Uncertainty in the Cloud: an Angel-Daemon
Approach to Modelling Performance *

A. StewartV and J. Gabarro® and A. Keenan(®

(1) School of EEECS, The Queen’s University of Belfast, Northern Ireland.
(2) ALBCOM Research Group , Department of CS, Barcelona Tech, Spain
{a.stewart,a.keenan}@qub.ac.uk, gabarro@cs.upc.edu

Abstract. Uncertainty profiles are used to study the effects of con-
tention within cloud and service-based environments. An uncertainty
profile provides a qualitative description of an environment whose qual-
ity of service (QoS) may fluctuate unpredictably. Uncertain environments
are modelled by strategic games with two agents; a daemon is used to
represent overload and high resource contention; an angel is used to rep-
resent an idealised resource allocation situation with no underlying con-
tention. Assessments of uncertainty profiles are useful in two ways: firstly,
they provide a broad understanding of how environmental stress can ef-
fect an application’s performance (and reliability); secondly, they allow
the effects of introducing redundancy into a computation to be assessed.

Keywords. Uncertainty, Web-service, orchestration, ORC, cloud, vir-
tualization, Amazon EC2, resource contention, performance, reliability,
game theory.

1 Introduction

In 1961 John McCarthy proposed a vision of service-based computing;:

7If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility
just as the telephone system is a public utility... ”

The notion of service extends previous notions of programming through the ad-
dition of an interface through which users can access computing resources. There
are many similarities between the service-based computation model and the es-
tablished disciplines of sequential and parallel programming. Conventionally a
state change is effected by an assignment statement x := e. The time take to
execute this assignment is predictable and depends on the number of opera-
tions within e. In service-based computing state changes are effected through

* J. Gabarro is partially supported by funds from the Spanish Ministry for Economy
and Competitiveness (MINECO) and the European Union (FEDER funds) under
grant TIN2013-46181-C2-1-R (COMMAS) and also by SGR 2014:1137 (ALBCOM)
from AGAUR, Generalitat de Catalunya.

service calls. A service (hosted in the cloud, or elsewhere) may have less pre-
dictable performance behaviour than a conventional imperative program — the
QoS of service-based systems are considered in detail in [1]. Some of the factors
influencing the performance of applications in the cloud are:

the type of hardware supplied by a provider to host a (virtual) machine;
the number of other (applications running as) VMs on a shared resource;
the behaviour of a hypervisor [9] supervising the execution of a set of VMs;
the nature of competing applications (e.g. web services, computationally
intensive applications);

Ll

In this paper uncertain execution environments are specified in a qualitative
way, using a two-player strategic game. One player (the daemon) represents
destructive stress; 0 tries to maximise damage to an orchestration F by dis-
tributing a fixed degree of environmental stress (e.g. resource contention) over
E’s services. In contrast the angel player a represents the self-healing capability
of a system; the angel makes a move by allocating ”benevolent conditions” to a
fixed number of E’s services (e.g. advantageous hardware allocation, no resource
contention). The Nash equilibria of the resulting game provides a broad picture
of how orchestrations react to mixed environmental stress.

The paper is organised as follows. In Section 2 an overview of the Orc lan-
guage [7] and examples of performance variability in the cloud are given; an
abstract game-theoretic (angel daemon) stress model is constructed. In Section
3 a cloud-based matrix multiplication orchestration is developed. The perfor-
mance of matrix multiplication on a range of machine deployments is assessed
using Nash equilibria in Section 4'. In Section 5 it is shown how game theory
can be used to assess the effectiveness of adding redundancy to orchestrations.
In Section 6 the applicability of the approach to other application areas is ex-
amined — for example variant forms of Angel-Daemon game could be used to
analyse the effects of stress on orchestration communications.

