Tratamiento electroquímico y reutilización de efluentes de tintura

M.C. Gutiérrez, V. López-Grimau, M. Riera-Torres, M. Vilaseca, M. Crespi

INTEXTER, Institut d'Investigació Textil de Terrassa
UPC, Universitat Politècnica de Catalunya
Colom 15, 08222 Terrassa, Spain.
gutierrerz@intexter.upc.edu

Resumen

Las técnicas electroquímicas ofrecen muchas ventajas para el tratamiento de los efluentes industriales. Dichos procesos son limpios, trabajan a temperatura ambiente y en la mayoría de los casos no necesitan de la adición de reactivos (como es el caso de los efluentes de tintura con colorantes reactivos). Concretamente, los tratamientos electroquímicos de efluentes textiles son métodos eficientes para la eliminación de color.

Con el tratamiento electroquímico, las moléculas de colorante se oxidan fragmentándose en otras más pequeñas. Los productos incoloros que se producen son tratados en una planta de tratamiento biológico convencional.

En este trabajo, se trataron diversos efluentes que contenían colorantes reactivos en una celda electroquímica con electrodos de Ti/óxidos de Pt. Se evaluó la eficacia en la eliminación del color de la técnica combinada con irradiación UV. Además, se observó que los efluentes tratados no producen efectos de inhibición en una planta biológica. Se evaluó también el rendimiento de un tratamiento biológico posterior.

Como alternativa al vertido del efluente, otra posibilidad es su reutilización en nuevos procesos de tintura. En este sentido, se llevaron a cabo diversos ensayos y se establecieron las condiciones de reutilización. Se observó que los efluentes de lavado se pueden reutilizar fácilmente y que incluso se pueden reutilizar los efluentes de tintura, lo cual implica una importante reducción en el consumo de sales y agua, así como una disminución de la salinidad de los efluentes descargados.

Palabras clave

Eliminación de color, aguas residuales, colorante reactivo, tratamiento electroquímico, oxidación/reducción, tratamiento biológico, biodegradabilidad, respirometría.
1. Introducción

Las industrias textiles producen grandes cantidades de aguas residuales en sus procesos de tintura y acabados. Dichos efluentes muestran como característica común su elevada coloración. El elevado consumo de colorantes reactivos, principalmente en la industria algodonera, junto con su bajo grado de agotamiento incrementa el problema ambiental y estético producido por las aguas residuales coloradas.

Los colorantes reactivos así como la mayoría de colorantes textiles, se eliminan parcialmente bajo condiciones aeróbicas en un tratamiento biológico convencional. Debido a que el tratamiento biológico es insuficiente para eliminar el color y cumplir con los requerimientos legales, se precisa de tratamientos específicos. Existen diversas técnicas para la eliminación de color y entre ellas, la más utilizadas son: adsorción sobre carbón activado, filtración por membrana, procesos de coagulación-flotación, tratamientos con ozono, uso de adsorbentes orgánicos, selección de microorganismos capaces de degradar colorantes, aplicación de procesos de oxidación avanzada (reacciones de Fenton y fotoFenton, sistemas H₂O₂ con radiación UV y oxidación fotocatalítica heterogénea) así como los tratamientos electroquímicos.

Algunos de estos métodos han sido aplicados a escala industrial. Proporcionan buena eliminación de color pero normalmente con elevados costes económicos. Otras tecnologías aún se están estudiando a escala piloto y de laboratorio como es el caso de la decoloración electroquímica que puede darse por reducción u oxidación. En el caso de la reducción, el grupo azo del colorante se rompe para dar lugar a dos grupos amino (Bechtold et al., 2001). En el segundo caso, se estudió la oxidación indirecta viéndose los hipoclorito generados in situ en una solución salina (Vijayaraghavan et al., 2001; Vlyssides et al., 1999). La electro-oxidación de colorantes puede estar asistida por fotocatalización (Pelegreni et al., 1999; Shen et al., 2002).

