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Abstract. We study a system modeling thermomechanical deformations for mixtures of ther-
moelastic solids with two different temperatures, that is, when each component of the mixture
has its own temperature. In particular, we investigate the asymptotic behavior of the related
solutions. We prove the exponential stability of solutions for a generic class of materials. In
case of the coupling matrix B being singular, we find that in general the corresponding semi-
group is not exponentially stable. In this case we obtain that the corresponding solution decays
polynomially as t−1/2 in case of Neumann boundary condition. Additionally, we show that the
rate of decay is optimal. For Dirichlet boundary condition, we prove that the rate of decay is
t−1/6. Finally, we demonstrate the impossibility of time-localization of solutions in case that
two coefficients (related with the thermal conductivity constants) agree.

1. Introduction

Under the theory of non-classical elastic solids we understand certain generalizations of the
classical theory of elasticity. The most known non-classical elastic solids are the elastic solids
with voids, micropolar elastic solids, nonsimple elastic solids and the mixtures of elastic solids.
Micropolar elastic solids have first been introduced by the Cosserat brothers at the begining
of the last century and they were recovered, analyzed and extended by Eringen and many
other researchers in the second part of the past century. For an overview on these so called
microcontinuum theories we refer, e.g., to [10,11,21]. In the same period, the theories concerning
the nonsimple materials, materials with voids and mixtures of material were established. It is
worth recalling here the book of Ieşan [15] where several of these theories are analyzed. This
manuscript is concerned with one of these theories: the mixtures of elastic solids.

Thermoelastic mixtures of solids have deserved a big interest in the last decades (see, e.g.,
[4, 5, 7, 8, 12, 13, 29, 30]). Qualitative properties of solutions to the problems defining this kind
of materials have been the scope of many investigations. Several results concerning existence,
uniqueness, continuous dependence and asymptotic stability can be found in the literature [1–
3,16, 19, 26, 27]. In this paper, we study the decay of solutions in case of a one-dimensional rod
composed by a mixture of two thermoelastic solids with two different temperatures. We will
prove the exponential stability in a generic case, however, we cannot expect that the solutions can
identically vanish after a finite time and we will see the impossibility of localization for various
scenarios. In several situations, the decay is not so fast and we will prove the polynomial decay
for these situations. It is worth recalling that studying the rate of decay of the solutions for
several non-classical theories has been the goal of many articles in this last decade [18, 22–24].
Thus, the present paper aims to be a new contribution in this line.

For a rod composed by a mixture of two interacting continua occupying the interval (0, `)
the displacements of each component of typical particles at time t are denoted, by u and w,
respectively, where u = u(x, t) : (0, `) × (0, T ) → R and w = w(y, t) : (0, `) × (0, T ) → R, with
T > 0. We assume that the particles under consideration are in the same position at time t = 0,
so that x = y.
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2 J.E. MUÑOZ RIVERA, M.G. NASO, AND R. QUINTANILLA

We also assume the existences of two different temperatures (see [14]), in each point x and
at time t, given by θi = θi(x, t) : (0, `) × (0, T ) → R, i = 1, 2. We denote by ρi, i = 1, 2 the
mass density of each constituent at time t = 0. We introduce T and S as the partial stresses
associated with these two constituents, P the internal diffusive force, Ξ(i), i = 1, 2, the entropy
densities, Q(i), i = 1, 2, the heat flux vector and T0 is the absolute temperature in the reference
configuration. In the absence of body forces, the system consists of the following equations:

- equations of motion

ρ1 utt = Tx − P, ρ2wtt = Sx + P, (1.1)

- energy equations

ρ1 T0 Ξ(1)
t = Q(1)

x +W (1) +G, ρ2T0 Ξ(2)
t = Q(2)

x +W (2) −G, (1.2)

- constitutive equations

T = a11ux + a12wx − β1θ1 − β2θ2, S = a12ux + a22wx − γ1θ1 − γ2θ2, (1.3)

P = α(u− w), G = −a(θ1 − θ2), (1.4)

ρ1 Ξ(1) = β1ux + β2wx +M
(1)
1 θ1 +M

(1)
2 θ2 + T−1

0 ρ2κ
(2)
1 (θ1 − θ2), (1.5)

ρ2 Ξ(2) = γ1ux + γ2wx +M
(1)
2 θ1 +M

(2)
2 θ2 + T−1

0 ρ1κ
(1)
2 (θ1 − θ2), (1.6)

Q(1) = K11θ1,x +K12θ2,x, Q(2) = K21θ1,x +K22θ2,x. (1.7)

Functions W (i) are given by

W (1) = ρ1κ
(1)
2 θ2,t − ρ2κ

(2)
1 θ1,t, W (2) = ρ2κ

(2)
1 θ1,t − ρ1κ

(1)
2 θ2,t. (1.8)

If we denote

b1 = T0M
(1)
1 + 2ρ2κ

(2)
1 , b2 = T0M

(1)
2 − ρ1κ

(1)
2 − ρ2κ

(2)
1 , b3 = M

(2)
2 + 2ρ2κ

(1)
2 ,

and substitute constitutive equations (1.3)–(1.8) into dynamical equations (1.1)–(1.2), we obtain
the following evolution system

ρ1utt − a11uxx − a12wxx + α(u− w) + β1θ1,x + β2θ2,x = 0 in (0, `)× (0, T ),

ρ2wtt − a12uxx − a22wxx − α(u− w) + γ1θ1,x + γ2θ2,x = 0 in (0, `)× (0, T ),

b1θ1,t + b2θ2,t −K11θ1,xx −K12θ2,xx + β1uxt + β2wxt + a(θ1 − θ2) = 0 in (0, `)× (0, T ),

b2θ1,t + b3θ2,t −K21θ1,xx −K22θ2,xx + γ1uxt + γ2wxt − a(θ1 − θ2) = 0 in (0, `)× (0, T ),

where, for the sake of simplicity, we assume that T0 = 1. Therefore the corresponding evolution
system can be written as

R1Utt −AUxx + αNU + BΥx = 0, in (0, `)× (0, T ), (1.9)

R2Υt −KΥxx + aNΥ + BUxt = 0, in (0, `)× (0, T ). (1.10)

Here

U =

(
u
w

)
, Υ =

(
θ1

θ2

)
,

A = (aij)2×2, R1 = (δijρi)2×2, R2 = (bi)2×2,
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are symmetric matrices, δij is the usual Kroneker’s delta, K = (Kij)2×2, N = ((−1)i+j)2×2

and B =

(
β1 β2

γ1 γ2

)
∈ R2×2. In general B is neither symmetrical nor positive definite. We

supplement our system with the initial conditions

U(x, 0) =

(
u0

w0

)
, Ut(x, 0) =

(
u1

w1

)
, Υ(x, 0) =

(
θ10

θ20

)
, (1.11)

and boundary conditions

U(0, t) = U(`, t) = Υ(0, t) = Υ(`, t) = 0. (1.12)

Alternatively, we can also consider the Dirichlet–Neumann boundary conditions, namely

U(0, t) = U(`, t) = Υx(0, t) = Υx(`, t) = 01. (1.13)

We state the general assumptions we impose in the paper:

(H.1) The mass densities are positive numbers, i.e., ρ1 > 0 and ρ2 > 0.
(H.2) The matrices A,R2 and K are positive definite.
(H.3) The constitutive parameters α and a are positive, i. e., α > 0 and a > 0.

The system of field equations is composed of four equations. We will show that the coupling
is generically so strong that the thermal dissipation brings the whole system to an exponential
decay. We will say that the decay of the solutions is exponential if they are exponentially stable
and, if they are not, we will say that the decay of the solutions is slow.

Concerning the terminology, we do not distinguish between the stability of our problem and
its associated solution.

In two recent papers [2, 20], the authors proved that, under suitable conditions on the coeffi-
cients of the problem, the solution decays exponentially in the case of one temperature. Here, we
want to continue this line of study and to improve the result under the following point of view.
When two different temperatures are considered, the coupling is so strong that the exponential
decay is guaranteed whenever the vectors which define the coupling are linearly independent.
Consequently, we find a sufficient condition to guarantee that the imaginary axis is contained
in the resolvent, and then the exponential decay of solutions. Some other situations, where the
exponential decay of solutions holds, are presented.