2 Orc and a Model of Uncertain Cloud Environments

The language Orc [7] can be used to specify service-based computations and
workflows [2]. A service s may fail to respond (i.e. it is silent) when it is called
in an unreliable environment. A reliable service publishes a single result. In
complex scenarios a service may call on further services and so may cause side
effects elsewhere. Orc contains a number of inbuilt services: 0 is always silent
whereas 1(z) always publishes its argument . Two Orc expressions F and F
can be combined using the following operators:

— Sequence E > x > F(x): The orchestration FE is evaluated: for each output
v, published by F, an instance F(v) is invoked. If E publishes the stream
of values, v1,vs,...v,, then E > x > F(z) publishes some interleaving

L All equiliria of a two person zero-sum game are identical — such assessments could
also be computed by using linear programming.

of the set {F(v1), F(v2),...,F(v,)}. The abbreviation E >> F' is used in
situations where F' is independent of the publication value generated by E.

— Symmetric Parallelism E | F': The independent orchestrations E and F' are ex-
ecuted in parallel; E | F publishes some interleaving of the values published
by E and F.

— Asymmetric parallelism E(x) < x < F: Orchestrations F and F are evaluated
in parallel; £ may become blocked by a dependency on z. The first result
published by F' is bound to z, the remainder of F’s evaluation is terminated
and evaluation of the blocked residue of E is resumed.

Ezample 1. Orchestration Two(d) = (BBC(d)|CNN(d)) > = > Email(Bob, x)
calls two news services in parallel on day d and sends the resulting publica-
tions, via an email service, to Bob. In contrast One(d) = Email(Bob,z) < x <
(BBC(d)|CNN(d)) results in only one news summary for day d (the first avail-
able) being emailed to Bob. O

Uncertain cloud environments can be modelled in Orc. The infrastructure as a
service (laaS) cloud model allows users to control underlying hardware resources.
Consider the following IaaS orchestration for multiplying two matrices, a and b:

P .provision(IMG) > MI > MI.deploy(MM) > MM; > MM, (a,b)

Here a request is made to a provider P to supply a machine instance MI and
configure it with an operating system image IMG; the machine instance is in-
stalled with a matrix multiply service MM ; this service is then used to multiply
the matrices a and b. The quality of service (QoS) realised by MM; depends on
a number of environmental factors [1]. Typically IaaS clouds contain a variety
of machine types. Table 1 shows some of the CPUs on 2012 AWS EC2.

Table 1: A Subset of CPUs available from AWS EC2 in 2012

Instance Model Speed L1 L2 L3
Type (GHz)| Cache | Cache |Cache

ml.small | AMD Opteron 2218 HE| 2.6 |2 x 64KB| 2x IMB | N/A

ml.small Intel Xeon E5420 2.66 |4 x 64KB| 2 x 6MB | N/A

ml.small Intel Xeon E5507 2.26 |4 x 64KB|4 x 256KB| 4MB
cl.xlarge | Intel Xeon E5410 (x2) | 2.333 |4 x 64KB| 2 x 6MB | N/A
cl.xlarge | Intel Xeon E5506 (x2) | 2.133 |4 x 64KB|4 x 256KB| 4MB
ccl.4xlarge| Intel Xeon X5570 (x2) | 2.933 |4 x 64KB|4 x 256KB| 8MB
cgl.xlarge
cc2.8xlarge|Intel Xeon E5-2670 (x2)| 2.6 |8 x 64KB|8 x 256KB| 20MB

In practice the performance of an application may depend critically on the
amount of cache available on its execution platform. The performance of the
M M service may be influenced by the type of hardware supplied by the provider
P in response to the service call P.provision(IMG). Secondly it is important from
a performance point of view that the installed service MM be tuned for the hard-
ware supplied at run-time. In [8] a repository of tuned BLAS? implementations

