I) := \text{Ext}_R^{n-i}(R/I, R).
\]

Sequentially Cohen-Macaulay modules were introduced by R. Stanley [25] in the graded case but extended later on to the local case. We present here a homological characterization, due to C. Peskine (see [12]) in the graded case and P. Schenzel [23] in the local case
(see also [8]), that will be useful for our purposes. We decided to consider just the case of regular local rings to keep the same framework as in the rest of the paper.

Theorem/Definition 1.2. Let \((R, \mathfrak{m})\) be a regular local ring of dimension \(n\). Then, an \(R\)-module \(M\) is sequentially Cohen-Macaulay if and only if for all \(0 \leq i \leq \dim M\) we have that \(\text{Ext}^{n-i}_R(M, R)\) is zero or Cohen-Macaulay of dimension \(i\).

In our situation we will be interested in the case when the \(R\)-module \(M\) is just the local ring \(R/I\) for any given ideal \(I \subseteq R\). We also point out that throughout this work we will freely use some standard facts about local cohomology modules. We refer to [7] for any unexplained terminology.

2. **Finitely generated unit \(R[\Theta; \varphi]\)-modules**

Let \((R, \mathfrak{m})\) be a regular local ring of dimension \(n\) containing a field \(k\). Throughout the rest of the paper we will assume that we have a flat local endomorphism \(\varphi : R \rightarrow R\) satisfying, for a given ideal \(I \subseteq R\), the condition:

\((\ast)\) The ideals \(\{\varphi^t(I)R\}_{t \geq 0}\) form a descending chain cofinal with the chain \(\{I^t\}_{t \geq 0}\).

Notice that in this case, by the dimension formula, we have that \(\varphi^t(\mathfrak{m})R\) is \(\mathfrak{m}\)-primary.

The main examples we are going to consider are:

- **Positive characteristic case:** When \(R\) contains a field of positive characteristic, the Frobenius endomorphism \(\varphi = F\) satisfies \((\ast)\) for any ideal \(I \subseteq R\) (see [13], [19]) and is flat by the celebrated theorem of E. Kunz [16].

- **Squarefree monomial ideals case:** Consider the polynomial ring \(R = k[x_1, \ldots, x_n]\) over a field \(k\) in any characteristic. The \(k\)-linear endomorphism \(\varphi(x_i) = x_i^2\) is flat and satisfies \((\ast)\) for any squarefree monomial ideal (see [17]).

G. Lyubeznik [19] developed his theory of \(F\)-modules in positive characteristic building upon these properties for the Frobenius map. One may give a slightly extended theory associated to the morphism \(\varphi : R \rightarrow R\) instead of the Frobenius as follows:

Let \(\Phi\) be the functor on the category of \(R\)-modules defined by restriction of scalars. Namely, for any \(R\)-module \(M\), \(\Phi(M)\) is the additive group of \(M\) with the usual action of \(R\) on the right but regarded as a left \(R\)-module via \(\varphi\). Notice that we can also construct the \(e\)-th iterations \(\Phi^e\) in the usual way.

Let \(R[\Theta; \varphi]\) be the skew polynomial ring which is the free left \(R\)-module \(\bigoplus_{e \geq 0} R\Theta^e\) with multiplication \(\Theta r = \varphi(r)\Theta\). In fact we have

\[R[\Theta; \varphi] = R(\Theta)/\langle \Theta r - \varphi(r)\Theta \mid r \in R \rangle. \]

To give a \(R[\Theta; \varphi]\)-module structure on a \(R\)-module \(M\) is equivalent to fix a \(R\)-linear map \(\theta_M : M \rightarrow \Phi(M)\). We say that \(M\) is a unit \(R[\Theta; \varphi]\)-module if \(\theta_M\) is an isomorphism.
Given a finitely generated R-module M and a R-linear map $\beta : M \rightarrow \Phi(M)$ one can obtain a unit $R[\Theta; \varphi]$-module

$$\mathcal{M} := \text{Gen}(M) = \lim_{\rightarrow}(M \xrightarrow{\beta} \Phi(M) \xrightarrow{\Phi(\beta)} \Phi^2(M) \xrightarrow{\Phi^2(\beta)} \cdots)$$

just because

$$\Phi(M) := \text{Gen}(\Phi(M)) = \lim_{\rightarrow}(\Phi(M) \xrightarrow{\Phi(\beta)} \Phi^2(M) \xrightarrow{\Phi^2(\beta)} \Phi^3(M) \xrightarrow{\Phi^3(\beta)} \cdots) = \mathcal{M}$$