In linear thermoelasticity, the asymptotic behavior of solutions as t→ +∞ has been studied
by many authors. We refer, e.g., to the book of Liu and Zheng [17] for a general survey on
those topics. For the system (1.9)–(1.12) we can not expect that its solution always decays
exponentially. For instance, in case that β1 +β2 = γ1 +γ2 = 0 and ρ2(a11 +a12) = ρ1(a12 +a22),
we can obtain solutions of the form u = w and θ1 = θ2 = 0. These solutions are undamped
and do not decay to zero. When β1 = β2 = γ1 = γ2 = 0, the mechanical and thermal parts are
not coupled and the displacements do not decay. These are very particular cases, but we will
see that there are some other cases where the solutions decay, but the decay is not so fast to
be controlled by an exponential function. By applying also some results obtained recently (see,
e.g., [6]), polynomial decay will be proved in these cases.

Our main aim is to show that the C0-semigroup (and thus the solution U(t)) associated with
system (1.9)–(1.12) is exponentially stable if suitable conditions on the coefficients are satisfied.

This paper is organized as follows. In Section 2, we establish the well-posedness of system
(1.9)–(1.12). The exponential stability in a generic case is proved in Section 3. Later in Section 4
we present several cases where the decay is not exponential, and for these cases in Section 5
we obtain the polynomial decay. Finally, Section 6 is devoted to proving the impossibility of
localization of the solutions when we assume that K12 = K21.

1We point out that this boundary condition is not sound from a thermomechanical point of view. Therefore,
our viewpoint with respect this boundary condition is mainly mathematical.
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2. Existence and uniqueness of solutions

The aim of this section is to prove existence and uniqueness of solutions for problem (1.9)–
(1.12) or (1.9)–(1.11), (1.13).

We denote by 〈·, ·〉 and ‖ · ‖ the inner product and the norm defined on L2(0, `), respectively.
In general, for a Banach space X, we let ‖ · ‖X be the usual norm defined on X. Moreover, for
the sake of simplicity, here and in that follows we will employ the same symbols C and c for
different constants, even in the same formula.

In case of Dirichlet thermal boundary conditions, let us consider the vectorial space

H = [H1
0 (0, `)]2 × [L2(0, `)]2 × [L2(0, `)]2.

In case of Neumann thermal boundary conditions we take

H∗ = [H1
0 (0, `)]2 × [L2(0, `)]2 × [L2

∗(0, `)]
2,

where

L2
∗(0, `) =

{
f ∈ L2(0, `) :

∫ `

0
f(x) dx = 0

}
, H1

∗ (0, `) = H1(0, `) ∩ L2
∗(0, `).

Here and in that follows we denote by M> the transpose of a matrix M . Putting Y = Ut, for
any couple of vectors U = (U, Y,Υ)>, U∗ = (U∗, Y ∗,Υ∗)> in the phase space H (or H∗) we
define the inner product

〈U,U∗〉H =

∫ `

0

(
U>x AU∗x + Y >R1Y

∗ + αU>NU∗ + Υ>R2Υ∗
)
dx.

It constitutes a squared norm

‖U‖2H =

∫ `

0

(
U>x AUx + Y >R1Y + αU>NU + Υ>R2Υ

)
dx.

Together with the above defined inner product, the phase space is a Hilbert space. In particular,
there exist two positive constants c0 and c1 such that inequality

c0|||U||| ≤ ‖U‖H ≤ c1|||U|||

is satisfied, with

|||U|||2 = ‖ux‖2 + ‖wx‖2 + ‖v‖2 + ‖η‖2 + ‖θ1‖2 + ‖θ2‖2.

We now consider the matrix operator

A =


0 I 0

R−1
1 A∂2

x − αR−1
1 N 0 −R−1

1 B∂x

0 −R−1
2 B∂x R−1

2 K∂2
x − aR−1

2 N

 ,

where here I and 0 are the 2×2 identity matrix and the 2×2 zero matrix, respectively. Symbols
∂x and ∂2

x denote the first and second–order partial derivatives with respect to the spatial variable
x.

Under boundary conditions (1.12) the domain of operator A is

D(A) = [H1
0 (0, `) ∩H2(0, `)]2 × [H1

0 (0, `)]2 × [H1
0 (0, `) ∩H2(0, `)]2.

In case of Dirichlet–Neumann boundary condition (1.13) we have

D(A) = [H1
0 (0, `) ∩H2(0, `)]2 × [H1

0 (0, `)]2 × [H2
∗ (0, `)]

2,

where H2
∗ (0, `) =

{
f ∈ H2(0, `) : fx(0) = fx(`) = 0

}
∩ L2

∗(0, `).
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The domain D(A) is dense in the Hilbert space H. Our initial-boundary value problem
(1.9)–(1.12) or (1.9)–(1.11), (1.13) can be rewritten as the following initial abstract form

d

dt
U(t) = AU(t), U(0) = U0,

where U0 = (U(x, 0), Ut(x, 0),Υ(x, 0))> and according to (1.11).

Lemma 2.1. Under hypotheses (H.1)–(H.3), the operator A is the infinitesimal generator of a
C0-semigroup of contractions denoted by S(t) = eAt, t ≥ 0.

Proof. It is enough to show that A is a dissipative operator and 0 ∈ ρ(A) (see, [17], pag. 3,
Theorem 1.2.4).
In fact, because of (H.2)–(H.3),

Re〈AU,U〉H = −Re

∫ `

0

(
Υ>x KΥx + aΥ>NΥ

)
dx ≤ 0. (2.1)

Therefore, the operator A is dissipative. We now prove that for λ = 0, the resolvent system

iλU − Y = FU , (2.2)

iλR1Y −AUxx + αNU + BΥx = R1FY , (2.3)

iλR2Υ−KΥxx + aNΥ + BYx = R2FΥ. (2.4)

has a unique solution U = (U, V,Υ)> in D(A). In fact, from (2.2) and (2.4) (λ = 0) we get

KΥxx − aNΥ = −R2FΥ −BFU,x, in [L2(0, `)]2 (or [L2
∗(0, `)]

2),

which is a well-posed second-order Dirichlet (or Neumann) elliptic PDE for Υ. With Υ known,
we have that (2.3) is a well-posed problem for U . Therefore, there exists only one solution to
the AU = F . Since

‖U‖H ≤ C‖F‖H,
with C > 0, we conclude that 0 ∈ %(A). �

Consequently, we establish the following result.

Proposition 2.2. For any U0 ∈ H (or H∗), there exists a unique solution U = (u,w, ut, wt, θ1, θ2)
of system (1.9)–(1.12) (or (1.9)–(1.11), (1.13)) satisfying

u,w ∈ C(0, T ;H1
0 (0, `)) ∩ C1(0, T ;L2(0, `)),

θ1, θ2 ∈ C(0, T ;L2(0, `)) ∩ L2(0, T ;H1(0, `)),

(or
u,w ∈ C(0, T ;H1

0 (0, `)) ∩ C1(0, T ;L2(0, `)),

θ1, θ2 ∈ C(0, T ;L2(0, `)) ∩ L2(0, T ;H1
∗ (0, `))

)
.

3. A generic case. Exponential stability

The asymptotic behavior of solutions is determined by the coupling between the conservative
and the dissipative parts of the system, that is, the parameters β1, β2, γ1, γ2. A generic assump-
tion is to assume that the vectors (β1, β2) and (γ1, γ2) are linearly independent. The main aim
of this section is to verify that this is a sufficient condition to guarantee the exponential stability
of the solutions. We also prove the exponential stability in case when these vectors are linearly
dependent.

Because of the result due to J. Prüss [25], it is well-known that the exponential stability
depends on the uniform estimate of the resolvent operator over the imaginary axes. This result
is contained in the following Theorem.
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Theorem 3.1. Let S(t) = eAt, t ≥ 0, be a C0-semigroup of contractions on a Hilbert space.
Then (S(t))t≥0 is exponentially stable if and only if iR ⊂ ρ(A) and

lim
|λ|→∞

||(iλI − A)−1||L(H) <∞. (3.1)

Note that taking an inner product in H with U and using (2.1), we get

Re

∫ `

0

(
Υ>x KΥx + aΥ>NΥ

)
dx ≤ ‖U‖H‖F‖H. (3.2)

Let us remind that the one-dimensional thermoelastic model is exponentially stable. From the
mathematical point of view, it means that a one-dimensional hyperbolic equation coupled to
one parabolic equation results in a two by two system which is exponentially stable. Can we
extend this result? That is to say, if we have two hyperbolic systems coupled with two parabolic
system, does the resulting four-by-four system is exponentially stable? It is natural to expect
that the answer will depend on the coupling terms which are determined by the matrix B.