2 Basic Linear Algebra Subprograms (BLAS) are a library of low-level subroutines
that perform common linear algebra operations

is made available in order to achieve tuning. The performance of MM, (a,b)
on a shared multicore architecture may be critically influenced by the volume
of traffic on the multicore bus which connects cores to on-chip memory. The
performance of an orchestration E in a stressful environment (such as a cloud)
can be modelled by associating a delay function, d(s), with each underlying ser-
vice s, s € a(E)3. Consider a model incorporating both overdemand (o) and
elasticity (e): Overdemand (demonic behaviour) may cause service degradation
(e.g. multi-tenancy leads to memory contention); Elasticity (angelic behaviour)
includes the allocation of the best type of resource and the deployment of extra
resources to support a service, when needed. A tuple (§(s), do(8),0c(8), dote($))
is a stress model [4] which specifies the performance delays associated with a
service s:

0(s) is the delay of s in unstressed situations;

— 0o(s) is the delay associated with s when it is subject to overdemand;
() is the delay associated with s under angelic conditions;

— Joxe(s) is the delay when overdemand and angelic conditions interact.

The constraints: d.(s) < d(s) < 6o(8), de(8) < dore(s) < 0o(s) are assumed.
A stress model for an orchestration F is a set S of underlying service stress
models § = {(6(s),05(5),0e(5),00+e(s)) | s € a(E)}. Here orchestration per-
formance in uncertain environments is assessed using a two-player game: one
player, the daemon (9), has the potential to overload selected services and so
increase delay (using the function ¢,). The other, the angel (a) has the poten-
tial to associate selected services with an idealised operating environment (J;).
Stress-related performance delays for orchestrations are defined using two cost
functions: Apax(E) is the time taken for the generation of all publications of
E and Apin(E) is the time taken for the generation of the first publication. In
the remainder of the paper we consider only pruning expressions of the form
Es(x,y) <y < By < < E7 where the consumer Fj is blocked until both pro-
ducers E; and E, publish. Suppose that [a, d] denotes the sets of services under
the influence of a and 0, respectively. The delay associated with a service s is:

o(s) ifs¢ansé¢d.
do(s) iftsednséa.
e () ifseansé¢d.
Sore(s) ifse(and).

Amin(8)[a, d] = Amax(8)[a,d] =

Orchestration delays are defined by:

Ap(EBr | B2) = k{Ak(E1), Ak(Ba)}, Ak(Er > Ep) = Ay(E1) + Ak(E2)
Ap(s(z) < x < E) = Ap(s) + Amin(F)
Ak(S(l‘,y) <y< El <zr< E2) = maw{Amin(El) 5 Amin(EQ)} + Ak(s)

3 a(F) denotes the set of services used in orchestration E — for example
a(s1(5)[s2(8)) = {s1,s2}, the two services used in the orchestration.

where k& € {min,max}. Thus A,in(E1 | E2) = min{Anin(E1), Amin(E2)},
the time taken for the system FE; | F5 to generate its first publication. Un-
certainty profiles (with cost functions) are used to capture formally the be-
haviour of orchestrations in stressed environments [3,4]. The uncertainty profile
U= (E, A D,ba,bp, Amax) specifies qualitatively a particular set of stress con-
ditions for the orchestration E. Here AUD C a(FE), ba < #A, bp < #D and
the cost function satisfies Apax(E)[a,d] > 0. Let a(FE) denote the set of services
used in E. In the profile:

— A and D denote the sets of services which can be influenced by a and 0,
respectively. When stress can effect all services in E then A =D = «a(F).

— Parameters b4 and bp specify the number of services to suffer angelic and
daemonic stress. For example, (b4,bp) = (1, 1) exemplifies the weakest form
of mixed stress while (b4,bp) = (1,2) is an unbalanced situation.

— The effect of stress on performance is measured by the cost function Ay, ..