We say that M is a finitely generated unit $R[\Theta; \varphi]$-module if it can be constructed in this way. Moreover, if the generating morphism β is injective, we say that M is a root of \mathcal{M}. The main example we are going to consider, that was already treated by A. Singh and U. Walther in [26], is the case of local cohomology modules.

As it was already stated in [26], the flatness of the morphism φ implies that Φ is an exact functor and commutes with direct limits. It also follows that $\Phi^e(\text{Ext}^i_R(R/I, R)) \cong \text{Ext}^i_R(R/\varphi^e(I)R, R)$. We also have a commutative diagram

$$\cdots \rightarrow \text{Ext}^i_R(R/\varphi^e(I)R, R) \rightarrow \text{Ext}^i_R(R/\varphi^{e+1}(I)R, R) \rightarrow \cdots$$

$$\downarrow$$

$$\cdots \rightarrow \Phi^e(\text{Ext}^i_R(R/I, R)) \rightarrow \Phi^{e+1}(\text{Ext}^i_R(R/I, R)) \rightarrow \cdots$$

where the maps in the top row are induced by the natural surjection $R/\varphi^{e+1}(I)R \rightarrow R/\varphi^e(I)R$ and the vertical maps are isomorphisms. Taking into account property (\ast), the limit of the top row is the local cohomology module $H^i_I(R)$. We conclude that local cohomology modules are finitely generated unit $R[\Theta; F]$-modules and the generating morphism

$$\beta : \text{Ext}^i_R(R/I, R) \rightarrow \text{Ext}^i_R(R/\varphi(I)R, R)$$

is induced by the natural surjection $R/\varphi(I)R \rightarrow R/I$.

Remark 2.1. Under this terminology, [26, Thm. 2.8] states that $\text{Ext}^i_R(R/I, R)$ is a root of $H^i_I(R)$ when the induced morphism $\overline{\varphi} : R/I \rightarrow R/I$ is pure.

3. Main result

The description of local cohomology modules given in Section 2 allows us to obtain the main result of this note, but first we consider the following vanishing result for Bass numbers that is a mild generalization of [13, Thm. 3.3].

Lemma 3.1. Let (R, \mathfrak{m}) be a regular local ring of dimension n containing a field k and $\varphi : R \rightarrow R$ a flat local endomorphism satisfying (\ast) for an ideal $I \subseteq R$. Given $p, i \in \mathbb{N}$, if $H^p_\mathfrak{m}(\text{Ext}^{n-i}_R(R/I, R)) = 0$ then $\mu_p(\mathfrak{m}, H^i_I(R)) = 0$.

1. A $(F$-finite) F-module in the sense of G. Lyubeznik [19] is a (finitely generated) unit $R[\Theta; F]$-module.
Proof. Using flat base change for local cohomology and the fact that $\varphi^t(m)R$ is m-primary we have:
$$\Phi_e^t(H^p_m(\text{Ext}^{n-i}_R(R/I, R))) \cong H^p_m(\Phi_e^t(\text{Ext}^{n-i}_R(R/I, R))) \cong H^p_m(\text{Ext}^{n-i}_R(R/\varphi^e(I)R, R)).$$
Therefore, since local cohomology commutes with direct limits
$$H^p_m(H^{n-i}_I(R)) \cong H^p_m(\lim_{\to} \Phi_e^t(\text{Ext}^{n-i}_R(R/I, R))) \cong \lim_{\to} \Phi_e^t(H^p_m(\text{Ext}^{n-i}_R(R/I, R)))$$
we get the desired result. \qed

Theorem 3.2. Let (R, m) be a regular local ring of dimension n containing a field k and $\varphi : R \rightarrow R$ a flat local endomorphism satisfying (*) for an ideal $I \subseteq R$ such that R/I is sequentially Cohen-Macaulay. Then the Lyubeznik table of R/I is trivial.