We have three possibilities, if B = 0, the system is conservative. If Rank(B) = 2, we prove
that the system is exponentially stable. Finally, the interesting case is when the Rank(B) = 1,
that is, B can be written as

B =

(
β1 β2

τβ1 τβ2

)
=

( −→
β

τ
−→
β

)
∈ R2×2,

−→
ϑ =

(
1
τ

)
∈ R2 (3.3)

for some real number τ . In what follows, −→v ·Z denotes the scalar product of the vector −→v and
the column vector Z.

Because of the structure of the system, we have that
−→
β ·Y is bounded in sense of Lemma 3.4

below. To show the exponential stability, we need to find another direction denoted as
−→
ζ such

that
−→
ζ and

−→
β is a basis of R2 and

−→
ζ ·Y is bounded. The next Lemma plays an important role

in the sequel.

Lemma 3.2. Let
−→
β and

−→
ζ be two linearly independent vectors. Assume that for every ε > 0

there exists a constant Cε such that the inequality(
‖
−→
β · Y ‖2 + ‖

−→
ζ · Y ‖2

)
≤ ε‖U‖2H + Cε|λ|p‖F‖2H,

or (
‖
−→
β · Ux‖2 + ‖

−→
ζ · Ux‖2

)
≤ ε‖U‖2H + Cε|λ|p‖F‖2H,

holds for every λ ∈ R and p ∈ [0,∞). Then we have that

‖U‖2H ≤ cε|λ|p‖F‖2H.

Proof. Let us denote −→
β = (β1, β2), and

−→
ζ = (ζ1, ζ2).

By the assumption, there exist two bounded functions F and G such that
−→
β ·Y = β1y1+β2y2 = F

and
−→
ζ · Y = ζ1y1 + ζ2y2 = G, which implies that

y1 =
Fζ2 −Gβ2

β1ζ2 − β2ζ1
, y2 = − Fζ1 −Gβ1

β1ζ2 − β2ζ1
.

Therefore, each component of Y is bounded. In fact, we can deduce that the inequality

‖Y ‖2 ≤ ε‖U‖2H + Cε|λ|p‖F‖2H (3.4)

holds for every λ ∈ R. Finally, multiplying by U Equation (2.3) and using (2.2), we get∫ `

0

(
U>x AUx + αU>NU

)
dx =

∫ `

0
Y >R1Y dx−

∫ `

0
U>BΥx dx+

∫ `

0
U>R1FU dx+

∫ `

0
F>Y R1Y dx.
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Recalling the definition of the norm of ‖U‖H, we get that the above identity implies that

‖U‖2H = 2

∫ `

0
Y >R1Y dx−

∫ `

0
U>BΥx dx+

∫ `

0
Υ>R2Υ dx+

∫ `

0
U>R1FU dx+

∫ `

0
F>Y R1Y dx.

Using Poincaré’s inequality and the estimate in Equation (3.2), we get

‖U‖2H ≤ C‖Y ‖2 +
ε

4
‖U‖2H + cε‖Υx‖2 + C‖U‖H‖F‖H

≤ C‖Y ‖2 +
ε

2
‖U‖2H + cε‖F‖2H.

In view of the estimate (3.4), we have that ‖U‖2H ≤ cε|λ|p‖F‖2H for ε small and |λ| large. Then

the first part of our claim follows. Finally, multiplying equation (2.3) by
−→
ζ R−1

1 , we get

iλ
−→
ζ · Y −

−→
ζ ·R−1

1 AUxx + α
−→
ζ ·R−1

1 NU +
−→
ζ ·R−1

1 BΥx =
−→
ζ · FY .

Multiplying the above equation by
−→
ζ · U and using Poincaré’s inequality, we get

‖
−→
ζ · Y ‖2 = −〈

−→
ζ ·R−1

1 AUx ,
−→
ζ · Ux〉 − 〈α

−→
ζ ·R−1

1 NU +
−→
ζ ·R−1

1 BΥx ,
−→
ζ · U〉

+〈
−→
ζ · FY ,

−→
ζ · U〉 − 〈

−→
ζ · Y ,

−→
ζ · FU 〉

≤ cε‖
−→
ζ · Ux‖2H + ε‖Ux‖2H + Cε‖Fx‖2H.

So we have that
−→
ζ ·Y is bounded, and using the first part of this Lemma, our claim follows. �

From now on we will consider the dissipative directions,

−→
N = (1,−1),

−→
β = (β1, β2),

−→
β ⊥ = (β2,−β1).

We assume that the vectors
−→
N and

−→
β are linearly independent. Our goal is to get estimates for

U and Y in the direction of
−→
N ,
−→
β . To this end, we introduce the functions V , W , Ψ, Φ and Θ

given by

V =
−→
β · U, W =

−→
N · U, Ψ =

−→
β · Y, Φ =

−→
N · Y, Θ =

−→
β ·Υ. (3.5)

From Equation (2.3) we have that

iλR1Y −AUxx + α
−→
NW +

−→
ϑΘx = R1FU , (3.6)

where
−→
ϑ = (1, τ) is given in (3.3). Therefore,

iλY −R−1
1 AUxx + αR−1

1

−→
NW + R−1

1

−→
ϑΘx = FU . (3.7)

Taking the inner product with
−→
β , we get

iλ
−→
β · Y −

−→
β ·R−1

1 AUxx + α
−→
β ·R−1

1

−→
N︸ ︷︷ ︸

:=αχ

W +
−→
β ·R−1

1

−→
ϑ︸ ︷︷ ︸

:=σ∗

Θx =
−→
β · FU , (3.8)

where

χ :=
β1

ρ1
− β2

ρ2
and σ∗ :=

β1

ρ1
+
β2τ

ρ2
. (3.9)

This number will be important to describe the asymptotic behavior of corresponding semigroup.
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Lemma 3.3. Let U satisfy homogeneous Dirichlet boundary conditions. With notations as
above, we find

|Ux(0)|2 + |Ux(`)|2 ≤ C
(
‖Ux‖2 + ‖Y ‖2

)
+ c‖U‖H‖F‖H.

In case that Rank(B) = 1 and
−→
β ,
−→
β R−1

1 A are linearly dependent, we have

|
−→
β · Ux(0)|2 + |

−→
β · Ux(`)|2 ≤ C

(
‖
−→
β · Y ‖2 + ‖W‖2

)
+ c‖U‖H‖F‖H, (3.10)

‖
−→
β · Ux‖2 ≤ cδ‖

−→
β · Y ‖2 +

δ

|λ|2
‖W‖2 +

c

|λ|
‖U‖H‖F‖H. (3.11)

Moreover

|Υx(`)|2 ≤ c|λ|
(
‖U‖H‖F‖H + ‖

−→
β · Ux‖2

)
+
C

|λ|
‖F‖2H. (3.12)

Proof. Multiplying Equation (2.3) by (x− `/2)Ux, integrating by parts and taking the real part,
our first claim follows.