Profile Y = (E, A, D,bs,bp, Amax) has an associated zero-sum angel-daemon
game I'(U) = (Aq, Ay, Amax) With players a (angel) and d (daemon). Player a
selects by distinct stressed services from A giving the action set A, = {a C
A | #a = ba}. Player 0 selects bp distinct stressed services from D giving
Ay = {d € D | #d = bp}. The set of combined actions A = A, x Ay is
called the set of strategy profiles. Given I'(U), player a can “make a move” by
selecting an action a € A, (a is called a strategy). Likewise player d can se-
lect an action d € A,. If both players select a strategy independently then the
joint strategy profile is s = (a,d). Players a and ? have costs Apax(E)[a,d]
and —Apax(F)|a, d], respectively. The angel player a wishes to minimise an or-
chestration’s cost delay whereas the daemon 0 wishes to maximise it. Mixed
strategies for players a and 0 are probability distributions « : A, — [0, 1] and
B : Ay — [0,1], respectively. A mized strategy profile is a tuple (a,) such
that Apax(E)[e, Bl = X0 a)ea, x4, ¢(@) Amax(E)[a, d]B(d). Let Aq and Ay de-
note the set of mixed strategies for players a and 0, respectively. A pure strat-
egy profile (a,d) is a special case of a mixed strategy profile («,3) in which
afa) = 1 and B(d) = 1. A mixed strategy profile (a, 8) is a Nash equilibrium
if for any o/ € A,, Apax(E)[a, 8] < Apax(E)[¢/,] and for any ' € A,,
Amax(E)[a, 8] > Amax(E)[a, 8']. A pure Nash equilibrium, PNE, is a Nash equi-
librium (a,d) where a and d are pure strategies. The value of the zero-sum
game I'(U) associated with the uncertainty profile I is denoted by v (i) is
v(U) = mingeas maxgea, Amax(E)[e, 8] = maxgea, mingea, Amax(E)|a, 8].
Strategy (a, 8) is a Nash equilibrium iff Ay (F)[e, 8] = v(U).

3 Matrix Multiplication in the Cloud

A conventional block matrix multiplication (BMM) of an p x r block matrix A
and a 7 x g block matrix B can be defined using the r-way partition: Cj; =
> opeq AikBrj, 1 <i<p,1<j<gq, where A;; and By; denote the blocks of A
and B. The case p = ¢ = r = 2 is shown.

A— A Az _ B11 Bi2 AB — (A11B11 + A12B21) (A11Bi2 + A12B22)
Aoy Az Ba1 Baa (A21B11 + A22B21) (A21Bi2 + A22B22)

Suppose that the services MM and MA, for multiplying and adding small and
medium sized matrices, are deployed in the cloud. For example, the Amazon EC2
ml.small instance has a 1.7GB RAM capacity (enough to accommodate three
64-bit precision 8000 x 8000 matrices) while the EC2 cl.xlarge instance type has
a 7TGB RAM capacity (enough to accommodate three 16000 x 16000 matrices).
Matrices of larger size can be multiplied together by constructing a parallel BMM
orchestration which generates block matrix-vector and dot-product subtasks.

BMMyo([a,b,¢,d],[e, f,g,h]) =
1([w,z,y,2]) < w < DP([a,b],e,g]) < x < DP([a,b],[f,h])
<y< DP([C7 d}v [evg]) <z< DP([C,d], [fv h])

Block dot products may be implemented either sequentially or in parallel:

SeqDP, .5 (la,b], [c,d]) = MM (a,c) > mq > MM (b,d) > mg > MA(my,ms2)
DP3ys([a, 0], [c, d]) = MA(m1,m2) <mi < MM (a,c) <mz < MM(b,d)

Refinement to an IaaS Orchestration. BMMyo can be refined to an or-
chestration which operates in the infrastructure as a cloud model (IaaS); here
cloud hardware resources can be provisioned and managed ezplicitly. The IaaS-
level orchestration below has in its argument list the name of a cloud provider,
P, an operating system image, IMG, as well as the services MM and MA. The
subsidiary orchestration DP; uses P and IMG to provision two machines for
each dot-product.