Proof. If R/I is sequentially Cohen-Macaulay then we have that $\text{Ext}^{n-i}_R(R/I, R)$ is zero or Cohen-Macaulay of dimension i. Therefore $H^p_m(\text{Ext}^{n-i}_R(R/I, R)) = 0$ for all $p \neq i$. It follows from Lemma 3.1 that the possible non-zero Lyubeznik numbers are $\lambda_{i,i}(R/I)$, i.e. those in the main diagonal of the Lyubeznik table. Using the Euler characteristic formula for Lyubeznik numbers and property (iii) we have $\lambda_{0,0} + \cdots + \lambda_{d,d} = 1$ and $\lambda_{d,d} \neq 0$ so we must have a trivial Lyubeznik table. \qed

Remark 3.3. The completion with respect to the maximal ideal of a sequentially Cohen-Macaulay ring is sequentially Cohen-Macaulay [23, Thm. 4.9] but the converse does not hold as P. Schenzel showed in [23, Ex. 6.1] using Nagata’s example [22, Ex.2]. Lyubeznik numbers does not depend on the completion so we can just assume that the completion of R/I is sequentially Cohen-Macaulay in the hypothesis of Theorem 3.2.

Specializing to the cases considered at the beginning of Section 2 we obtain:

Corollary 3.4. Let (R, m) be a regular local ring containing a field k. Then the Lyubeznik table of R/I is trivial in the following cases:

- R/I is sequentially Cohen-Macaulay and contains a field of positive characteristic.
- R/I is sequentially Cohen-Macaulay and I is a squarefree monomial ideal.

Remark 3.5. As it was already pointed out in [2], the converse statement does not hold. For example consider the ideal in $k[x_1, \ldots, x_9]$:
$$I = (x_1, x_2) \cap (x_3, x_4) \cap (x_5, x_6) \cap (x_7, x_8) \cap (x_9, x_1) \cap (x_9, x_2) \cap (x_9, x_3) \cap (x_9, x_4) \cap (x_9, x_5) \cap \cdots \cap (x_9, x_6) \cap (x_9, x_7) \cap (x_9, x_8).$$

R/I has a trivial Lyubeznik table but is not sequentially Cohen-Macaulay. We remark that $H^r_I(R)$ does not vanish for $r = 2, 3, 4, 5$.

4. SOME PARTIAL VANISHING RESULTS

A way to measure the deviation of R/I from being Cohen-Macaulay is through the deficiency modules
$$K^i(R/I) := \text{Ext}^{n-i}_R(R/I, R).$$
Notice that for \(d = \dim R/I\) we have that \(K^d(R/I)\) is nothing but the canonical module. In this sense, sequentially Cohen-Macaulay rings form a class where these deficiency modules are well understood. The methods developed in the previous section suggest that some configurations of Lyubeznik tables could be described depending on the behavior of these modules.

In this direction we recall the following notion developed by P. Schenzel in [24]: We say that \(R/I\) is canonically Cohen-Macaulay (CCM for short) if the canonical module \(K^d(R/I)\) is Cohen-Macaulay.

Proposition 4.1. Let \((R, m)\) be a regular local ring of dimension \(n\) containing a field \(k\) and \(\varphi : R \rightarrow R\) a flat local endomorphism satisfying \((*)\) for an ideal \(I \subseteq R\) such that \(R/I\) is canonically Cohen-Macaulay. Then, \(\lambda_{i,d}(R/I) = 0\) for all \(i < d\).

Proof. The canonical module \(K^d(R/I) = \text{Ext}_R^{n-d}(R/I, R)\) is Cohen-Macaulay of dimension \(d\) by [24, Prop. 2.3], so the result follows from Lemma 3.1. \(\square\)

For a general description of the highest Lyubeznik number we refer to [21], [28] where \(\lambda_{d,d}(R/I)\) is described as the number of connected components of the Hochster-Huneke graph of the completion of the strict Henselianization of \(R/I\).