If
−→
β ,
−→
β R−1

1 A are linearly dependent, we can write
−→
β ·R−1

1 AZ = γ0
−→
β · Z, for any column

vector Z. Hence, from (3.8) , we have

iλ
−→
β · Y − γ0

−→
β · Uxx + αχW + σ∗Θx =

−→
β · FU , (3.13)

Multiplying Equation (3.13) by (x− `/2)
−→
β · Ux, integrating by parts and taking the real part,

we get

|
−→
β · Ux(0)|2 + |

−→
β · Ux(`)|2 ≤ C

(
‖
−→
β · Ux‖2 + ‖

−→
β · Y ‖2

)
+ ‖W‖2 + c‖U‖H‖F‖H. (3.14)

Multiplying Equation (3.13) by
−→
β · U , we obtain

‖
−→
β · Ux‖2 ≤ c‖

−→
β · Y ‖2 +

c

|λ|2
‖W‖2 + c‖

−→
β · U‖‖F‖H +

c

|λ|
‖U‖H‖F‖H. (3.15)

Here, we used (2.2) and

Re

∫ `

0
W
−→
β · U dx = Re

1

iλ

∫ `

0
W

(
−→
β · Y +

−→
β · FU

)
dx

≤ c

|λ|2
‖W‖2 +

c

|λ|2
‖U‖H‖F‖H + c‖

−→
β · Y ‖2,

Re

∫ `

0
Θx
−→
β · U dx = Re

1

iλ

∫ `

0
Θx

(
−→
β · Y +

−→
β · FU

)
dx

= Re
1

iλ

∫ `

0
Θx
−→
β · Y dx− Re

1

iλ

∫ `

0
Θ
−→
β · FU,x dx

≤ c

|λ|
‖U‖H‖F‖H + c‖

−→
β · Y ‖2.

From inequalities (3.14) and (3.15), our claim follows for λ large enough. Using (2.4), we get

‖Υxx‖ ≤ c|λ|
(
‖Υ‖+ ‖

−→
β · Ux‖

)
+ C‖F‖H, (3.16)

Since

|Υx(`)| ≤ C‖Υ‖H3/2 ≤ C‖Υx‖1/2‖Υxx‖1/2,
we see

|Υx(`)|2 ≤ c|λ|
(
‖Υx‖‖Υ‖+ ‖Υx‖‖

−→
β · Ux‖

)
+ C‖F‖H‖Υ‖H1 . (3.17)
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Therefore, we obtain

|Υx(`)|2 ≤ c|λ|
(
‖F‖H‖U‖H + ‖F‖1/2H ‖U‖

1/2
H ‖
−→
β · Ux‖

)
+ C
‖F‖H
|λ|1/2

(|λ|1/2‖F‖1/2H ‖U‖
1/2
H ).

Exploiting the arithmetic-geometric mean inequality, we obtain the estimate. �

Lemma 3.4. With the above notations, for any ε > 0, there exists Cε > 0 such that

‖BY ‖2 ≤ ε‖U‖2H + Cε‖F‖2H. (3.18)

In case that Rank(B) = 1 and
−→
β , R−1

1

−→
β A are linearly dependent vectors, with the Neumann

boundary condition for Υ , we get

‖
−→
β · Y ‖2 ≤ ε

|λ|2
‖U‖2H + Cε|λ|2‖F‖2H. (3.19)

Instead, for the Dirichlet boundary condition for Υ, we have

‖
−→
β · Y ‖2 ≤ ε

|λ|4
‖U‖2H + Cε|λ|8‖F‖2H. (3.20)

Proof. Multiplying Equation (2.4) by

∫ x

0
BY ds, we get

‖BY ‖2 =

∫ `

0
(iλR2Υ−KΥxx + aNΥ−R2FΥ)

(∫ x

0
BY ds

)
dx

=

∫ `

0
iλR2Υ

(∫ x

0
BY ds

)
dx−

∫ `

0
KΥxx

(∫ x

0
BY ds

)
dx

+

∫ `

0
aNΥ

(∫ x

0
BY ds

)
dx−

∫ `

0
R2FΥ

(∫ x

0
BY ds

)
dx

=

∫ `

0
iλR2Υ

(∫ x

0
BY ds

)
dx︸ ︷︷ ︸

:=J

−KΥx(`)

∫ `

0
BY dx︸ ︷︷ ︸

:=J1

+S, (3.21)

where

S =

∫ `

0
KΥxBY dx+

∫ `

0
aNΥ

(∫ x

0
BY ds

)
dx−

∫ `

0
R2FΥ

(∫ x

0
BY ds

)
dx,

and

|S| ≤ c‖U‖H‖F‖H +
1

2
‖BY ‖2
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by virtue of Equation (3.2). Note that from (2.3)

J =

∫ `

0
iλR2Υ

(∫ x

0
BY ds

)
dx

= −
∫ `

0
R2Υ

(
BR−1

1

∫ x

0
iλR1Y ds

)
dx

= −
∫ `

0
R2ΥBR−1

1

∫ x

0

(
AUss − αNU −BΥs + R1FY

)
ds dx

= −
∫ `

0
R2ΥBR−1

1 AUx dx+

∫ `

0
R2Υ dx BR−1

1 AUx(0)

+

∫ `

0
R2ΥB

(∫ x

0
αR−1

1 NUds+ R−1
1 BΥs − FY ds

)
dx. (3.22)

Using Young’s inequality and Lemma 3.3, we get

J ≤ ε‖U‖2H + Cε‖F‖2H
Denote

R = ‖U‖H‖F‖H + c‖F‖2H
Lemma 3.3 implies that there exists c > 0 such that

|Υx(`)|2 ≤ c|λ|‖
−→
β · Ux‖2 + c|λ|R.

On the other hand, using (2.3) and Lemma 3.3, we get∣∣∣∣∫ `

0
BY dx

∣∣∣∣ ≤ C

|λ|
(‖Υx‖+ |Ux(0)|+ |Ux(`)|+ ‖W‖+ ‖F‖H)

≤ C

|λ|
(‖U‖H + ‖F‖H) .

From the two above inequalities, we obtain that J1 defined in equality (3.21) is estimated as

|J1| ≤
c

|λ|1/2
(
‖U‖2H + ‖F‖2H

)
.

Therefore, the right-hand side to Equation (3.21) can be estimated as

‖BY ‖2 ≤ ε‖U‖2H + cε‖F‖2H,

for λ large enough. Therefore, the first part of this Lemma follows.

Finally, let us suppose that Rank(B) = 1 and
−→
β ,
−→
β R−1

1 A are linearly dependent. In this case,

we have that
−→
β ·R−1

1 AZ = γ0
−→
β · Z, for any column vector Z. For

B =

( −→
β

τ
−→
β

)
, we further have BY =

( −→
β · Y
τ
−→
β · Y

)
. (3.23)

Therefore, from (3.22) we can write

|J | ≤ c‖Υx‖‖Ψ‖+ c‖Υ‖‖W‖+R.

for some positive constant c. Using that iλW − Φ = FW with FW = ~N · FU , we get that

|J | ≤ cε‖Υx‖2 + ε‖Ψ‖2 +
c

|λ|
‖Υ‖‖Φ‖+R. (3.24)
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An application of Young’s inequality to inequality (3.24) yields

|J | ≤ cε|λ|8‖F‖2H + ε‖
−→
β · Y ‖2 +

ε

|λ|4
‖U‖2H.

We also get from inequality (3.24)

|J | ≤ cε|λ|2‖F‖2H + ε‖
−→
β · Y ‖2 +

ε

|λ|2
‖U‖2H.

Therefore, our conclusion follows in case of Neumann boundary condition. Now we consider the
Dirichlet boundary condition, that is our next task is to estimate J1. Because of (3.23), we have

|J1| ≤ c|Υx(`)|
∣∣∣∣∫ `

0

−→
β · Y ds

∣∣∣∣ .
From (3.13) we get

|λ|
∣∣∣∣∫ `

0

−→
β · Y ds

∣∣∣∣ ≤ c|−→β · Ux(0)|+ c|
−→
β · Ux(`)|+ c‖W‖+R.

Using the second part of Lemma 3.3, we get

|λ|
∣∣∣∣∫ `

0

−→
β · Y ds

∣∣∣∣ ≤ C (‖−→β · Y ‖+ ‖W‖
)

+R.

Therefore, we obtain

|λ|
∣∣∣∣∫ `

0

−→
β · Y ds

∣∣∣∣ ≤ C (‖−→β · Y ‖+
1

|λ|
‖U‖H

)
+R. (3.25)

for some positive constant C. Concluding from (3.17)

|Υx(`)|2 ≤ c|λ|‖Υx‖‖
−→
β · Ux‖+ c|λ|R

and using inequality (3.11), we get

|Υx(`)| ≤ c|λ|1/2‖Υx‖1/2‖
−→
β · Y ‖1/2 + c‖W‖1/2‖Υx‖1/2 + c|λ|1/2R1/2.