En los últimos años se ha incrementado el uso de técnicas electroquímicas para el tratamiento de efluentes industriales (Kim et al., 2002, 2003; Sakakibara and Nakayama, 2001). Dichos procesos son limpios, operan a temperatura ambiente y en la mayoría de casos no necesitan de la adición de reactivos (como es el caso de los efluentes de tintura). Por estas razones el tratamiento electroquímico de efluentes textiles es un buen método para la eliminación de color, especialmente cuando las aguas residuales contienen colorantes reactivos.

Las técnicas electroquímicas se basan en la electrólisis de los efluentes. Las moléculas se fragmentan parcialmente para evitar un elevado consumo de energía. En general, la destrucción de los compuestos orgánicos de los efluentes se alcanza mediante tratamientos electroquímicos de oxidación, que pueden tener lugar de forma directa en el ánodo y/o de forma indirecta debido a especies generadas en el ánodo (Gutiérrez et al., 2002), aunque de forma simultánea también se pueden dar procesos de reducción en el cátodo si ambos, ánodo y cátodo no están separados físicamente.

Durante el proceso de tintura con colorantes reactivos se requiere de la adición de grandes concentraciones de sales para obtener una mejor fijación y agotamiento del colorante (hasta 80 g L⁻¹ de NaCl o Na₂SO₄ son los electrolitos más habituales). Estas sales también actúan como electrolito durante el proceso electroquímico. En estudios anteriores, se utilizaron electrodos de Titanio/Óxidos de Plátino (Ti/PtOₓ) para la decoloración de efluentes sintéticos de colorantes reactivos (Gutiérrez et al., 2002; Gutiérrez et al., 2003). Los resultados obtenidos con ese tipo de electrodos fueron satisfactorios, especialmente cuando se utilizaba NaCl como electrolito de tintura. La mejora en la eficacia del tratamiento con NaCl se atribuye a la oxidación indirecta de los colorantes debido a las especies Cl⁻, O₂ y a otras especies oxidantes formadas a partir de la oxidación del Cl⁻.

Tomando como base trabajos anteriores (Gutierrez and Lopez-Grimau, 2003), este estudio se propone el tratamiento electroquímico como una etapa previa a la depuración biológica, en la cual sólo se tratan los efluentes coloreados. Dichos efluentes, una vez decolorados, se juntan con las restantes aguas residuales en la planta biológica.

La primera parte de este trabajo consiste en tratar un efluente sintético de colorante reactivo en una celda electroquímica de electrodos de Ti/PtOₓ para su decoloración. El efluente decolorado se juntó con otros efluentes (aclarados, blanqueos, lavados, etc.) siguiendo las relaciones de cada efluente en una tintorería y fue sometido a un tratamiento biológico. El tratamiento biológico se llevó a cabo en un plato de fangos activados y se evaluó el rendimiento de eliminación de la materia orgánica.

Posteriormente, el tratamiento electroquímico se comprobó con efluentes de baños de tintura por agotamiento de fibra de algodón de una tintorería con el objetivo
de estudiar la eficacia del proceso de decoloración en aguas residuales industriales. En este tipo de efluentes, además del colorante hidrolizado y los electrolitos de tintura, se encuentra una gran parte de materia orgánica proveniente de la fibra original, dicha materia orgánica puede competir en el proceso de oxidación electroquímica.

Por otra parte, este trabajo se centró en la optimización del consumo eléctrico, aplicando bajas densidades de corriente durante el tratamiento electroquímico seguido de irradiación UV.

Finalmente, se estudió la biodegradabilidad del efluente tratado, así como la presencia de compuestos tóxicos para asegurar que dichos efluentes pueden ser descargados en la planta de tratamiento biológico. En efecto, la respuesta de los diversos tipos de colorantes al tratamiento biológico es muy diferente. Los colorantes que son insolvables en agua (dispersos, tina, sulfurosos, etc.) se eliminan primero en un paso previo de decantación y los colorantes solubles se descargan directamente al tratamiento biológico. A pesar de que no son biodegradables (aeróbicamente) parte de ellos se puede retener mediante un proceso llamado "bioeliminación" que consiste en la adsorción sobre biomasa y eliminación por deposición sobre fangos.

