Virtual reality for prostate gland cryosurgery
Joan-Arinyo, R.
Research Report LSI-04-52-R
Virtual Reality for Prostate Gland Cryosurgery

R. Joan-Arinyo
Divisió d’Informàtica Gràfica
Centre de Recerca en Enginyeria Biomèdica
Universitat Politècnica de Catalunya
Av. Diagonal 647, 8ª, E-08028 Barcelona

November 22, 2004

Abstract

In this paper we report on the work conducted to develop a computer based system to simulate cryoaablation therapy of prostate gland for use in training urologists and surgery planning. The system has been developed on an standard personal computer using standard libraries for graphical output and running the LINUX operating system.

keywords Prostatectomy, surgery simulation, surgery training systems, cryo-simulation.

1 Introduction

The prostate is a fibro-muscular gland with a chestnut size located below the bladder of human males. The urethra passes through the prostate longitudinally from the bladder to the verumontanum. Distal to the verumontanum is the sphincter mechanism which is responsible for the urinary continence. Figure 1 illustrates the anatomy of the pubic zone of a human male showing the bladder, prostate and urethra.

Prostate cancer is one of the top leading causes of cancer deaths in West World’s men, [6, 3]. Traditional treatments for prostate cancer include surgical removal or radiation therapy.

Cryosurgery is a minimally invasive cancer treatment whose origins go back to the 1880s when advanced carcinomas of the breast and uterine cervix were treated with iced saline solutions. [7]. Recently, however, cryosurgery has been accepted as a treatment option in localized carcinoma of the prostate, in part because of new technological advances, [10, 19]. in part because it has certain advantages over other procedures such as lower morbidity, minimal blood loss, and a shorter hospital stay. The technique has been described in numerous papers. See for example [2, 9, 12, 14, 15, 16, 18].
Prostate cryosurgery uses liquid nitrogen or supercooled argon to freeze and thus destroy tumors. Liquid nitrogen cools the tumor via a set of cryoprobes which have adjustable flow rates, cooling temperatures, and activation times. See Figure 2. The temperature of the leading front of the iceball that freezes the tissue is -8°C, the temperature needed to kill the tissue has been reported to be between -40° and -50°, [17].

In this paper we report on the work conducted to develop a computer based system to simulate cryoablation therapy of prostate gland for use in training urologists. The system has been developed on an standard personal computer using standard libraries for graphical output and running the LINUX operating system.

The rest of the manuscript is organized as follows. Section 2 presents the thermodynamical model used. Section 3 introduces the geometric model used to represent the constituents of the prostate gland. Section 4 gives the details of the implementation. Section 5 reports the results yielded by the simulator for several cases. Section 6 offers a short conclusion.

2 Freezing of Living Tissues and Heat Transfer Model

The macroscopic aspects of freezing in living tissues are taken from Comini et al. [5]. The heat transfer model used in this work is taken form Rabin et al. [14]. We include them here for the sake of completeness.
2.1 Freezing in Living Tissues

In most of the biological substances, water is the major component. Thus, when these materials are cooled below 0°C, ice formation occurs, starting at temperature \(T_i \), usually in the vicinity of -1°C, which depends on the molar concentration of the soluble cell components. As the temperature is progressively reduced, more and more water is turned into ice and the latent heat of ice formation adds to the sensible heat involved in cooling both ice and the unfrozen solution. This leads to large variations in heat capacity with respect to temperature, while thermal conductivity also changes considerably, mainly because the thermal conductivity coefficient of ice is almost four times greater than that of water.

For most biological materials, the largest part of the freezing process takes place in a temperature interval between -1 and -8°C, while the largest variations of heat capacity occur between -1 and -3°C. Only at temperatures ranging from -20 to -40°C and below is there no more measurable change with temperature in the amount of ice present, and the remaining water, if any, can be considered as nonfreezable. However, for practical purposes, a lower limit \(T_f \) to the phase-change interval can be defined on the basis of a ratio of ice to total water content of, say, 90 percent. This choice, in addition to providing an easily applicable criterion, allows one to approximate heat capacity and thermal conductivity curves below \(T_f \) by means of constant values. Following Bonacina [1] and Comini [4] we will use a triangle and straight line to interpolate heat capacity and thermal conductivity of biological materials in the phase-change zone. See Figure 3. Different shapes for the interpolating curves have also been tested but improvements obtained, if any, do not justify additional complications, [1].
Figure 3: Estimation of heat capacity and thermal conductivity in phase change zone.

