Disturbance Decoupling Problem for Switched Linear Systems. A Geometric Approach

M. I. GARCÍA-PLANAS
Universitat Politècnica de Catalunya
Departament de Matemàtica Aplicada
Mineria 1, 08038 Barcelona
SPAIN
maria.isabel.garcia@upc.edu

Abstract: In this paper disturbance decoupling problem for switched linear systems is formulated under a geometrical point of view. Necessary and sufficient conditions for the problem with standardizable condition to be solvable are given.

Key–Words: Disturbance decoupling, switched linear systems, invariant subspaces.

1 Introduction

In recent years, linear switching systems are being used to study modelling control problems in diverse fields, such as electrical networks, networked control systems, power electronics aerospace, automotive technologies.

At this time, a large list of articles can be found on fundamental topics like stability, controllability and reachability of switched linear systems (see [18] and [9] for example), the authors Meng and Zhang in [14] provided necessary conditions and sufficient conditions for reachability. However, a small number of contributions can be found dealing with disturbance decoupling problem on linear switching systems.

It is well known that robustness is an important objective in control system theory because the design of plants are vulnerable to unpredicted external disturbances and noises causing always difference between the mathematical model used for design and the actual plant. Therefore, it is required to find if it is possible, a feedback to guarantee the stability and performance of the system under such uncertainties.

Different authors analyze robustness and satability problems for linear systems (see [3], [4] and [8] for example). Disturbance decoupling problems have been studied for time invariant linear systems under a geometrical point of view by using the concepts of some particular invariant subspaces associated to the systems (see [2] and [7] for example).

This concept of invariant subspaces has been generalized to various types of systems as for example singular linear systems in order to study the same kind of problems. N. Otsuka in [16] and E. Yurtseven, W.P.M.H. Heemels, M-K. Camlibel in [19], use simultaneous invariant subspaces to study families of linear systems; concretely study disturbance decoupling problem for switched systems, that is to say families of subsystems with switching rule that concerns with several environmental factors and different controllers, which many authors studied for different kind of switched systems as for example E. Feron [5], D. Liberson [13] and Z.D. Sun and S.S. Ge [18], among others.

Singular switched linear systems are an important class of switched systems that appears in many engineering problems as for example electrical networks.

Example 1

Let us consider a resistor-capacitor (RC) circuit as shown in the figure 1.

Where \(C \) represents capacitance, \(R \) load resistance and \(E \) the source voltage.

Equations when the switch \(S_1 \) is closed are:

\[
\begin{pmatrix}
RC & 0 \\
0 & 0 \\
-1 & 0 \\
1 & RC
\end{pmatrix}
\begin{pmatrix}
\dot{Q} \\
\dot{I}
\end{pmatrix}
=
\begin{pmatrix}
-1 & 0 \\
1 & RC
\end{pmatrix}
\begin{pmatrix}
Q \\
I
\end{pmatrix}
+
\begin{pmatrix}
C \\
-C
\end{pmatrix}
E
\tag{1}
\]

and when the switch \(S_2 \) is closed are:

\[
\begin{pmatrix}
RC & 0 \\
0 & 0 \\
-1 & 0 \\
RC & -1
\end{pmatrix}
\begin{pmatrix}
\dot{Q} \\
\dot{I}
\end{pmatrix}
=
\begin{pmatrix}
-1 & 0 \\
1 & RC
\end{pmatrix}
\begin{pmatrix}
Q \\
I
\end{pmatrix}
+
\begin{pmatrix}
0 \\
0
\end{pmatrix}
E.
\tag{2}
\]

We are concerned with dynamical systems described by a combination of linear dynamical systems...
A switched singular linear system is a system which consists of several linear subsystems and a switching well-defined path σ taking values into the index set $M = \{1, \ldots, \ell\}$ which indexes the different subsystems.

\[E_\sigma \dot{x}(t) = A_\sigma x(t) + B_\sigma u(t), \]
\[y(t) = C_\sigma x(t) \] \hspace{1cm} (3)

where $E_i, A_i \in M_n(\mathbb{R}), B_i \in M_{n \times m}(\mathbb{R}), C_i \in M_{p \times n}(\mathbb{R})$, and $\dot{x} = dx/dt$.

1. switching path $\sigma : [t_0, T) \rightarrow M$, $t_0 < T \leq \infty$, for some initial time t_0.
2. switching sequence of σ over $[t_0, T)$, \{$(t_0, \sigma(t_0)),$ $\ldots, (t_\ell, \sigma(t_\ell))$\}.