2. Metodología

2.1 Tratamiento electroquímico

En primer lugar, se optimizó el tratamiento electroquímico con efluentes sintéticos de soluciones hidrolizadas del colorante Procion MX-2R de concentración 0.1 gL⁻¹ (pH y conductividad: 9 y 35000 μS cm⁻¹ respectivamente). Una vez establecidas las condiciones del tratamiento, se aplicaron a dos tipos diferentes de aguas residuales provenientes de la tintura de algodón recogidas en una tintorería. Ambas estaban constituidas por una tricromía de colorantes Sumifix, con una relación de baño 1/10 y las siguientes cantidades de colorante y productos auxiliares:

- LC (baño de baja concentración): Amarillo (Y) 3RF 0.11% + Rojo (R) 3BF 0.30% + Azul Marino (Bl.N.) BF 0.85%.
- HC (baño de alta concentración): Y 3RF 0.52% + R 3BF 2% + Bl.N. BF 112%.
- Electrolijo: 200-250 mL/L NaCl sol. (trisaline sol.™).
- Ícali: 5 g/L Na₂CO₃ + 0.8 -1.35 mL/L NaOH sol. 50% (w/v).

El sistema electroquímico está constituido por la celda electroquímica, la bomba y un depósito para almacenar el agua tratada. La celda electroquímica es de construcción del tipo (ECO 75 - Elchem, Alemania). La planta opera a un flujo continuo de 25 L h⁻¹ y la densidad de corriente se regula entre 3 y 12 mA/cm². Con la finalidad de reducir la intensidad del tratamiento, se decoló parcialmente el efluente y mediante la exposición del efluente a la radiación UV se alcanzó la decoloración total. Se evaluó el color de los efluentes sintéticos así como la longitud de máxima absorbancia (552 nm; los baños LC y 542 nm: baños HC).

2.2 Tratamiento biológico

Se llevaron a cabo dos estudios biológicos convencionales en dos plantas piloto a escala de laboratorio (volumen del reactor: 5 L). Inicialmente se les inocularon fangos activados de una planta de tratamiento biológico de aguas residuales urbanas. Se trabajó a un caudal de alimentación de 1.6 L/día. El efluente sometido al tratamiento biológico estaba constituido por la siguiente mezcla: un 10 % del efluente sintético decolorado como se ha indicado en el apartado anterior y el 90% restante, constituido por efluentes procedentes de una empresa española dedicada a la tintura de algodón (descruzado: 10%, lavado: 40%, jabonado: 30% y suavizado: 10%) de acuerdo con el flujo de cada efluente en el proceso de producción.

En la planta biológica A se adicionó una cantidad estandarizada de bisulfito sódico al efluente decolorado de tintura, seguido de dos horas de aireación para eliminar el cloro residual. En la planta biológica B no se trató el efluente para eliminar el cloro residual, de esta manera se comparó la influencia de este paso en el rendimiento del proceso biológico. Se evaluaron los rendimientos de ambas plantas y se midieron los siguientes parámetros: DQO, sólidos en suspensión, biomasa del reactor y la relación alimento-microorganismos (F/M).

De forma paralela a los tratamientos biológicos, se evaluaron por respriometría electrolítica tanto la biodegradabilidad como los efectos de inhibición de los efluentes A y B. Se utilizó un respirómetro electrolítico BI-1000 de Bioscience (USA) constituido por ocho reactores en un baño termoestatizado. Se llevaron a cabo los tests de respriometría durante 232 horas a 20°C, usando los nutrientes indicados en el test de DBO₅ (APHA-AWWA-WEF, 1997). En cada ensayo se registró un blanco.

2.3. Nuevas tinturas con agua reutilizada

Las tinturas se realizaron con una relación de baño de 1/10
con la siguiente tricromía: 1 % Azul Marino Procion H-EXL, 1 % Crimson Procion H-EXL, 1 % Amarillo Procion H-EXL, y como electrolito: NaCl 80 g/L y como álcali: Na₂CO₃ 5g/L + NaOH 0,5g/L.