2.2 Heat Transfer

It is generally assumed, see for example Rabin, [14], Jankun et al., [9], Wojtowicz et al., [18], that the heat transfer in those biological tissues characterized by a dense capillary network and low blood perfusion can be modeled by the classical bioheat equation reported by Pennes, [11],

\[C \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \dot{w}_b C_b (T_b - T) + \dot{q}_{met} \]

(1)

where \(C, T \) and \(k \) are, respectively, the volume specific heat, temperature and the thermal conductivity of the prostatic tissue, \(T_b \) is the blood temperature, \(\dot{w}_b C_b \) is the blood perfusion rate, and \(\dot{q}_{met} \) is the volumetric heat source.

Although the general validity of this model is questionable, Rabin et al. showed in [13] and [14] that the model can be used for engineering calculations and especially to simulate the behavior of cryosurgical probes. The general boundary condition of Eq. 1 is given by

\[-k \frac{\partial T}{\partial n} = U_s (T - T_\infty)\]

(2)

where \(\delta_n \) is the local normal direction vector, \(U_s \) is the heat transfer coefficient, and \(T_\infty \) is the temperature at the surroundings.

If \(i, j, k \) stand for the coordinates of a numerical grid points in a three-dimensional space, Eq. 1 can be discretized in finite differences as follows

\[C_{i,j,k} \frac{T_{i,j,k}^{t+1} - T_{i,j,k}^t}{\Delta t} = \frac{1}{\Delta V_{i,j,k}} \sum_{l,m,n} T_{l,m,n}^t - T_{i,j,k}^t \]

\[\frac{1}{R_{l,m,n-i,j,k}} \]
where \(l, m \) and \(n \) are spatial indices for all the grid points in the neighbourhood of node \(i, j, k \). According to Rabin [14], the heat source term of blood perfusion in Eq. 3 is specified at time level \(t + 1 \), although the other terms on the right-hand side of the equation are written at time level \(t \). This presentation would result in an increase of the stability of the numerical integration method. Rearranging Eq. 3 yields

\[
T_{i,j,k}^{t+1} = \frac{\Delta t}{\Delta V_{i,j,k}[C_{i,j,k} \Delta t]} \sum_{t,m,n} \frac{T_{l,m,n}^t - T_{i,j,k}^t}{R_{l,m,n-i,j,k}}\\ + \Delta t[(\dot{w}_b C_b)_{i,j,k} T_b (\dot{q}_{met})_{i,j,k} + C_{i,j,k} T_{i,j,k}^t (\dot{q}_{met})_{i,j,k} - \Delta t]
\]

where the thermophysical properties, blood perfusion and metabolic heat generation are temperature dependent and thus have to be evaluated at each time level for each grid point.

The thermal resistance to heat transfer by conduction from grid point \(i, j, k \) to its neighbouring grid points \(l, m, n \) is given by

\[
R_{l,m,n-i,j,k} = \left[\frac{\Delta \eta}{2 k A} \right]_{l,m,n} + \left[\frac{\Delta \eta}{2 k A} \right]_{i,j,k}
\]

where \(\eta \) is the distance between two neighbour grid points and \(A \) is the heat transfer area.

The thermal resistance to heat transfer by convection from a boundary grid point \(i, j, k \) to the surroundings, at temperature \(T_s \), is given by

\[
R_{i,j,k} = \frac{1}{\lambda_{i,j,k} U_s}
\]

where \(T_s \) replaces \(T_{l,m,n} \) in Eq. 3.

According to Rabin et al. [14], using standard stability techniques, it can be shown that the stability criterion for the case of no blood perfusion is

\[
\Delta t = \left[\frac{\sum_{t,m,n}(1/R_{l,m,n-i,j,k})}{(\Delta V C)_{i,j,k}} \right]_{\text{min}}
\]