Remark 2 For simplicity, the singular switched linear system 3, will be written simply as a quadruple of matrices $(E_\sigma, A_\sigma, B_\sigma, C_\sigma)$ and the standard ones as a triple of matrices $(A_\sigma, B_\sigma, C_\sigma).$ And in the case where the matrices C_σ are not involved in the problem, will be written as $(E_\sigma, A_\sigma, B_\sigma)$ for the singular case and (A_σ, B_σ) for the standard case.

The paper is organized as follows. In section 2, the disturbance decoupling problem is presented, section 3 is devoted to define and construct simultaneously invariant subspaces. Finally, in section 4, we apply the concept of simultaneously generalized invariant subspace to obtain some conditions to solve the disturbance decoupling problem for some particular cases of singular switched linear systems.

2 Disturbance decoupling problem

Definition 3 A switched singular linear system with “continuous” disturbance is a system which consists of several linear subsystems with disturbance and a piecewise constant map σ taking values into the index set $M = \{1, \ldots, \ell\}$ which indexes the different subsystems. In the continuous case, such a system can be mathematically described by

\[E_\sigma \dot{x}(t) = A_\sigma x(t) + B_\sigma u(t) + D_\sigma d(t) \]
\[y(t) = C_\sigma x(t) \] \hspace{1cm} (4)

where $E_\sigma, A_\sigma \in M_n(\mathbb{C}), B_\sigma \in M_{n \times m}(\mathbb{C}), D_\sigma \in M_{n \times q}(\mathbb{C}), C_\sigma \in M_{p \times n}(\mathbb{C})$ and $\dot{x} = dx/dt$.

Remark 4 The term $d(t)$, $t \geq 0$, represents a disturbance, which may represent modeling or measuring errors, noise, or higher order terms in linearization.

Problem 2.1 The disturbance decoupling problem is stated as follows: find necessary and sufficient conditions under which we can choose proportional and derivative feedback such that, the matrix pencil $(E_\sigma + D_\sigma F^E, A_\sigma + B_\sigma F^A)$ is regular of index at most one and D_σ has no influence on the output y.

Remark 5 It is not sufficient that the subsystems of a switched linear system are disturbance decoupled for the switched linear system itself to be disturbance decoupled.

Example 2 Consider a switched singular system consisting of the following two systems with disturbance...
The problem of constructing feedbacks that suppress the disturbance in the sense that \(d(t) \) does not affect the input-output behavior of the system has been largely analyzed in both cases standard and singular state space systems (see [1], [15], [17] for example).

In this paper we analyze the disturbance decoupling problem for standard switched systems and a particular case of singular switched systems, using geometric tools.

3 Geometric Tools

The disturbance decoupling problem of a structural control problem can be solved by geometric methods.

3.1 Invariant subspaces

Remember that a subspace \(G \subset \mathbb{C}^n \) is called invariant under \((A, B)\) (also called robust controlled invariant subspace) if

\[
AG \subset G + \text{Im } B
\]

Equivalently, we have that a subspace \(G \) is \((A, B)\)-invariant if

\[
(A + BF_A)G \subset G.
\]

This definition is easily generalized to \((E, A, B)\)-invariant subspaces in the following manner

Definition 6 A subspace \(G \subset \mathbb{C}^n \) is said invariant under \((E, A, B)\), if

\[
AG \subset EG + \text{Im } B
\]

(For more information see [6] and [10], for example).

Remark 7 Observe that if \(E = I_n \), this definition coincides with definition of \((A, B)\)-invariant subspace.

We can construct \((E, A, B)\)-invariant subspaces in the following manner. Let \(H \subset \mathbb{C}^n \) be a subspace (in particular we can chose \(H = \mathbb{C}^n \), we define

\[
G_{k+1} = H \cap \{ x \in \mathbb{C}^n \mid Ax \in EG_k + \text{Im } B \}, \quad G_0 = H,
\]

limit of recursion exists and we will denote by \(G(H) \). This subspace is the supremal \((E, A, B)\)-invariant subspace contained in \(H \).