It can be written as

|Υx(`)| ≤ c|λ|1/2‖Υx‖1/2‖
−→
β · Y ‖1/2 +

c

|λ|1/2
‖U‖1/2H ‖Υx‖1/2 + c|λ|1/2R1/2.

From (3.25) and the last estimate, we get

|J1| ≤
c

|λ|1/2
‖Υx‖1/2‖Ψ‖3/2 +

c

|λ|1/2
‖U‖1/2H ‖Υx‖1/2‖Ψ‖+ c|λ|1/2R1/2‖Ψ‖

+
c

|λ|1/2
‖Υx‖1/2‖

−→
β · Y ‖1/2‖U‖H +

c

|λ|3/2
‖U‖1/2H ‖Υx‖1/2‖U‖H +

c

|λ|1/2
R1/2‖U‖H

+
c

|λ|1/2
‖Υx‖1/2‖

−→
β · Y ‖1/2R1/2 +

c

|λ|3/2
‖U‖1/2H ‖Υx‖1/2R1/2 +

c

|λ|1/2
R.

Using several times Young’s inequality, we find

|J1| ≤ ε‖Ψ‖2 +
ε

|λ|4
‖U‖2H + cε|λ|8‖F‖2H

Plugging J and J1 into (3.21), we obtain

‖BY ‖2 ≤ ε

|λ|4
‖U‖2H + cε|λ|8‖F‖2H.

�
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Since
−→
β and

−→
N are linearly independent, we can write

−→
β R−1

1 A = γ0
−→
β + γ1

−→
N, (3.26)

−→
NA−1R1 = τ0

−→
β + τ1

−→
N. (3.27)

So we have that
−→
β and

−→
β R−1

1 A are linearly independent if and only if γ1 6= 0. Moreover, it is
not difficult to see that the spectrum of R−1A is given by

σ(R−1A) =
{
λ+

0 , λ
−
0

}
,

where λ±0 are positive eigenvalues, given as

λ±0 =
a11ρ

−1
1 + a22ρ

−1
2 ±

√(
a11ρ

−1
1 + a22ρ

−1
2

)2 − 4ρ−1
1 ρ−1

2

(
a11a22 − a2

12

)
2

=
a11ρ

−1
1 + a22ρ

−1
2 ±

√(
a11ρ

−1
1 − a22ρ

−1
2

)2
+ 4ρ−1

1 ρ−1
2 a2

12

2
.

Note that

λ+
0 = λ−0 ⇔ a12 = 0 and a11ρ

−1
1 − a22ρ

−1
2 = 0.

That is, we have eigenvalues of algebraic multiplicity 2 if and only if R−1A is diagonal.

Lemma 3.5. iR ⊂ %(A) if one of the following conditions holds.

(1) The rank of matrix B is 2,

(2) The rank of matrix B is 1, the vectors
−→
β ,
−→
β R−1

1 A are linearly independent and
(i): γ1χ > 0, or
(ii): τ1 ≤ 0, or

(iii): γ1χ < 0 and − α
γ1
χ 6=

(
kπ
l

)2
for any k ∈ N.

(3) Rank(B) = 1, the vectors
−→
β ,
−→
β R−1

1 A are linearly dependent (γ1 = 0), and χ 6= 0.

Proof. Note that the domain of A has a compact embedding into the phase space. So to prove
that the imaginary axes is contained in the resolvent set, it is enough to show that there is
no imaginary eigenvalues. In fact, let us suppose that U is an eigenvector with an imaginary
eigenvalue, then we have

iλU = AU.

Taking the inner product with U and considering the real part as well as using inequality (2.1),
we conclude that Υ = 0. If the rank of B is equal to 2, then Yx = 0, which implies that
U = Y = 0, that is, U = 0 which is a contradiction. Therefore, our first condition holds. Let

us suppose that the rank of B equals to 1. This implies that
−→
β · Yx = 0, so we have that−→

β · Y =
−→
β · U = 0. From (3.7) we get that

iλ
−→
β · Y −

−→
β ·R−1

1 AUxx + αχW = 0.

So, using (3.26) and that
−→
β · Y =

−→
β ·U = 0, and recalling the definition of χ, we have that the

above equation implies

−γ1Wxx + αχW = 0. (3.28)

Therefore, if γ1χ > 0, the only solution of the above equation must be W = 0, which implies
that Y = U = 0. So we conclude that there is no imaginary eigenvalues. Similarly, we have that
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iλ
−→
N ·A−1R1Y −

−→
N · Uxx + α

−→
N ·A−1−→N︸ ︷︷ ︸

:=αN

W = 0.

Using iλΦ = −λ2W , we get

−τ1λ
2W −Wxx + αNW = 0.

Multiplying by W the above equation, we conclude that W = 0 provided τ1 ≤ 0 (Note that
αN > 0). So, condition (ii) holds. If γ1χ < 0, from (3.28) the eigenvalues of −(·)xx must be of
the form k2π2/l2 with k ∈ N. Therefore, we have no eigenvalues if αχ 6= −γ1k

2π2/l2 for any
k ∈ N. Finally, if γ1 = 0, from (3.28), we conclude that W = 0 provided χ 6= 0. Therefore, our
claim follows. �

We can now show our first stability result.

Theorem 3.6. Let us suppose that one of the following assumptions hold true:

(1) The rank of the matrix B is 2,

(2) The rank of the matrix B is 1 and the vectors
−→
β ,
−→
β R−1

1 A are linearly independent and
one of the condition (i), (ii), or (iii) of Lemma 3.5 holds.

(3) The rank of the matrix B is 1 and the vectors
−→
β ,
−→
β R−1

1 A are linearly dependent,

τ1 =
−→
NA−1R1 ·

−→
β ⊥ ≤ 0.

Then the operator A generates a semigroup which is exponentially stable.

Proof. If the rank of the matrix B is 2, the result follows immediately from Lemma 3.2 with
p = 0 and Lemma 3.4.

Let us suppose that case (2) holds. Since the rank of B is equal to 1, there exists a positive

constant c such that ‖
−→
β · Y ‖ ≤ c‖BY ‖. Then Lemma 3.4 implies that for any ε there exists Cε

such that
‖
−→
β · Y ‖2 ≤ ε‖U‖2H + Cε‖F‖2H. (3.29)

Multiplying Equation (3.8) by R−1
1

−→
β A · U , we get

‖R−1
1

−→
β A · Ux‖2 ≤ c‖U‖H‖

−→
β · Y ‖+ c‖U‖H‖F‖H +

c

|λ|2
‖U‖2H + c‖F‖2H.

Using (3.29) once more time, we conclude

‖R−1
1

−→
β A · Ux‖2 ≤ εc‖U‖2H + cε‖F‖2H, (3.30)

for λ large enough. Since R1
−→
β A and

−→
β are linearly independent according to Lemma 3.2, we

conclude that ‖U‖2H ≤ C‖F‖2H, which implies the exponential stability.

Finally, let us assume that condition (3) is satisfied. Multiplying (3.6) by A−1 and then by
−→
N

as well recalling the definition of W , we get

iλ
−→
N ·A−1R1Y −Wxx + α

−→
N ·A−1−→N ·W +

−→
N ·A−1~ϑΘx =

−→
N ·A−1R1FU .

Since
−→
β and

−→
N are linearly independent vectors, we have that there exist two real numbers τ1

and τ0 such that
−→
NA−1R1 = τ1

−→
N + τ0

−→
β , ⇒

−→
NA−1R1 · Z = τ1

−→
N · Z + τ0

−→
β · Z, (3.31)

for any column vector Z. Therefore, we have

iλτ1Φ−Wxx + α
−→
N ·A−1−→N︸ ︷︷ ︸

:=α0

W +
−→
N ·A−1−→ϑ︸ ︷︷ ︸

:=σ0

Θx + iλτ0Ψ =
−→
N ·A−1R−1

1 FU︸ ︷︷ ︸
:=FΦ

. (3.32)
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Multiplying equation (3.32) by W and using (3.25) we get

−τ1‖Φ‖2 + ‖Wx‖2 ≤
c

|λ|
‖Φ‖2 + C

∫ `

0
(|ΘW x|+ |VxW x|+ |FUW |) dx+ C‖F‖2H.