BMM;([[A11, A2, [Az1, Agz],[Bi1, Beil, [Big, Bezl], P, IMG, MM, MA) =
1([[Cr1, Canl, [Chra, Ca2]))
< Cy; < DPy([A11,A12),[B11,Bes], P, IMG, MM, MA)
< Cy2 < DP;([A11,A12],[Big, Beg], P, IMG, MM, MA)
< Cg; < DP[([Ag1, Ags),[Bi1, Be1], P, IMG, MM , MA)
< Cg9 < DP[([Ag1, Ags),[Big, Bes|, P, IMG, MM , MA)
DP;([A;, As),[By, Be], P, IMG, MM, MA) =
M, .deploy(MA) > MA; > MA(z,y)
< x < M;.deploy(MM) > MM; > MM;(A;, B;)
<y < Mg.deploy(MM) > MMy > MMy(Agz, Bs)
< M; < P.provision(IMG)< Mg < P.provision(IMG)

A Stress Model for BMM. Performance results for executing BMM on clus-
ters of Amazon EC2 cl.xlarge instances (8 CPU cores per instance) are shown
in Table 2:

Table 2: Average, Minimum and Maximum Times (in seconds) for BMM

Matrix|Block|Instances| Avg |Min/Max
Size | Size Used

8000 | 8000 1 41 (m)] 24 | 76
16000 | 16000 1 297.22| 171 | 408
8000 4 151.95| 94 | 206
8000 8 103.55| 77 | 155

Times are calculated using 20 separate tests. Execution time is measured re-
motely from a client and includes internet latency. A stress model for BMM is
constructed by mapping d.(M M) and §,(MM) onto the minimum and max-
imum execution times for MM, respectively. The data for the one instance
8000 x 8000 experiment is used to build a qualitative model*. Speed-up pre-
dictions made by the uncertainty model are upper-bounds on actual speed-ups
[8] since latency is not taken into account. The following stress model S results:

S(MA) = bpre(MA) = a, 6(MM) = dote(MM) =m,
do(MA) = 2% a, §o(MM) =2xm, §.(MA) =0.5%a, d.(MM) =0.5%xm

4 Assessing BMM Orchestrations under Stress

The IaaS model allows application developers to control directly the degree of
parallelism employed by a cloud implementation. Three possible IaaS deploy-
ment configurations for BM M are considered below:

— single machine BMM : The performance is estimated by the performance of
a intra-machine deployment (sequential implementation) of BM May .

— dot product inter-machine virtualisation (BM Mgseqpp): here a separate ma-
chine instance is allocated to each of the 4 dot products in BMM.

— fully parallel inter-machine virtualisation (BM M7): here a separate machine
instance is allocated to each of the 8 matrix multiplication services.

BLAS Routines and Intra-machine Virtualization. Matrix multiplication
is implemented on a single machine instance using BLAS library calls. Perfor-
mance is modelled using a uniform stress model where all services (on a single
core) are subject to the same level of stress. The performance of sequential dot
product in an environment with a stress level [, [€ {o,e,0 + e} is estimated by
Ay(SeqDPy, o) = 26,(MM) + §;(MA). The performance of sequential BMM oy
under mixed stress is estimated by Agpe(BMMayao) = 4A4,40(SeqDPyys) =
4(2m + a) Since m >> a then A,i(BMM3yy2) =~ 8m (roughly in line with
the experimental data for sequential matrix multiplication on 8000 x 8000 and
16000 x 16000 data — see Table 2).

4 The cost of matrix multiplication etc depend on the problem size. However, in order
to simplify the analysis a fixed problem size is used.