Example 3

Let \((E, A, B)\) be a triple of matrices with \(E = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(H = \{(x, y, z) \mid x = 0\} \).
Computation of G_1:

$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\mu
+
\begin{pmatrix}
\lambda \\
0
\end{pmatrix}
$$

$[(x, y, 0)] \cap H = [(0, 1, 0)] = G_1.$

Computation of G_2:

$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\mu
+
\begin{pmatrix}
\lambda \\
0
\end{pmatrix}
$$

$[(x, y, 0)] \cap H = [(0, 1, 0)] = G_2 = G_1.$ Then $G = G_1.$

Obviously $AG \subset EG + Im B$.

Proposition 8 Let (E, A, B) be a triple of matrices. A subspace $G \subset \mathbb{C}^n$ is invariant under (E, A, B) if and only if it is invariant under $(E + BF_E, A + BF_A, B)$ for all possible feedbacks $F_E, F_A \in M_{m \times n}(\mathbb{C})$.

Proof:

Suppose that $AG \subset EG + Im B$, then for all $x \in G$, there exists $y \in G, v = Bw \in Im B$ such that $Ax = Ey + Bw$ so, for any $F_E, F_A \in M_{m \times n}(\mathbb{C})$, we have

$$A x + BF_A x - BF_E x = Ey + BF_E y - BF_E y + Bw$$

Consequently, for all $x \in G$, $(A + BF_A)G \subset (E + BF_E)G + Im B$.

Reciprocally. If $G \subset \mathbb{C}^n$ is invariant under $(E + BF_E, A + BF_A, B)$ for all possible feedbacks $F_E, F_A \in M_{m \times n}(\mathbb{C})$, in particular it is invariant under $(E + BF_E, A + BF_A, B)$ for $F_E = F_A = 0$.

Let $(E_1, A_1, B_1), (E_2, A_2, B_2)$ be two triples of matrices, we say that they are equivalent, if and only if, there exist invertible matrices $P, Q \in Gl(n)$ and $R \in Gl(m)$ and rectangular matrices $F_E, F_A \in M_{m \times n}$ such that

$$(E_2, A_2, B_2) = (Q E_1 P + Q B_1 F_E, Q A_1 P + Q B_1 F_A, Q B_1 R).$$

Proposition 9 Let $(E_1, A_1, B_1), (E_2, A_2, B_2)$ be two equivalent triples. Then $G \subset \mathbb{C}^n$ is an invariant subspace under (E_1, A_1, B_1) if and only if $P^{-1}G$ is invariant under (E_2, A_2, B_2).

Proof:

Suppose that $A_1 G \subset E_1 G + Im B$.

Then,

$$A_2 P^{-1} G = (Q A_1 P + Q B_1 F_{A_1}) P^{-1} G = Q(A_1 G + B_1 F_{A_1} P^{-1} G) \subset Q(E_1 G + Im B_1) = Q((Q^{-1} E_2 P^{-1} - Q^{-1} B_2 R^{-1} F_E P^{-1}) G + Im Q^{-1} B_2 R^{-1}) = Q(Q^{-1} (E_2 P^{-1} - B_2 R^{-1} F_E P^{-1}) G + Im B_2 R^{-1}) = QQ^{-1} ((E_2 P^{-1} - B_2 R^{-1} F_E P^{-1}) G + Im B_2 R^{-1}) \subset (E_2 - B_2 R^{-1} F_E) P^{-1} G + Im B_2.$$

Now, it suffices to apply proposition 8.

Example 4

Let (E_1, A_1, B_1) be the triple in the example 3, and G the invariant subspace obtained in it. Let $(E_2, A_2, B_2) = (QE_1 P + QB_1 F_E, QA_1 P + QB_1 F_A, QB_1 R)$ be an equivalent triple with

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ R = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Clearly

$$\begin{pmatrix}
3 & 3 & 0 \\
2 & 2 & -1 \\
1 & 0 & -1
\end{pmatrix} \begin{pmatrix}
0 \\
2\lambda \\
0
\end{pmatrix} = \begin{pmatrix}
3 & 3 & 2 \\
1 & 2 & 0 \\
0 & 0 & 2\lambda
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}.$$

Consequently, G is a (E_2, A_2, B_2)-invariant subspace.

In particular, if E is an invertible matrix, we have the following corollary.

Corollary 10 A subspace G is (E, A, B)-invariant if and only if it is $(E^{-1} A, E^{-1} B)$-invariant.

Proof:

It suffices to take $Q = E^{-1}, \ P = I_n, \ R = I_m$ and $F_E = F_A = 0$.