Note that the hypothesis

τ1(β1 + β2) =
−→
NA−1R1 · (β2,−β1) =

−→
NR−1A ·

−→
β ⊥ ≤ 0

implies that τ1 ≤ 0 2. Therefore, we have

−τ1‖Φ‖2 + ‖Wx‖2 ≤ C‖Vx‖2 + C‖U‖H‖F‖H + C‖F‖2H. (3.33)

Since
−→
β and

−→
N are linearly independent vectors, using again Lemma 3.2 with p = 0, we get

‖U‖2H ≤ C‖F‖2H. The proof is now complete. �

4. Lack of exponential stability

System (1.9)–(1.11) has two different temperatures. In practice, it will have two dissipative
mechanisms only when the rank of B is equal to 2. Otherwise, the behaviour of the system is
similar to the case when only one temperature is present. From now on, we assume that the
rank of B is equal to 1. In this Section, we restrict our attention to the Dirichlet-Neumann case.
We will study the necessary and sufficient conditions on the coefficients to furnish polynomial or
exponential stability. Our starting point is to show that the system is not exponentially stable
in general.

Theorem 4.1. If Rank(B) = 1, the vectors
−→
β ,
−→
β R−1

1 A are linearly dependent and
−→
N ·

R1A
−→
β ⊥ > 0, the system is not exponentially stable.

Proof. To make the calculations easier, we will assume in this section that the interval length is
π. That is, ` = π. Let us consider the case when FY = FΥ = 0. We know that there exists a
real number γ0 such that −→

β ·R−1
1 AZ = γ0

−→
β · Z (4.1)

for any column vector Z. Recalling (3.5), system (2.2)–(2.4) can be written as

−λ2V − γ0Vxx + α0W + σ0Θx =
−→
β · FU ,

−λ2W − d0Wxx + α1W + σ1Θx − d1Vxx =
−→
N · FU ,

iλb1θ1 + iλb2θ2 −K11θ1xx −K12θ2xx − iλVx − a(θ2 − θ1) = 0,

iλb2θ1 + iλb3θ2 −K21θ1xx −K22θ2xx − iτλVx + a(θ2 − θ1) = 0.

Taking
−→
β · FU = 0 and

−→
N · FU = sin(µx), we can look for solutions of the form

V = A sin(µx), W = B sin(µx), θ1 = D cos(µx), θ2 = E cos(µx).

Note that Θ = β1θ1 + β2θ2. The above system is equivalent to

p1A+ α0B − σ0µC = 0,

d1µ
2A+ p2B − σ1µC = 1,

q1D + q2E − iλµA = 0,

q3D + q4E − iλτµA = 0,

2We assume here that β1 + β2 is positive. However, this is not an extra condition because the case when
β1 + β2 < 0 can be transformed to β1 + β2 > 0 by noting that (u(`− x, t), w(`− x, t), θ1(`− x, t), θ2(`− x, t)) is
the solution of the system obtained by replacing β1, γ1, β2 and γ2 with −β1, −γ1, −β2 and −γ2 respectively.
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where C = β1D + β2E and

p1(λ) = −λ2 + γ0µ
2, p2(λ) = −λ2 + d0µ

2 + α1,

and

q1 = ib1λ+K11µ
2 + a, q2 = ib2λ+K12µ

2 − a, (4.2)

q3 = ib2λ+K21µ
2 − a, q4 = ib3λ+K22µ

2 + a. (4.3)

From the two last equations, we get

D =
q4 − τq2

q1q4 − q2q3
iλµA, E = − q3 − τq1

q1q4 − q2q3
iλµA. (4.4)

Therefore,

C = β1D + β2E =
β1q4 − β1τq2 − β2q3 + β2τq1

q1q4 − q2q3
iλµA.

We can write the above system as

p1A+ α0B − σ0µC = 0, (4.5)

d1µ
2A+ p2B − σ1µC = 1, (4.6)

−iλµA+ p3C = 0, (4.7)

where

p3 =
q1q4 − q2q3

β1q4 − β1τq2 − β2q3 + β2τq1
= O(µ2).

The matrix associated to system (4.5)–(4.7) is given by p1 α0 −σ0µ
d1µ

2 p2 −σ1µ
−iλµ 0 p3

 .
It follows that

B =
p1p3 − iλσ0µ

2

p1p2p3 − d1α0µ2p3 + iλµ2(α0σ1 − σ0p2)
.

Now, we take λ such that p2(λ) = c0, that is

λ2 = d0µ
2 + α1 − c0,

and we select c0 to minimize the degree of the following polynomial,

p1p2p3 − d1α0µ
2p3 = p3

(
c0p1 − d1α0µ

2
)

= p3

[
c0

(
−λ2 + γ0µ

2
)
− d1α0µ

2
]

= p3

[
c0

(
−d0µ

2 − α1 + c0 + γ0µ
2
)
− d1α0µ

2
]

= p3

{
c0

[
− (d0 − γ0)µ2 − α1 + c0

]
− d1α0µ

2
}

= p3

[
−c0 (d0 − γ0)µ2 − c0α1 + c2

0 − d1α0µ
2
]
.

Taking c0 such that (d0 − γ0)c0 = −d1α0, we get

p1p2p3 − d1α0µ
2p3 = c2p3, where c2 =

d2
1α

2
0

(d0 − γ0)2
+
α1d1α0

d0 − γ0
.
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Therefore, B can be rewritten as

B =
p1p3 − iλσ0µ

2

c2p3 + iλµ2(α0σ1 − σ0p2)
.

In particular, we have B = O(µ) for λ large. Which implies that

ρ−1
2 ‖U‖

2
H ≥ λ2

∫ π

0
|B sin(µx)|2 dx = O(λ2B2) = O(λ4) at least. (4.8)

So ‖U‖2H →∞ when λ→∞. Therefore, there is no exponential stability.
�

5. Polynomial decay

In this section we prove that solution decays polynomially to zero if Rank(B) = 1, the vectors
−→
β ,
−→
β R−1

1 A are linearly dependent and τ1 =
−→
N · R−1

1 A(β2,−β1) > 0. Here, we assume that

β1 + β2 6= 0 and
−→
β ,

−→
N are linearly independent. Our argument is based on the following

theorem (see [6, Theorem 2.4]).

Theorem 5.1. Let (S(t))t≥0 be a bounded C0-semigroup on a Hilbert space H with the generator

A such that iR ⊂ %(A). Then, for a fixed α > 0,

‖(iλI − A)−1‖L(H) = O (|λ|α) , λ→∞ ⇐⇒ ‖S(t)A−1‖L(H) = O
(
t−1/α

)
, t→∞.

The main result of this section is the following theorem.

Theorem 5.2. Under the hypothesis of Theorem 4.1, the solution U(t) = eAtU0 decays polyno-
mially as

‖U(t)‖HD ≤
c

t1/6
‖U0‖D(A)

in case of the Dirichlet boundary condition. For the Neumann boundary condition, we have that

‖U(t)‖HN ≤
c

t1/2
‖U0‖D(A).

Provided τ 6= ρ2/ρ1, in case of A being diagonal and τ 6= ρ2β2/ρ1β1 otherwise, where τ is defined
in (3.3). Moreover, in this later case, the rate of decay is optimal.

Proof. From (3.8) and hypothesis (4.1) we have

iλ
−→
β · Y − γ0Vxx + αχW + σ∗Θx =

−→
β · FU , (5.1)

where χ and σ∗ are defined in (3.9). Multiplying Equation (5.1) by W , we get

αχ‖W‖2L2 = 〈Ψ,Φ〉 − γ0〈Vx,Wx〉 − σ∗〈Θx,W 〉+R∗, (5.2)

where R∗ is such that |R∗| ≤ c‖U‖H ‖F‖H. Multiplying (3.32) by V , we get that

〈Wx, V x〉 = τ1〈Φ,Ψ〉+α0〈W,V 〉+σ0〈Θx, V 〉+τ0‖Ψ‖2 +〈FΦ, V 〉+τ1〈Φ,
−→
β · FU 〉+τ0〈Ψ,

−→
β · FU 〉.