This stability criterion is necessary but not sufficient for calculating the maximum time step. An additional criterion is derived from energy conservation considerations. Time steps should be selected such that the temperature at each grid point of the phase transition region would change over a number of successive time steps. This will ensure that the latent heat effect is included in its entirety by the function representing the effective specific heat.
The stability criterion given by Eq. 7 requires relatively short time intervals, which seems to be the major drawback of the numerical scheme proposed. Therefore, it seems that any unconditionally stable numerical scheme would be preferable for the solution of the freezing problem, as there are no limitations on the length of time intervals. Regardless of the chosen numerical technique, the nature of the freezing process during cryosurgery, i.e., dramatic changes in thermophysical properties and steep temperature gradients, will demand a relatively fine numerical grid distribution. In turn, this will demand a relatively short time interval from energy conservation considerations, as mentiones above. For example, Rabin et al. show in [13] that four to five numerical grid points are required within the phase transition temperature range, at any given time. Therefore, the unconditionally stable numerical techniques do not automatically guarantee shorter time intervals for the particular problem of freezing of biological tissues.

3 Geometric Model of the Prostate Gland

A voxel-based volumetric object is a regular or irregular 3D array of data, with each element representing a sampled point (measured or calculated) in the volume. For cryosurgery simulation, this representation has a number of advantages over the use of polygons or solid geometric primitives. First, because the data organization is the same as the acquired data, a voxel-based representation is natural for the 3D digital images produced by medical scanning technologies such as MRI or Computed Tomography (CT). Second, since no surface extraction or other data reformating is required, errors introduced by fitting surfaces or geometric primitives to the scanned images can be avoided. Finally, volumetric objects can incorporate detailed information about the internal anatomical or physiological structure of organs and tissues. This information is particularly important for realistic modeling and visualization of complex tissue volumes.

We created a 3D volume model of the prostate gland based on discretizing by hand a plastic made physical model of natural size. The model includes the capsule, prostatic tissue, the urethra, and the blood vessels.

The anatomical objects are represented using a generalized voxel model, [8], in a 3D rectilinear grid with an spatial resolution of 0.1 mm. The Z axis along the urethra has 194 voxels while X and Y axis on a plane normal to the Z axis, have 256 and 202 voxels, respectively. Each voxel is associated with a set of attributes such as its membership to anatomical regions or color and.

Figure 4 depicts the textured prostate model. The bladder depression can be seen at the top of the prostate. The urethra is at the bottom. Figure 5 depicts the prostate as a transparent model showing the urethra.
Figure 4: Prostate textured model.

Figure 5: Transparent view of the prostate.
4 Implementation

We have implemented a computer program to model cryosurgery mathematically. The program solves the heat transfer problem by integrating, in a very low spatial resolution, the partial differential equation that models the physical phenomenon, as described in Section 2.

The program has been developed on a personal computer with a Pentium III at 600 MHz, 386MB in central core running under Linux, and a Nvidia GeForce 4400 with 256 MB. The programming language used was C and the graphics library used for rendering was OpenGL from Nvidia.

The user interface provides tools to select the number of cryoprobes to be included as well as the placement for each of them. Other variables the user can fix are the length of the cooling cryoprobe tip, cooling temperature, coolant flow rate and the total time of evolution. As output tools, the user interface allows standard operations like zooming in and out, selecting cross sections and selecting specific voxels from the graphic output to show the exact temperature at a given point.

5 Results

To assess the applicability of the software implemented, we have fed the program with a number of cases that span different aspects of the simulated thermodynamic system. We show the results yielded by the program for cryoprobe coolant tips of 5mm and coolant temperature of -160°C. Temperature in the iceballs is represented using a scale of colors varying linearly from dark blue for 0°C to white for -160°C.

Figures 6, 7 and 8 show, respectively, frontal, side and top views, of the prostate with six cryoprobes and the iceballs formed. The cryoprobes are placed at a distance from each other such that the iceballs formed by three of them do not overlap while the iceballs formed by the remaining three cryoprobes overlap.

Figure 9 depicts a cross section showing the overlapping iceballs. Figure 10 shows a zoom in of the three overlapping iceballs where the resulting lethal area can be seen clearly.

6 Conclusions

We described the implementation of a software system to model cryoablation therapy for prostate cancer. The system solves the heat transfer problem by integrating in a very low spatial resolution, the partial differential equation that models the physical phenomenon. The system provides a platform for accurate cryosurgery planning and training of novel surgeons.
Figure 6: Prostate with cryoprobes. Frontal view.

Figure 7: Prostate with cryoprobes. Side view.
Figure 8: Prostate with cryoprobes. Top view.

Figure 9: Prostate with cryoprobes. Cross section.
Figure 10: Three overlapping cryoprobes.