Inter-machine Virtualization. A uniform stress model does not capture the
uncertain nature of service-based environments where deployment may take
place on independent machine instances. Orchestration BMM geqpp has inde-
pendent machine instances allocated to each dot product:

BMMSquP([avba Cy d]’ [ea f7gvh]) =
L([w, z,y, 2]) <w < SeqDP([a,b],[e, g]) <z < SeqDPy([a,b],[f, h])
<y < SeqDP4([c,d],[e,g]) < z < SeqDP ,([e,d], [f, h])

The profiled = (BMM seqpp, S, S, 1,1, Apax) where S = {SeqDP,, ..., SeqDP,}
models BM Mg.qpp under moderate balanced stress and gives rise to the game:

0
DP, DP, DPs4 DP,
DPq |2m+a |[4m + 2a |[4m + 2a |4m + 2a
aDPg dm+2a | 2m+a |[4m + 2a |4m + 2a
DPs |[dm +2a|dm +2a | 2m +a |4m + 2a
DPy4 |4m + 2a |4m + 2a |[4m +2a | 2m + a

The strategy a = 8 = (1/4,1/4,1/4,1/4) is an equilibrium with delay A(a, 8) =
> (DP;)B(DP;)A(DP;, DP;) = 7(2m + a)/4 ~ Tm/2. Table 2 shows that
multiplication of matrices of size 16000 x 16000, takes 151.95 ~ 3.7m seconds.

Fully Parallel TaaS Deployment. In order to achieve high performance all
MM instances in BMM 542 are called in parallel (using DPsy2). The orchestra-
tion BMMj has eight (parallel) instances of MM and four instances of MA. Thus
S={MM;,...,.MMg, MA,,...,MA,} is the set of services under the influence
of stress. Profile i/ = (BMM,S,S,1,1, Anax) provides a model of the behaviour
of BMM in a mixed stress environment (where both angel and daemon have
the capacity to influence a single service) and gives rise to the associated game

0
MM, MA,
o MM; (m+a)<(i=7)>(2m+a) m+ 2a
MAy 2m +a/2 (m+a)<(k=0Dv>(m+ 2a)

i,7€{L,...,8} and k,l € {1,...,4}

Here the notation PQ (denoting ‘P if b else Q") is used to provide a compact
description. If both players choose MM, then BMM ; will have performance
m++a; however if they choose different M M instances then performance degrades
to 2m + a (a parallel computation is only as fast as its slowest component).
Whenm > 4a, 0 =8=1(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8,0,0,0,0) is a mixed
equilibrium such that A(a, 8) = %‘Sm + a. Thus mixed stress is predicted to
degrade the performance of BMM from an optimium m + a to 15m/8 + a. In
this case there is a discrepancy between experimental data (= 2.5m) and the
game theory predication (& %m) However, the latter approach provides a much
better performance estimate than a uniform stress model (=~ m).

5 Redundancy and Increased Stress Levels

In practice BMM orchestration deployments with 64 or more machine instances
may have reliability issues due either to slow or non-responsive services [6].
The a/? approach can be applied to reason about the use of redundancy to
improve orchestration resilience. Service D P55 can be enhanced by the addition
of duplicate multiplication services:

rdntMM -DPxs([a,b], [c,d]) =
MA(my,ma) <my < (1(m) <m < (MM(a,c) | MM3(a,c)))
<my < (1(m) < m < (MM3(b,d)) | MM4(b,d)))

Here MM, MMy, MM 3, MM 4 are independent services. A mixed-stress pro-
file for rdntMM _DP is Urdntviv_pp = (rdnt_DP3x2S,S,1,1, Apax) where S =
{MA, MM;, MMy, MM, MM, }. The associated a/0-game has (MA, MA) as PNE
with valuation m + a. Thus, it is predicted that adding redundancy improves
performance of dot product from 3m/2 + a to m + a. Four rdntMM _DP can be
incorporated within BMM 5«2 in order to improve the overall QoS. This situa-
tion is assessed using the profile U = (rdntMM _BMM3x2,S,S,1,1, Apnax) where
S={MAy,...,MAy, MM, ..., MM16}. The resulting a/v-game has (MA, MA)
as a PNE with valuation m + a (compared to the estimated 15m/8 + a for the
normal implementation).