El tratamiento electroquímico se realizó a una densidad de corriente de 6 mA/cm² y a un caudal de 20 L/h, con un consumo eléctrico de 7 Wh/L. Seguidamente, se preparaba el agua para ser reutilizada de acuerdo con los siguientes pasos:

1. Reposición de la pérdida de agua durante la tintura (30%).
2. Cuantificación del NaCl residual y adición de la cantidad necesaria de NaCl.
3. Ajuste del pH 7.
4. Adición de los colorantes para la nueva tintura.

3. Resultados y discusión

3.1. Decoloración de baños de colorantes reactivos

En la tabla 1 se recogen los parámetros analizados para la caracterización de los dos baños recogidos en la tintorería.

De acuerdo con resultados de estudios anteriores realizados con efluentes sintéticos, se aplicaron las condiciones óptimas a los tratamientos de los baños LC y HC: baja densidad de corriente seguida de irradiación UV para obtener una decoloración total a bajo coste. Se trataron los baños de agotamiento en la planta electroquímica a dos densidades de corriente: 3 y 6 mA/cm² para LC y 6 y 12 mA/cm² para HC. La tabla 2 muestra los valores de reacciones con las especies radicales altamente reactivas catalizadas por la luz solar, como por ejemplo: Cl, Cl₂, y OH.

Por otra parte, se puede observar en la tabla 2 que los valores de eliminación de TOC obtenidos después del tratamiento electroquímico fueron bajos. Estos valores se pueden mejorar incrementando la densidad de corriente aplicada durante el tratamiento electroquímico, pero en dicho caso, el coste del proceso de decoloración sería muy elevado. Se debe considerar que el tratamiento electroquímico se propone para eliminar el color pero no para reducir la materia orgánica ya que el tratamiento biológico es mucho más ventajoso para este fin. En otras palabras, el objetivo principal del tratamiento electroquímico es el de fragmentar las moléculas de colorante en otras especies más pequeñas, incoloras y más biodegradables, capaces de ser tratadas en una planta biológica.

<table>
<thead>
<tr>
<th>Tabla 1. Caracterización de los baños de colorantes reactivos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>Color (unidades Pt-Co)</td>
</tr>
<tr>
<td>TOC (mg/L)</td>
</tr>
<tr>
<td>NaCl (g/L)</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
</tr>
<tr>
<td>pH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 2. Tratamiento electroquímico aplicado a diferentes densidades de corriente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dens. corriente (mA/cm²)</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Decol. (%)</td>
</tr>
<tr>
<td>Decol. tras exp. UV (%)</td>
</tr>
<tr>
<td>Consumo (Wh/L)</td>
</tr>
<tr>
<td>Reducción TOC (%)</td>
</tr>
</tbody>
</table>
3.3. Reutilización de aguas residuales decoloradas

Se caracterizaron las aguas residuales de tintura y los baños residuales y se concluyó que la reutilización de los efluentes de tintura sería más ventajosa que la de los baños de lavado dado la mayor cantidad de electrolitos reutilizado en los primeros. Sin embargo, estos baños son más difíciles de decolarar puesto que presentan mayores cantidades de materia orgánica. Se consideró interesante la reutilización del primer baño de lavado puesto que la cantidad de materia orgánica presente en el efluente es menor que en los baños residuales de tintura y al mismo tiempo contienen una cierta cantidad de NaCl susceptible de ser reutilizada (aproximadamente el 15%).

En primer lugar, se realizó una tintura usando el primer baño de tintura previamente decolorado. Las diferencias de color obtenidas entre la nueva tintura y la referencia (llevada a cabo con agua limpia) fueron bajas (DE CIELab = 0,3).

Seguidamente se realizaron diez reutilizaciones del baño residual de tintura decolorado. Este proceso permite el ahorro del 70% del agua de proceso así como el 60% de electrolitos en cada tintura. Se comprobó que a partir de la cuarta o quinta reutilización, los valores de TOC no aumentaron más (figura 2).