Plugging that into (5.2), we get

αχ‖W‖2 = (1− τ1γ0)〈Ψ,Φ〉 − γ0α0〈W,V 〉 − γ0σ0〈Θx, V 〉 − σ∗〈Θx,W 〉 − τ0γ0‖Ψ‖2 +R∗. (5.3)

Multiplying with λ2, we obtain

‖Φ‖2 ≤ c|λ|4‖Ψ‖2 + c|λ|‖Θx‖2 + c|λ|2‖U‖H‖F‖H + c|λ|2‖F‖2H.
Using Lemma 3.4, we get

‖Φ‖2 ≤ ε‖U‖2H + c|λ|12‖F‖2H.
Analogously, applying Lemma 3.4, we find that ‖Ψ‖2 is bounded. Finally, from Lemma 3.2, our
claim follows in case of Dirichlet boundary condition.
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Now let us consider the case of Neumann boundary condition. In view of the hypothesis,
Equation (2.4) can be written as

iλR2Υ−KΥxx + aNΥ +
−→
ϑΨx = R2FΥ.

Multiplying the above equation by K−1 and taking a scalar product with
−→
β , we get

iλ
−→
β ·K−1R2Υ︸ ︷︷ ︸

:=
−→
R3·Υ

−Θxx + a
−→
β ·K−1NΥ︸ ︷︷ ︸

:=
−→
R4·Υ

+
−→
β ·K−1−→ϑ︸ ︷︷ ︸

:=r

Ψx =
−→
β ·K−1R2FΥ.

Therefore, we have that

iλ
−→
R 3 ·Υ−Θxx +

−→
R 4 ·Υ + rΨx = FΘ.

Integrating over the interval [0, x], we obtain

iλ

∫ x

0

−→
R 3 ·Υds−Θx +

∫ x

0

−→
R 4 ·Υ ds+ rΨ =

∫ x

0
FΘ ds.

Multiplying it by Φ, we get

r〈Ψ,Φ〉 = −〈iλ
∫ x

0

(
−→
R 3Υ +

1

iλ

−→
R 4Υ

)
ds,Φ〉︸ ︷︷ ︸

:=J∗

+〈Θx,Φ〉+R∗. (5.4)

So we have that

J∗ = 〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds, iλΦ〉

=
1

τ1
〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds,
(
Wxx − α0W − σ0Θx − iλτ0Ψ + FΦ

)
〉

=
1

τ1
〈
(
−→
R 3 ·Υx +

1

iλ

−→
R 4 ·Υx

)
ds,W 〉 − α0

τ1
〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
,W 〉

+
σ0

τ1
〈
(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
,Θ〉

+
τ0

τ1
〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds, iλΨ〉+R. (5.5)

Since

= 〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds, iλΨ〉

= 〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds,
(
γ0Vxx − α0W − σ0Θx + FΨ

)
〉

= 〈
(
−→
R 3 ·Υx +

1

iλ

−→
R 4 ·Υx

)
ds, γ0V 〉

−α0〈
∫ x

0

(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
ds,W 〉

+σ0〈
(
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ

)
,Θ〉+R,
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we see that∣∣∣∣〈∫ x

0
[
−→
R 3 ·Υ +

1

iλ

−→
R 4 ·Υ] ds, iλΨ〉

∣∣∣∣ ≤ C‖Υx‖‖V ‖+ C‖Υx‖‖W‖+ C‖U‖H‖F‖H.

Plugging this inequality into (5.5), we get

|J∗| ≤ C‖Υx‖‖V ‖+ C‖Υx‖‖W‖+ C‖U‖H‖F‖H. (5.6)

Using (5.4) into (5.3), we find

αχ‖W‖2 =
1− τ1γ0

r
〈Θx,Φ〉+G, (5.7)

where

G =
1− τ1γ0

r
J∗ − γ0α0〈W,V 〉 − γ0σ0〈Θx, V 〉 − σ∗〈Θx,W 〉 − τ0γ0‖Ψ‖2 +R∗.

Our next step to estimate W in (5.7), is first to estimate G and 〈Θx,Φ〉. In fact, using (5.6) we
get

|G| ≤ C‖Υx‖‖V ‖+ C‖Υx‖‖W‖+ C‖U‖H‖F‖H +
C

|λ|2
‖Φ‖‖Ψ‖+ C‖Ψ‖2 +R∗.

Therefore, we have that

|λ|2|G| ≤ C|λ|‖Υx‖‖Ψ‖+ C|λ|‖Υx‖‖Φ‖+ C|λ|2‖U‖H‖F‖H + C‖Φ‖‖Ψ‖
+C|λ|2‖Ψ‖2 + c‖F‖2H

≤ C|λ|2‖U‖H‖F‖H +
αχ

2
‖Φ‖2 + C|λ|2‖Ψ‖2 + c‖F‖2H,

where we used

|λ|2‖Υx‖‖W‖ ≤ |λ|‖Υx‖‖Φ + FW ‖ ≤ |λ|‖Υx‖‖Φ‖+ c|λ|2‖U‖H‖F‖H + c‖F‖2H.

To estimate 〈Θx,Φ〉, we consider two cases. First, we suppose that the matrix R−1
1 A has an

eigenvalue of multiplicity 2. This case happens only in case that the matrix A is diagonal.
Therefore, we will have that R−1

1 A = γ0I. This means that

iλY − γ0Uxx + αR−1
1

−→
NW + R−1

1 ϑΘx = R−1
1 FY .

Therefore, multiplying with
−→
N , we get

iλΦ− γ0Wxx + α
−→
N ·R−1

1

−→
NW +

−→
N ·R−1

1 ϑΘx =
−→
N ·R−1

1 FY

Further, multiplying the above expression by Φ and taking the real part, we have that

−→
N ·R−1

1 ϑ︸ ︷︷ ︸
=ρ−1

1 −τρ
−1
2

∫ l

0
ΘxΦ dx = R∗∗. (5.8)

Note that from hypotheses
−→
N ·R−1

1 ϑ 6= 0, and R∗∗ is such that ‖R∗∗‖ ≤ ‖U‖H‖F‖H. Therefore,

in case of R−1
1 A = γ0I, we have that∣∣〈Θx,Φ〉

∣∣ ≤ C‖U‖H‖F‖H. (5.9)

Therefore, we can assume that R−1
1 A 6= γ0I. Let us take the imaginary part of identity (5.3)

to get

(1− τ1γ0) Im〈Ψ,Φ〉 = γ0α0 Im〈W,V 〉+ γ0σ0 Im〈Θx, V 〉+ σ∗ Im〈Θx,W 〉 − ImR∗,

Multiplying the above identity by λ ∈ R, we get

(1− τ1γ0) Imλ〈Ψ,Φ〉 = −γ0α0 Re〈Φ, V 〉+ γ0σ0 Re〈Θx,Ψ〉 − σ∗Re〈Θx,Φ〉 − ImR∗,
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where we used Im z = −Re iz and that Im z = Re iz. Therefore, we have

σ∗Re〈Θx,Φ〉︸ ︷︷ ︸
:=X

+(1− τ1γ0) Imλ(Ψ,Φ)︸ ︷︷ ︸
:=Y

= −γ0α0 Re〈Φ, V 〉+ γ0σ0 Re〈Θx,Ψ〉 − ImR∗︸ ︷︷ ︸
:=H

. (5.10)

Multiplying Equation (3.32) by Φ and taking real part, we get

σ0 Re〈Θx,Φ〉︸ ︷︷ ︸
:=X

+τ0 Imλ(Ψ,Φ)︸ ︷︷ ︸
:=Y

= R∗. (5.11)

We can consider system (5.10)–(5.11) as a system in X and Y, which can be solved in terms of
the right-hand side if and only if

σ∗τ0 − σ0 + σ0τ1γ0 6= 0. (5.12)

From (3.31) we get
−→
NA−1 = τ1

−→
NR−1

1 + τ0
−→
β R−1

1 .

Therefore, we obtain
−→
NA−1−→ϑ = τ1

−→
NR−1

1

−→
ϑ + τ0

−→
β R−1

1

−→
ϑ .

Recalling the definition of σ0 and σ∗, we have

σ0 = τ1
−→
NR−1

1

−→
ϑ + τ0σ

∗.

Plugging this into (5.12), we find

σ0γ0 6=
−→
NR−1

1

−→
ϑ , or γ0

−→
NA−1−→ϑ 6=

−→
NR−1

1

−→
ϑ .

By contradiction, let us suppose

γ0
−→
NA−1−→ϑ =

−→
NR−1

1

−→
ϑ .