Dot product with in-built redundancy (above) can be analysed in a sce-
nario with increased stress where the daemon influences two services whereas
the angel can only moderate one. The situation is captured by the profile U =
(rdntMM _DP3y5,S,S8,1,2, Apax), S = {MM;, ..., MM,;, MA}. The associated
game has no PNE. However mixed equilibria have valuations 3/2m + a. Thus,
additional stress causes dot product (with redundancy) to deteriorate from
m + a to 3/2m + a. The behaviour of the full multiplication orchestration
rdntMM _BMM 5«5 under increased stress can be analysed in a similar way using
the profile U = (rdntMM _BMM2,S,S,1,2, Anax). Provided that m > 4a the
value of the a/0-game is 15m/8 + a. Thus, additional stress is predicted to cause
an approximate doubling in the execution time of rdntMM _BMM .

6 Discussion

There are well established theories for estimating the performance of sequen-
tial and parallel computations with respect to the number of operations that
are executed for a given size of input. Analysing performance in service-based
environments is much more complex. A conventional orchestration cost model
captures behaviour in favourable operating conditions. More generally, the be-
haviour of an orchestration is dependent on the current level of environmental
stress and the resilience of underlying services. In this paper uncertainty pro-
files are used to model the competitive circumstances that arise when services
are subject to the effects of both overdemand and elasticity. The model a/o-
model provides an extra layer of understanding about the evaluation of complex
orchestrations.

There is a reasonable correlation between the predictions made by the a/0-
model and experimental data. It is important to remember that uncertainty pro-
files are qualitative descriptions of evaluation environments; a/0-games provide a
broad picture of how stress affects orchestration behaviour. Our aim is to provide
a framework in which designers can analyse the effects of resource contention on
services and orchestrations (rather than having to rely on a trial-and-error ap-
proach). In the paper we demonstrate how a/0 performance parameters can be
constructed from experimental data. Perhaps the usefulness of the model can be
seen most clearly when analysing the stress resilience capabilities of a number
of different forms of a workflow.

It is not clear how the a/0d approach scales with orchestration size. In general
it may be difficult to calculate Nash equilibria for large irregular orchestrations.
However, it should be noted that there are practical techniques for finding mixed
equilibria of large games [5]. In this paper attention has been focused on the effect
that resource contention can have on machine and orchestration performance.

References

1. Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, and John A. Thy-
wissen. Qos-aware management of monotonic service orchestrations. Formal Meth-
ods in System Design, 44(1):1-43, 2014.

2. William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns in
Orc. In Paolo Ciancarini and Herbert Wiklicky, editors, Coordination Models and
Languages, 8th International Conference, COORDINATION 2006, Bologna, Italy,
June 14-16, Proceedings, volume 4038 of LNCS, pages 82-96. Springer, Berlin,
2006.

3. J. Gabarro, M. Serna, and A. Stewart. Web services and incerta spiriti: A game
theoretic approach to uncertainty. In W. Liu, editor, ECSQARU 2011, Belfast,
UK, June 29-July 1, volume 6717 of LNCS, pages 651662, Berlin, 2011. Springer-
Verlag.

4. Joaquim Gabarro, Maria Serna, , and Alan Stewart. Analysing web-orchestrations
under stress using uncertainty profiles. Comput. J., 57(11):1591-1615, 2014.

5. Albert Xin Jiang, Manish Jain, and Milind Tambe. Computational game theory
for security and sustainability. JIP, 22(2):176-185, 2014.

6. Antony Keenan. Orchestrating Hight Performance Services: Theory and Practice,
PhD Thesis, 2014.

7. Jayadev Misra and William R. Cook. Computation orchestration: A asis for wide-
area computing. Software and System Modeling, 6(1):83-110, 2007.

8. Terence Harmer Anthony Keenan Alan Stewart Peter Wright, Yih Leong Sun and
Ronald Perrott. A constraints-based resource discovery model for multi-provider
cloud environments,. Journal of Cloud Computing: Advances, Systems and Appli-
cations, 1:1-14, 2012.

9. Carl A. Waldspurger and Mendel Rosenblum. I/O virtualization. Commun. ACM,
55(1):66-73, 2012.