Now, we are going to present a particular case of invariant subspaces.

First of all we observe the following result.

Proposition 11 Let (A, B) be a standard pair. Then

$$G = [B, AB, \ldots, A^{n-1} B]$$

is a (A, B)-invariant subspace.

Proof:

$$AG = A[B, AB, \ldots, A^{n-1} B] = [AB, A^2 B, \ldots, A^n B].$$

Now, it suffices to apply the Cayley-Hamilton theorem.
Theorem 12 Let
\[
C_r = \begin{pmatrix}
E & B \\
A & E \\
\vdots & \vdots \\
E & B \\
A & B
\end{pmatrix}
\in M_{mr \times (n(r-1)+mr)}(\mathbb{C})
\]
be the \(r\)-controllability matrix. Suppose \(r\) being the least such that \(\text{rk} C_r < (n(r-1)+mr)\), and let \((v_1 \ldots v_r w_1 \ldots w_{r+1}) \in \ker C_r\) (\(v_i\) are vectors in \(\mathbb{C}^n\) and \(w_i\) vectors in \(\mathbb{C}^m\)). Then \(G = [v_1, \ldots, v_r]\) is a \((E, A, B)\)-invariant subspace.

Proof: We consider \(v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_{r-1} v_{r-1} + \lambda_r v_r, Av = \lambda_1 Av_1 + \lambda_2 Av_2 + \ldots + \lambda_{r-1} Av_{r-1} + \lambda_r Av_r = \lambda_1 (-Ev_2 - Bw_2) + \lambda_2 (-Ev_3 - Bw_3) + \ldots + \lambda_{r-1} (-Ev_r - Bw_r) - \lambda_r Bw_{r+1} = E(\lambda_1 v_2 - \lambda_2 v_3 - \ldots - \lambda_{r-1} v_r) + B(\lambda_1 w_2 - \lambda_2 w_3 - \ldots - \lambda_{r-1} w_r - \lambda_r w_{r+1}) \in EG + \text{Im} B.
\]

Definition 13 The space sum of all spaces \(G\) in \(\mathbb{C}^n\) in the above theorem, coincides with the controllability subspace and we will denote it by \(C(E, A, B)\).

Notice that \(C(E, A, B)\) is the set of states in which the system is controllable.

Corollary 14 Let \((E, A, B)\) be a triple with \(E = I_n\). In this case the invariant subspace \(G\) obtained in the above theorem, coincides with \((A, B)\)-invariant subspaces \([B, AB, \ldots, A_{r-1}B]\).

Proof: Making block-row elementary transformations to the matrix \(C_r\) we obtain the equivalent matrix
\[
\begin{pmatrix}
I_n & 0 \\
I_n & -AB \\
\vdots & \vdots \\
I_n & -AB \\
0 & (-1)^{r-2}A^{r-2}B \\
0 & (-1)^{r-1}A^{r-1}B \\
\end{pmatrix}
\]
and we have the following result.

Proposition 16 A subspace \(G\) of \(\mathbb{C}^n\) is simultaneously \((A_i, B_i)\)-invariant if and only if there exist \(F_{A_i}\) such that
\[
(A_i + B_iF_{A_i})G \subset G, \forall i, 1 \leq i \leq \ell.
\]

In general, for singular switched linear systems, we have:

Definition 17 A subspace \(G\) of \(\mathbb{C}^n\) is said to be simultaneously \((E_i, A_i, B_i)\)-invariant if and only
\[
A_i G \subset E_i G + \text{Im} B_i, \forall i, 1 \leq i \leq \ell.
\]

Proposition 18 A subspace \(G\) of \(\mathbb{C}^n\) is simultaneously \((E_i, A_i, B_i)\)-invariant if and only if, for all \(F_{A_i}\) and \(F_{B_i}\), we have
\[
(A_i + B_iF_{A_i})G \subset (E_i + B_iF_{E_i})G.
\]

Proof: It is a direct consequence of proposition 8.