Examples of CCM modules include Cohen-Macaulay and sequentially Cohen-Macaulay modules among others (see [24, Ex.3.2]). Using Theorem 3.2 we have that \(\lambda_{d,d}(R/I) = 1\) in these cases but, of course, we may find examples of CCM rings where this number is larger. For instance, the ideal \(I = (x_1, x_2) \cap (x_3, x_4)\) in \(k[[x_1, x_2, x_3, x_4]]\) satisfies that \(R/I\) is CCM and its Lyubeznik table is

\[
\Lambda(R/I) = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
\end{pmatrix}
\]

This example can be seen as a particular case of the following result.

Proposition 4.2. Let \((R, m)\) be a regular local ring of dimension \(n\) containing a field \(k\) and \(\varphi : R \rightarrow R\) a flat local endomorphism satisfying \((*)\) for an ideal \(I \subseteq R\) such that \(R/I\) is unmixed and depth \(K^i(R/I) \geq i - 1\) for \(0 \leq i < d\). Then, its Lyubeznik table is of the form

\[
\Lambda(R/I) = \begin{pmatrix}
0 & \lambda_{0,1} & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 \\
\cdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \lambda_{d-2,d-1} \\
0 & \cdots & \cdots & \cdots & \cdots & \lambda_{d,d} \\
\end{pmatrix}
\]

where \(\lambda_{0,1} + \cdots + \lambda_{d-2,d-1} = \lambda_{d,d} - 1\). In particular, the Lyubeznik table is trivial when the highest Lyubeznik number is 1.
Proof. By [24, Thm.4.4] we have that R/I is CCM and $K^i(R/I)$ is either zero or Cohen-Macaulay of dimension $i - 1$. Then, using Lemma 3.1 we get the desired Lyubeznik table. The rest of the proof follows from the Euler characteristic property of Lyubeznik numbers.

Another large class of CCM rings discussed in [24] is the case of simplicial affine semigroup rings (see [24, Thm. 6.4]). Let S be a finitely generated submonoid of \mathbb{N}^r. The affine semigroup $k[S]$ of S over k is the subring of $k[x_1, \ldots, x_r]$ generated by all monomials $x^s := x_1^{s_1} \cdots x_r^{s_r}$, $s \in S$. Equivalently, if n is the minimal number of generators of S, we may write $k[S] = R/I(S)$ where $R = k[x_1, \ldots, x_n]$ and $I(S)$ is the ideal of vanishing of $k[S]$. We say that S is simplicial if there is a homogeneous system of parameters of $k[S]$ with $d = \dim k[S]$ elements.

Proposition 4.3. Let $k[S]$ be a simplicial affine semigroup ring of codimension 2, i.e. $n = d + 2$ and $\varphi : R \to R$ a flat endomorphism satisfying (\ast) for the ideal of vanishing $I(S) \subseteq R$ of $k[S]$. If the number of generators of this ideal is $m \leq 3$, its Lyubeznik table is trivial. Otherwise it is of the form

$$
\Lambda(k[S]) = \begin{pmatrix}
0 & \cdots & 0 & 0 \\
\ddots & \vdots & \ddots & \vdots \\
& \lambda_{d-2,d-1} & \ddots & 0 \\
0 & 0 & \ddots & \lambda_{d,d}
\end{pmatrix}
$$

where $\lambda_{d-2,d-1} = \lambda_{d,d} - 1$.

Proof. By [24, Thm.6.5] we have that $k[S]$ is Cohen-Macaulay if and only if $m \leq 3$. When $m > 3$ we have that $K^i(k[S]) = 0$ for all $0 \leq i < d - 1$ and $K^{d-1}(k[S])$ is either zero or Cohen-Macaulay of dimension $d-2$. Then, using Lemma 3.1 we get the desired Lyubeznik table.

Acknowledgement: The author benefited from conversations with K. Yanagawa. He also thanks the anonymous referee for a careful reading and useful comments.

References

DEPT. MATEMÀTICA APPLICADA I, UNIV. POLITÈCNICA DE CATALUNYA, AV. DIAGONAL 647, BARCELONA 08028, SPAIN
E-mail address: Josep.Alvarez@upc.edu