This implies that

0 =
−→
N · (γ0I−R−1

1 A)A−1−→ϑ , (5.13)

and this means that (γ0I − R−1
1 A)A−1−→ϑ must be orthogonal to

−→
N = (1,−1). In case of

(γ0I − R−1
1 A)A−1−→ϑ = 0, we have two possibilities. First, that γ0I − R−1

1 A = 0, but for

this case we already prove that (5.9) holds. Second, that A−1−→ϑ = γ3
−→
β . This implies that

R−1
1

−→
ϑ = γ3R

−1
1 A
−→
β = γ3γ0

−→
β . Therefore, we have that

(1, τ) =
−→
ϑ = γ3γ0R1

−→
β , ⇒ τ =

ρ2β2

ρ1β1
.

But this is not possible due to our hypotheses on τ .

So, we can assume that (γ0I −R−1
1 A)A−1−→ϑ 6= 0. Therefore, from (5.13) there exist a 6= 0

such that

(γ0I−R−1
1 A)A−1−→ϑ = (a, a)

Note that γ0 ∈ σ(R−1
1 A) where σ(R−1

1 A) denotes the spectrum. The above problem has a

solution (infinitely many) if and only if (a, a) ∈ [Ker(γ0I −R−1
1 A)]⊥. But this is not possible,

because
(β1, β2) =

−→
β ∈ Ker(γ0I−R−1

1 A), (β1, β2) · (a, a) = a(β1 + β2) 6= 0.

Therefore, we have that system (5.11) and (5.12) is a well-posed system, so we have

X = Re〈Θx,Φ〉 =
τ0H − (1− τ1γ0)R∗

σ∗τ0 − σ0 + σ0τ1γ0
.

Hence, we can estimate

Re〈Θx,Φ〉 ≤ C‖Φ‖‖V ‖+ C‖U‖H‖F‖H + C‖Θx‖‖Ψ‖,
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and then we have that

|λ|2 Re〈Θx,Φ〉 ≤ ε‖Φ‖2 + C|λ|2‖U‖H‖F‖H.

Multiplying (5.7) by λ2, we conclude that

‖Φ‖2 ≤ C|λ|2‖U‖H‖F‖H + C‖F‖2H.

Hence,

‖Φ‖2 ≤ ε‖U‖2H + |λ|4‖F‖2H.

Using similar arguments as above, we conclude that

‖U‖H ≤ c|λ|2‖F‖H,

which implies that the solution decays polynomially as t−1/2. Using inequality (4.8), we conclude

that the rate of decay is optimal. Otherwise, if there exists a better decay rate as t−1/(2−ε), we
would conclude that |λ|2−ε‖U‖H must be bounded. But this is contradictory to inequality
(4.8). �

6. Impossibility of localization. Case K12 = K21

The aim of this section is to prove the impossibility of localization of solutions in the particular
case that K12 = K21. To this end it will be sufficient to prove the uniqueness of solutions for
the backward in time problem which is determined by the system of equations

ρ1utt − a11uxx − a12wxx + α(u− w) + β1θ1,x + β2θ2,x = 0 in (0, `)× (0, T ),

ρ2wtt − a12uxx − a22wxx − α(u− w) + γ1θ1,x + γ2θ2,x = 0 in (0, `)× (0, T ),

b1θ1,t + b2θ2,t +K11θ1,xx +K12θ2,xx − β1uxt − β2wxt + a(θ2 − θ1) = 0 in (0, `)× (0, T ),

b2θ1,t + b3θ2,t +K12θ1,xx +K22θ2,xx − γ1uxt − γ2wxt − a(θ2 − θ1) = 0 in (0, `)× (0, T )

(6.1)

with the initial and boundary conditions posed at (1.11), (1.13). To prove the uniqueness of
solutions, it will be sufficient to prove that the only solution for the null initial and boundary
conditions is the null solution.

The first relation we need is the energy conservation law, which states that

W1(t) =
1

2

∫ `

0

(
U>x AUx + Y >R1Y + αU>NU + Υ>R2Υ

)
dx

=

∫ t

0

∫ `

0

(
Υ>x KΥx + aΥ>NΥ

)
dx ds. (6.2)

Multiply our first equation by ut, the second by wt, the third by −θ1 and the last one by −θ2,
we obtain

W2(t) =
1

2

∫ `

0

(
U>x AUx + Y >R1Y + αU>NU −Υ>R2Υ

)
dx

=−
∫ t

0

∫ `

0

(
Υ>x KΥx + aΥ>NΥ

)
dx ds−

∫ t

0

∫ `

0
2Y >BΥx dx ds. (6.3)
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The third identity we need follows from the Lagrange identity argument and it could be deduced
with the help of [9, 28]. For a fixed t, we consider the identities

∂

∂s
[ρ1u̇(s)u̇(2t− s)] = ρ1ü(s)u̇(2t− s)− ρ1u̇(s)ü(2t− s), (6.4)

∂

∂s
[ρ2ẇ(s)ẇ(2t− s)] = ρ1ẅ(s)ẇ(2t− s)− ρ1ẇ(s)ẅ(2t− s), (6.5)

∂

∂s
{[b1θ1(s) + b2θ2(s)] θ1(2t− s)} = b1

[
θ̇1(s)θ1(2t− s)− θ1(s)θ̇1(2t− s)

]
+ b2

[
θ̇2(s)θ1(2t− s)− θ2(s)θ̇1(2t− s)

]
, (6.6)

∂

∂s
{[b2θ1(s) + b2θ3(s)] θ2(2t− s)} = b3

[
θ̇2(s)θ2(2t− s)− θ2(s)θ̇2(2t− s)

]
+ b2

[
θ̇1(s)θ2(2t− s)− θ1(s)θ̇2(2t− s)

]
. (6.7)

In view of the system of equations as well as the null initial and boundary conditions, we obtain∫ `

0
(Y >R1Y −Υ>R2Υ) dx =

∫ `

0
(U>x AUx + αU>NU) dx. (6.8)

From (6.3) and (6.8) it follows that

W2(t) =

∫ `

0
(U>x AUx + αU>NU) dx

= −
∫ t

0

∫ `

0

(
Υ>x KΥx + aΥ>NΥ

)
dx ds−

∫ t

0

∫ `

0
2Y >BΥx dx ds. (6.9)

Let ε be a small positive constant. We consider W3(t) =W2(t) + εW1(t). We note that

W3(t) =
ε

2

∫ `

0
(Y >R1Y +αU>NU + Υ>R2Υ) dx+

(
1 +

ε

2

)∫ `

0
(U>x AUx+αU>NU) dx, (6.10)

is a positive function which defines a squared norm on the solutions. Taking into account

W3(t) = −(1− ε)
∫ t

0

∫ `

0
(Υ>x KΥx + aΥ>NΥ) dx ds−

∫ t

0

∫ `

0
2(Y >BΥx) dx ds,

we have
dW3

dt
= −(1− ε)

∫ `

0
(Υ>x KΥx + aΥ>NΥ) dx−

∫ `

0
2(Y >BΥx) dx.

As

−
∫ `

0
2(Y >BΥx) dx ≤ K1

∫ `

0
Y >R1Y dx+ ε1

∫ `

0
(Υ>x KΥx + aΥ>NΥ) dx

where ε1 is sufficiently small, with K1 depending only on the constitutive constants and ε1, we
obtain the estimate

dW3(t)

dt
≤ C∗W3(t),

for every t ≥ 0 , where C∗ is a computable positive constant. ConsequentlyW3(t) ≤ W3(0) exp(C∗t),
for every t ≥ 0. Since we assume the null initial conditions, we see thatW3(t) vanishes for every
t and the the solution must be the null solution.

Remark 6.1. The analysis proposed in this section can be extended without difficulties to the
three-dimensional and for inhomogeneous case, but we did not developed it here to be consistent
with the other sections.



22 J.E. MUÑOZ RIVERA, M.G. NASO, AND R. QUINTANILLA

7. Acknowledgement

The authors thankfully acknowledge the comments and suggestions of the referees to improve
the article. The work of the first author (J.R.) was supported by Brazilian - CNPq grant
308837/2014-2. The work of the third author (R.Q.) was supported by the project ”Análisis
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