3.3 Construction of Simultaneously invariant subspaces

Analogously to the method to get invariant subspaces, we construct simultaneously invariant subspaces. A.A. Julius, A.J. van der Schaft in [11] with a similar method, constructs controlled invariant subspaces of standard switched linear systems.

i) For standard switched systems

Definition 19 Let \(H \subset \mathbb{C}^n\) be a subspace, we define:
\[
\begin{align*}
V_0 &= H, \\
V_{k+1} &= H \cap \{x \in \mathbb{C}^n | (A_i + B_iF_{A_i})x \in V_k + \text{Im} B_i, \forall i, 1 \leq i \leq \ell\}.
\end{align*}
\]

Proposition 20
\[
V_{k+1} \subset V_k, \forall k = 0, 1, 2, \ldots
\]

Proof: Clearly, \(V_1 \subset V_0\), and if \(V_k \subset V_{k-1}\), then for all \(x \in V_{k+1}\) is \(x \in H\) and \(\oplus(A_i + B_iF_{A_i})x = \oplus(E_i + B_iF_{E_i})u + \oplus B_i v_i\) with \(u \in V_k \subset V_{k-1}\). So \(\oplus(A_i + B_iF_{A_i})x \in \oplus(E_i + B_iF_{E_i})V_{k-1} + \oplus \text{Im} B_i\), that is to say \(x \in V_k\).

Remark 21 Limit of recursion exists and we will denote by \(V(H)\). This subspace is the supremal simultaneously \((A_i, B_i)\)-invariant subspace contained in \(H\).
We are interested in the case where the subspace is \(\cap_{\sigma} \text{Ker} \ C_{\sigma} \).
So, from now, we consider
\[
H = \cap_{\sigma} \text{Ker} \ C_{\sigma}.
\]

ii) For singular switched systems

Definition 22 Let \(H \subset \mathbb{C}^n \) be a subspace, we define:

\[
W_0 = H, \\
W_{k+1} = H \cap \{ x \in \mathbb{C}^n | (A_i + B_i F_{A_i})x \in (E_i + B_i F_{E_i})W_k + \text{Im} \ B_i, \forall i, 1 \leq i \leq \ell \}.
\]

Proposition 23

\[
W_{k+1} \subset W_k, \forall k = 0, 1, 2, \ldots
\]

Proof:

Analogous to proposition 20.

Remark 24 Limit of recursion exists and we will denote by \(W(H) \). This subspace is the supremal simultaneously \((E_i, A_i, B_i) \)-invariant subspace contained in \(H \).

As in the standard case, we are interested in the case where the subspace is \(\cap_{\sigma} \text{Ker} \ C_{\sigma} \).
So, from now on, we consider
\[
H = \cap_{\sigma} \text{Ker} \ C_{\sigma}.
\]

Example 5

Let \((E_{\sigma}, A_{\sigma}, B_{\sigma}, C_{\sigma}) \) be the triples considered in example 2, and \(H = \cap_{\sigma} \text{Ker} \ C_{\sigma} = \{0, 0, 1\} \).
Computing \(W_1 \): in this particular case \(E_1 = E_2 \), \(A_1 = A_2 \) and \(B_1 = B_2 \), then
\[
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
+ \begin{pmatrix}
0 \\
0 \\
\lambda
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\mu
\end{pmatrix}
\]

Then, \(W_1 = W_0 \) and \(W(H) = W_0 \).

4 Solving disturbance decoupling problem

Hereinafter and in order to simplify notations, we identify \(D_i \) by \(\text{Im} \ D_i \).

We will use invariant subspaces constructed in the previous section to analyze the disturbance decoupling problem.

The solution for standard case can be found in [16] and [19], but we show for a better understanding of Article

Proposition 25 Let \((A_\sigma, B_\sigma, C_\sigma) \) be a standard switched system with disturbance \(D_\sigma \). Then the disturbance decoupling problem is solvable if and only if
\[
\sum D_i \subset V(H).
\]
with \(H = \cap_{\sigma} \text{Ker} \ C_i \)

Proof:

Suppose that the switched system 4 is activated by the switched rule as follows.
\[
(A_{i_1}, B_{i_1}, C_{i_1}, D_{i_1}) \rightarrow (A_{i_2}, B_{i_2}, C_{i_2}, D_{i_2}) \rightarrow \ldots,
\]
where \(i_1, i_2, i_3, \ldots \in M \).
When the first system \((A_{i_1}, B_{i_1}, C_{i_1}, D_{i_1}) \) is activated the state space generated by the disturbance \(D_{i_1} \) is
\[
\langle (A_{i_1} + B_{i_1} F_{A_1}) | (A_{i_1} + B_{i_1} F_{B_1}) \rangle = \{ f(t) e^{(A_{i_1} + B_{i_1} F_{A_1})t} D_{i_1} | t \in \mathbb{R} \).
\]