Acknowledgements

This research has been partially funded by the Centre de Referència en Enginyeria Biomèdia de Catalunya (CREBEC) and by the Red de Grupos del Instituto Carlos III, IM²: Imagen Molecular y MultiModalidad. The author thanks Mr Pau Baiget for his efforts in implementing the software.

References

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Research Reports - 2004

- LSI-04-2-R: *Comparison of Methods to Predict Ozone Concentration*, Orozco, J.
- LSI-04-3-R: *Towards the definition of a taxonomy for the cots product’s market*, Ayala, Claudia P.
- LSI-04-4-R: *Modelling Coalition Formation over Time for Iterative Coalition Games*, Mérida-Campos, C. and Willmott, S.
- LSI-04-6-R: *An Analysis Pattern for Electronic Marketplaces*, Queralt, A. and Teniente, E.
- LSI-04-7-R: *Exploring Dopamine-Mediated Reward Processing through the Analysis of EEG-Measured Gamma-Band Brain Oscillations*, Vellido, A. and El-Deredy, W.
- LSI-04-15-R: *Evaluation and symmetrisation of alignments obtained with the Giza++ software*, Lambert, P. and Castell, N.
- LSI-04-16-R: *A note on the use of topology extensions for provoking instability in communication networks*, Blesa, M.J.
- LSI-04-19-R: *Adding Efficient and Reliable Access Paths to the JCF*, Marco, J. and Franch, X.
- LSI-04-20-R: *Exploiting Simple Corporate Memory in Iterative Coalition Games*, Mérida-Campos, C. and Willmott, S.
- LSI-04-23-R: *Chromatic number in random scaled sector graphs*, Díaz, J. and Sanwalani, V. and Serna, M. and Spirakis, P.
- LSI-04-25-R: *Open Source environment to define constraints in route planning for GIS-T*, Pérez, L. and Silveira, A. da M.
- LSI-04-26-R: *A basic repository of operations for the refinement of general ontologies*, de Palol, X.
- LSI-04-27-R: *Tetrahedral mesh subdivision based on underlying volume data*, Rodríguez, L. and Navazo, I. and Vinacua, A.
- LSI-04-29-R: *Smaller kernels for hitting set problems of constant arity*, Nishimura, N. and Ragde, P. and Thilikos, D.M.
- LSI-04-30-R: *Searching Spatial Sense in the Ontological World: Discovering Spatial Objects*, Morocho, V and Pérez, L. and Saltor, F.
- LSI-04-34-R: *SVMTool: A general POS tagger generator based on Support Vector Machines*, Giménez, J. and Márquez, LL.
- LSI-04-35-R: *A distributed and mobile component system based on the ambient calculus*, Mylonakis, N. and Orejas, F.
- LSI-04-37-R: *The AlignmentSet Toolkit*, Lambert, P.
- LSI-04-38-R: *Integración de Fuentes de Datos espaciales: análisis e implementación de una Ontología de términos espaciales: Primera Parte - Creación de una Ontología*, Ramos, Erik G.
- LSI-04-40-R: *Kernels on Structured Domains*, Valentín, L.
• LSI-04-41-R: *Determining the Structural Events that May Violate an Integrity Constraint*, Cabot, J. and Teniente, E.

• LSI-04-42-R: *Review of Statistical Word Alignment Techniques*, Lambert, P.

• LSI-04-43-R: *Algoritmos genéticos en el problema de la solución deseada*Óptimización de parámetros* , Barreiro, E. and Joan-Arinyo, R. and Luzón, M.V.

• LSI-04-44-R: *Generative Topographic Mapping as a constrained mixture of Student t-distributions: Theoretical developments*, Vellido, A.

• LSI-04-49-R: *A brief on constraint solving*, Hoffmann, C.M. and Joan-Arinyo, R.

• LSI-04-50-R: *Missing data imputation through Generative Topographic Mapping as a mixture of t-distributions: Theoretical developments*, Vellido, A.

• LSI-04-52-R: *Virtual reality for prostate gland cryosurgery*, Joan-Arinyo, R.

Hardcopies of reports can be ordered from:

Núria Sanchez
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
Campus Nord, Mòdul C6
Jordi Girona Salgado, 1-3
03034 Barcelona, Spain
nurias@lsi.upc.es

See also the Departament WWW pages, http://www.lsi.upc.es/