Las diferencias de color (DE CIELab) en cada reutilización mostraron una variación respecto del testigo. Los valores variaron desde 1 en la primera reutilización hasta valores entre 2-3 en la quinta reutilización (figura 3).

Sin embargo, estas diferencias se pueden reducir mediante la

3.2. Tratamiento biológico con fangos activados

Se llevó a cabo un estudio de dos meses de duración con cada planta piloto (A y B). El tiempo de retención fue de 2,5 días. Se demuestra que tras un tiempo de tratamiento, no existen diferencias en la eliminación de DQO y la relación alimento-microorganismos (F/M) entre la planta piloto A y la planta piloto B; siendo la eliminación de DQO 65% en ambos casos.

Estos resultados indican que el contenido de cloro residual en el efluente B producido durante el tratamiento electroquímico de decoloración de los efluentes de tintura no afecta a la eficacia del tratamiento biológico final.

Fig. 1. Resultados de las respirometrías con inóculo adaptado correspondientes a los baños de tintura tratados y sin tratar de los efluentes de colorantes reactivos.

Fig. 2. Valores de TOC en cada reutilización

Sin embargo, los estudios de respirometría llevados a cabo, muestran que la adaptación de los microorganismos fue más sencilla en el caso del efluente A. El efluente A mostró un elevado nivel de biodegradabilidad, mientras que al principio, el efluente B mostró inhibición en la actividad de los microorganismos (el consumo de oxígeno fue menor que en el testigo).

Por el contrario, cuando los tests de respirometría se llevaron a cabo con inóculo adaptado (fango proveniente de nuestra planta), trascurridos 5 días, el efluente B mostró una tasa de respiración mayor que el testigo. Este comportamiento indica que es necesario un período de adaptación cuando el efluente contiene cloro residual (figura 1).
adición de una cantidad extra de colorante. Por ejemplo, una adición del 30% en la décima reutilización permite obtener una DE CIELab=0,7. En este caso, el incremento del coste del colorante se compensa por el ahorro de agua y sal.

4. Conclusiones

Una de las principales conclusiones de este estudio es que el tratamiento electroquímico de baños residuales de tintura por agotamiento usando electrodos de Ti/PtOx proporciona elevados valores de decoloración. La exposición a la luz solar de un efluente parcialmente decolorado permite aplicar menores densidades de corriente durante el tratamiento electroquímico, lo que comporta una reducción en el consumo eléctrico.

Los baños de tintura por agotamiento tratados de esta manera muestran niveles de biodegradabilidad similares a las muestras no tratadas, lo que indica que el tratamiento electroquímico no genera productos tóxicos. Por esta razón, las aguas residuales pueden ser sometidas a un tratamiento biológico para la eliminación de la materia orgánica restante. Además, otra importante conclusión es que la presencia de cloro residual en los efluentes parcialmente decolorados, no afecta al rendimiento del tratamiento biológico, a pesar de que los fangos de la planta biológica necesitan un mayor tiempo de adaptación para los efluentes que contienen cloro.

Finalmente, cabe destacar que los baños de tintura por agotamiento, una vez decolorados, se pueden reutilizar para nuevos procesos de tintura, lo que implica un importante ahorro de agua y sal, del orden del 70% de agua y del 60% de sal. Después de 4-5 ciclos de reutilización, se requiere una mayor cantidad de colorante.

También se observó que una vez decolorados, los primeros baños de lavado son más fáciles de reutilizar que los baños de tintura debido a su bajo contenido en materia orgánica. En este caso, se reutilizó la misma cantidad de agua y las diferencias de color observadas fueron mucho menores, aunque sólo se consiguió reutilizar el 15% de sal.

Este tipo de estudios destinados a la reutilización de agua y sales, son especialmente importantes en los países mediterráneos donde actualmente la salinidad de los ríos representa un problema medioambiental.

5. Agradecimientos

Este trabajo fue subvencionado por el Ministerio Español de Ciencia y Tecnología (proyectos: CTM2004-05774-C02-01/TECNO y CTM2007-66570-C02-01/TECNO).
Referencias