If the subsystem \((A_{i_1}, B_{i_1}, C_{i_1}, D_{i_1}) \) is changed to \((A_{i_2}, B_{i_2}, C_{i_2}, D_{i_2}) \) by the switched rule 7, then the subspace generated by disturbances through
\[
\langle (A_{i_1} + B_{i_1} F_{A_1}) | (A_{i_1} + B_{i_1} F_{B_1}) \rangle + (A_{i_2} + B_{i_2} F_{A_2}) W(H) \rightarrow \langle (A_{i_2} + B_{i_2} F_{A_2}) | (A_{i_2} + B_{i_2} F_{B_2}) \rangle.
\]

Analogously, we have the following subspaces.
\[
\sum D_{i_j} \subseteq \langle (A_{i_j} + B_{i_j} F_{A_1}) | (A_{i_j} + B_{i_j} F_{B_1}) \rangle + \ldots \subseteq \langle (A_{i_j} + B_{i_j} F_{A_1}) | (A_{i_j} + B_{i_j} F_{B_1}) \rangle + D_{i_j} \langle (A_{i_j} + B_{i_j} F_{A_2}) | (A_{i_j} + B_{i_j} F_{B_2}) \rangle + D_{i_j} \}
\]

for \(j \geq 2 \).

From the construction of subspaces 8 we have that
\[
\sum D_{i_j} \subseteq \langle (A_{i_j} + B_{i_j} F_{A_1}) | (A_{i_j} + B_{i_j} F_{B_1}) \rangle + \ldots \subseteq \langle (A_{i_j} + B_{i_j} F_{A_1}) | (A_{i_j} + B_{i_j} F_{B_1}) \rangle + D_{i_j} \langle (A_{i_j} + B_{i_j} F_{A_2}) | (A_{i_j} + B_{i_j} F_{B_2}) \rangle + D_{i_j} \}
\]

Since they are subspaces of a finite-dimensional space, there exists a finite number \(\rho \) such that
\[
\ldots \subseteq \langle (A_{i_\rho} + B_{i_\rho} F_{A_1}) | (A_{i_\rho} + B_{i_\rho} F_{B_1}) \rangle + D_{i_\rho} \langle (A_{i_\rho} + B_{i_\rho} F_{A_2}) | (A_{i_\rho} + B_{i_\rho} F_{B_2}) \rangle + D_{i_\rho} \}
\]

for all \(\ell \geq \rho \) and \(\kappa = \ell + \rho \).
Clearly all these subspaces are simultaneously \((A_i, B_i) \)-invariant.
Obviously, the decoupling problem has solution if and only if
\[\langle (A_{ij} + B_i F_{E_i}) | (A_{ij-1} + B_{ij-1} F_{E_{ij-1}}) | D_{ij-1} + D_{ij} \rangle \subset \cap_i \ker C_i \]

So,
\[\langle (A_{ij} + B_i F_{E_i}) | (A_{ij-1} + B_{ij-1} F_{E_{ij-1}}) | D_{ij-1} + D_{ij} \rangle \subset V(H) \]
because of \(V(H) \) is the maximal simultaneously \((A_i,B_i)\)-invariant subspace contained in \(\cap_i \ker C_i \).

Now, we are going to try to solve the problem for standardizable systems.

Lemma 26 Let \((E_\sigma, A_\sigma, B_\sigma)\) be a singular switched system and suppose that \(\text{rank}(E_i,B_i) = n\) for all \(i \in \sigma\). Then the system can be reduced to a standard switched system.

A switched system verifying this property will be called standardizable (by feedback) switched system.

The disturbance decoupling problem can be translated into the following geometric problem.

Theorem 27 Let \((E_\sigma, A_\sigma, B_\sigma, C_\sigma)\) be a standardizable (by feedback) switched system with disturbance \(D_\sigma\). Then the disturbance decoupling problem is solvable if and only if
\[\sum (E_i + B_i F_{E_i})^{-1} D_i \subset W(H). \]
with \(H = \cap_i \ker C_i\)

Proof:
Observe that if the system is standardizable, then the index is zero.

After proposition 9, we have that the supremal simultaneously invariant subspace \(W(H)\) for \((E_\sigma, A_\sigma, B_\sigma, C_\sigma)\) coincides with the supremal simultaneously invariant subspace \(V(H)\) for \(((E_\sigma + B_\sigma F_{E_\sigma})^{-1} A_\sigma, (E_\sigma + B_\sigma F_{E_\sigma})^{-1} B_\sigma, C_\sigma)\). And, the switched system \((E_i + B_i F_{E_i})^{-1} A_\sigma, (E_i + B_i F_{E_i})^{-1} B_\sigma, C_\sigma)\) with disturbance \((E_\sigma + B_\sigma F_{E_\sigma})^{-1} A_\sigma D_\sigma\) is solvable if and only if
\[\sum (E_i + B_i F_{E_i})^{-1} D_i \subset V(H). \]

Following example 5, and taking
\[F_{E_i} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}, \]
we have
\[(E_i + B_i F_{E_i})^{-1} D_i = D_i, \]
\[\sum D_i \not\subset V(H). \]

But, if we consider the subsystems separately then it is easy to show that \(G_i \subset V(\ker C_i)\) for each \(i = 1, 2\).

Corollary 28 Suppose that \(D_i\) are \((E_i,B_i)\)-invariant. If \(\sum D_i \subset V(H)\), then the disturbance decoupling problem of the switched system \((E_\sigma, A_\sigma, B_\sigma, C_\sigma)\) with disturbance \(D_\sigma\) is solvable.

Proof:
If \(D_i\) is \((E_i,B_i)\)-invariant then
\[D_i = (E_i + B_i F_{E_i})^{-1} D_i. \]

So,
\[\sum D_i = \sum (E_i + B_i F_{E_i})^{-1} D_i \subset V(H) = W(H). \]

Finally, we try to solve the problem for the case where the switched system is regularizable equisingular of index one (quite natural in applications as for example modeling a pulse-width modulator boost-converter, [12]).

Definition 29 A switched system \((E_\sigma, A_\sigma, B_\sigma, C_\sigma)\) is called regularizable equisingular of index one, if and only if there exist matrices \(Q,P \in GL(n;\mathbb{C}), R \in GL(m;\mathbb{C}), S \in GL(p;\mathbb{C}), F_{E_i}, F_{A_i} \in M_{m \times n}(\mathbb{C})\) and \(O_{E_i}, O_{A_i} \in M_{n \times p}(\mathbb{C})\), such that
\[
\begin{align*}
(\tilde{E}_i, A_i, B_i, \tilde{C}_i) &= (Q E_i P + Q B_i F_{E_i} + O_{E_i} C_i P, QA_i P + QB_i F_{A_i} + O_{A_i} C_i P, SC_i P, QB_i R) \\
&= (Q(A_i + B_i F_{A_i} P^{-1} + Q^{-1} O_{A_i} C_i P), \tilde{C}_i).
\end{align*}
\]
with
\[
\begin{align*}
\tilde{E}_i &= \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}, \tilde{A}_i &= \begin{pmatrix} A_i & I_{n-r} \\ 0_{n-r \times m} & 0 \end{pmatrix} \\
\tilde{B}_i &= \begin{pmatrix} \tilde{B}_i \\ 0_{n-r \times m} \end{pmatrix}, \tilde{C}_i &= \begin{pmatrix} \tilde{C}_i \\ 0_{p \times n-r} \end{pmatrix}.
\end{align*}
\]

We will call equisingular reduced form the switched system expressed in the form 10.

(Observe that matrices \(Q, P, R, S\) are the same for all \(i\), all subsystems are regularizable and the reduced subsystems are of index one).

In the case where we have a switched system in its equisingular reduced form with a disturbance \(D_\sigma\) we have the following corollary.
Corollary 30 The disturbance decoupling problem for the system 10 with disturbance D_α is solvable if and only if

$$\sum D_{\sigma r} \subset V(H).$$

where $V(H)$ is the supremal simultaneously invariant subspace corresponding to the standard switched system $(\bar{A}_r, \bar{B}_r, \bar{C}_r)$, and $D_{\sigma r}$ corresponds to the r first rows of D_α and $H = \bigcap_{\sigma} \text{Ker} C_{\sigma r}$.

5 Conclusions

In this paper disturbance decoupling problem for switched linear systems has been formulated under a geometrical point of view. Necessary and sufficient conditions in order to obtain solutions of the disturbance decoupling problem with standardizable condition are given.

It is noteworthy that all controllable systems are necessarily standardizable, therefore this condition is not very restrictive.

Acknowledgements The author is supported by grant MTM2010-19281.

References:

