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Abstract. This study aims to analyze the effects of data pre-processing on the 
forecasting performance of neural network models. We use three different Artificial 
Neural Networks techniques to predict tourist demand: multi-layer perceptron, radial 
basis function and Elman neural networks. The structure of the networks is based on a 
multiple-output approach. We use official statistical data of inbound international 
tourism demand to Catalonia (Spain) and compare the forecasting accuracy of four 
processing methods for the input vector of the networks: levels, growth rates, 
seasonally adjusted levels and seasonally adjusted growth rates. When comparing the 
forecasting accuracy of the different inputs for each visitor market and for different 
forecasting horizons, we obtain significantly better forecasts with levels than with 
growth rates. We also find that seasonally adjusted series significantly improve the 
forecasting performance of the networks, which hints at the significance of 
deseasonalizing the time series when using neural networks with forecasting 
purposes. These results reveal that, when using seasonal data, neural networks 
performance can be significantly improved by working directly with seasonally 
adjusted levels. 

Keywords: artificial neural networks, forecasting, multiple-output, seasonality, 
detrending, tourism demand, multilayer perceptron, radial basis function, Elman 
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1. Introduction 

International tourism has become one of today’s fastest growing industries. Tourism 
accounts for almost 10% of total international trade and plays a fundamental role in the 
long-run economic development of many regions (Akkemik 2012; Sigala, Chalkiti 2014). 
To achieve a sustainable tourism model, policy makers and professionals need more 
accurate predictions of the number of tourist arrivals at the destination level. Many authors 
have acknowledged the importance of applying new approaches to tourism demand 
forecasting in order to improve the accuracy of the methods of analysis (Song, Li 2008). 
The availability of more advanced forecasting techniques has led to a growing interest 
Artificial Intelligence (AI) models (Yu, Schwartz 2006; Goh et al. 2008; Lin et al. 2011; 
Chen 2011; Celotto et al. 2012; Wu et al. 2012; Cang, Yu 2014) to the detriment of time 
series models (Chu 2008, 2011; Assaf et al. 2011) and causal econometric models (Page et 
al. 2012). Some of the new AI based techniques are fuzzy time series models (Tsaur, Kuo 
2011), genetic algorithms (Hadavandi et al. 2011), expert systems (Shahrabi et al. 2013; Pai 
et al. 2014) and Support Vector Machines (SVMs) (Chen, Wang 2007; Hong et al. 2011). 
Recent research has shown the suitability of Artificial Neural Networks (ANNs) for dealing 
with tourism demand forecasting (Teixeira, Fernandes 2012; Claveria, Torra 2014). 

In spite of the successful use of ANNs for time series forecasting, very few studies 
compare the accuracy of different NN architectures for tourism demand forecasting at a 
regional level. The present study deals with tourist arrivals to Catalonia. Barcelona is the 
capital of Catalonia, and the most important destination in Spain. After France and the 
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United States, Spain is the third most important destination of the world with 60 million 
tourist arrivals in 2013. Catalonia received more than 15 million tourists in 2013, an 8% 
raise over the previous year. Tourism is one of the fastest growing industries in Catalonia, 
accounting for 12% of GDP and providing employment for 15% of the working population. 
These figures show the importance of accurate forecasts of tourism volume at the 
destination level for tourism planning. 

The fact that tourism data are characterised by strong seasonal patterns and volatility, 
make it a particularly interesting field in which to apply different types of ANN 
architectures. The raw time series of tourism data usually require significant pre-processing 
in order to be used with forecasting purposes. While the effects of data pre- processing on 
forecast accuracy have been widely studied in the context of time series analysis, there are 
very few studies for tourism demand with neural networks (Zhang, Qi 2005). Empirically, 
ANNs have shown to be suited to forecast nonlinear time series. Nevertheless, studies reach 
different conclusions on how to deal with seasonal time series (Hamzaçebi 2008). While 
Nelson et al. (1999) and Zhang and Kline (2007) concluded that in order to obtain a better 
ANN forecasting, the seasonal effect should be removed form the raw data, Franses and 
Draima (1997) and Alon et al. (2001) found that ANNs are capable of modelling the 
seasonal and trend effects in data structure without removing the seasonal effects. 

The objective of this study is to investigate the effects of data pre-processing in the 
forecast performance of ANNs when using seasonal time series, extending to tourist 
demand forecasting the results of previous research on economics. Given that univariate 
specifications are limited and unable to capture dynamic interrelationships between 
variables, we analyze whether a multivariate setting provides useful for forecasting 
purposes. With this aim, we implement a multiple-output approach (i.e. each output 
corresponds to a given country) to predict international tourism demand to Catalonia 
(Spain) from all countries of origin. We compare the forecasting performance of three 
different ANN architectures: multi-layer perceptron (MLP), radial basis function (RBF) and 
Elman networks. To analyze the effects of data pre-processing on forecast accuracy for the 
different ANN architectures, we design the experiment using alternative approaches for 
data pre-processing: levels, growth rates, seasonally adjusted levels and seasonally adjusted 
growth rates. To assess the value of the different models we compute the Diebold-Mariano 
test for significant differences between each two competing series. To our knowledge, this 
is the first study to analyze the forecasting performance of multiple-output ANNs for 
tourism data. 

The structure of the paper proceeds as follows. Section 2 briefly reviews the literature 
on tourism demand forecasting with ANNs. In section 3, we present the different NN 
architectures used in the analysis. In the following section we explain how to design the 
experiment and implement the models. Data is presented in the fifth section, where the 
results of the out-of-sample forecasting competition are discussed. Finally, a summary and 
a discussion of the implications are given in Section 6. 

2. Artificial Neural Networks in tourism demand forecasting 

ANNs are models capable of identifying temporal patterns from historical data, capturing 
functional relationships among the data when the underlying process is unknown. The data 
generating process of tourist arrivals is too rich to be specified by a single linear algorithm, 
which might not be able to take into account saturation or exponential effects, interactions 
between different time series, etc. This explains the great interest that ANNs have aroused 
for tourism demand forecasting. Each type of network is suited to a combination of a 
learning paradigm, a learning rule and a learning algorithm (EM, back-propagation, etc.). 



The main learning paradigms are supervised learning and non-supervised learning. In 
supervised learning weights are adjusted to approximate the network output to a target 
value for each pattern of entry, while in non-supervised learning the subjacent structure of 
data patterns is explored so as to organize such patterns according to a distance criterion. 
MLP networks are supervised learning models, while RBF networks, combine both 
learning methods. The combination of both learning methods implies that part of the 
weights is determined by a supervised process while the rest are determined by non-
supervised learning. 

ANNs can also be classified into feed-forward and recurrent networks regarding the 
connecting patterns of the different layers. The most widely used feed-forward topology in 
tourism demand forecasting is the MLP network (Law 2000; Tsaur et al. 2002; Kon, Turner 
2005; Palmer et al. 2006). RBF networks are a special class of multi-layer feed-forward 
architecture with two layers of processing. In contrast to MLP networks, RBF networks are 
based in local approximations of the functions by means of centroids. Unlike feed-forward 
networks, recurrent neural networks are models that allow for a feedback of the past states 
of the network. While a feed-forward network propagates data linearly from input to output, 
recurrent networks also propagate data from later processing stages to earlier stages. A 
special class of recurrent network is the Elman network. Whilst MLP neural networks are 
increasingly used with forecasting purposes, RBF and Elman neural networks have been 
scarcely used in tourism demand forecasting. Cang (2013) has recently combined MLP, 
RBF and SVM forecasts to predict UK inbound tourist arrivals. Cho (2003) used the Elman 
architecture to predict the number of arrivals from different countries to Hong Kong. 

In recent years several studies have been published on tourism in Spain at a regional 
level (Nawijn, Mitas 2012; Andrades-Caldito et al. 2013), but very few concerning tourism 
demand forecasting. Palmer et al. (2006) designed a MLP neural network to forecast 
tourism expenditure in the Balearic Islands. Medeiros et al. (2008) developed a NN-
GARCH model to estimate demand for international tourism also in the Balearic Islands. 
Bermúdez et al. (2009) applied a multivariate exponential smoothing model and by means 
of a Bayesian approach calculate prediction intervals for hotel occupancy in three provinces 
in Spain. Claveria and Torra (2014) compared the forecasting accuracy of time series 
models to that of MLP networks in Catalonia. In this study we analyze the effects of data 
pre-processing on the forecasting accuracy of three alternative ANN architectures. 

3. Artificial Neural Network models for the forecasting competition 

We use three ANN models: MLP, RBF and Elman networks. Equations (1), (2) and (3) 
respectively describe the input/output relationship of the three architectures: 
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Elman 

 ( ){ }
{ }
{ }
{ }qjpiδ

qjβ

qjpiφ

pixxxx

zδφxφgz

zββy

ij

j

ij

ptttit

tjijj

p

i
itijtj

tjj

q

jt

,,1,,,1,

,,1,

,,1,,,1,

,,1,,,,,1 21

1,0
1

,

,10

KK

K

KK

KL

==

=

==

=′=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∑=

Σ+=

−−−−

−
=

−

=

 (3) 

Where ty  is the output vector of the MLP at time t ; g  is the nonlinear function of the 
neurons in the hidden layer; itx −  is the input vector at time it − , where i  stands for the 
number of lags that are used to introduce the context of the actual observation (which is set 
to one in this study); q  is the number of neurons in the hidden layer; ijφ  are the weights of 
neuron j  connecting the input with the hidden layer; and jβ  are the weights connecting 
the output of the neuron j  at the hidden layer with the output neuron. In the RBF 
specification jg  is the activation function, which usually has a Gaussian shape; jμ  is the 

centroid vector for neuron j ; and the spread jσ  is a scalar that measures the width over 
the input space of the Gaussian function and it can be defined as the area of influence of 
neuron j  in the space of the inputs. In the Elman network, tjz ,  is the output of the hidden 

layer neuron j  at the moment t  and ijδ  are the weights that correspond to the output layer 
and connect the activation at moment t . Further information about these three ANN 
architectures can be found in Bishop (1995) and Haykin (1999). 



The models used for the forecasting comparison have two different kinds of parameters: 
the weights and the hyperparameters related to each topology (in the case of the RBF, the 
spread of each radial basis). The hyperparameters are determined by the performance of the 
networks on cross validation. The estimation of the parameters can be done by means of 
different algorithms, which are either based on gradient search, line search or quasi Newton 
search. In this paper we use a variant of the quasi Newton search called Levenberg-
Marquardt. 

Another aspect to be taken into account is the fact that the training is done by iteratively 
estimating the value of the parameters by local improvements of the cost function. To avoid 
the possibility that the search for the optimum value of the parameters finishes in a local 
minimum, we use a multi-starting technique that initializes the neural network several times 
for different initial random values and returns the best result on a validation database. The 
values in for the number of neurons in the hidden layer range from 5 to 25, and the margin 
for the spread of the radial basis from 0.1 to 2 with increments of 0.2. Note that the 
complexity of the search space is low, so we chose an enumeration strategy which finds the 
best combination. The specific values of these parameters depend on the forecasting 
horizon and the algorithm. As the forecasting horizon increases, the number of neurons 
needed in the hidden layer raises and varies between 10 and 20.  

In order to assure a correct performance of RBF networks, the number of centroids and 
the spread of each centroid have to be selected before the training phase. In this study the 
training is done by adding the centroids iteratively with the spread parameter fixed. Then a 
regularized linear regression is estimated to compute the connections between the hidden 
and the output layers. Finally, the performance of the network is assessed on the validation 
data set. This process is repeated until the performance on the validation database ceases to 
decrease. The hyperparameter sigma is selected before determining the topology of the 
network and is tuned outside the training phase. The optimal value depends on the 
Euclidean distance that is computed inside each neuron. Values of the sigma parameter 
vary from 0.8 to 1.3 depending on the experiment, and are also dependent on the horizon of 
the forecast, possibly due to the uncertainty that arises when the forecast horizon increases 
to 6 months. 

In the case of Elman networks, the training is done by back-propagation through time, 
which is a generalization of back-propagation for feed-forward networks. The parameters 
of the Elman neural network are estimated by minimizing an error cost function. In order to 
minimize total error, gradient descent is used to change each weight in proportion to its 
derivative with respect to the error, provided the nonlinear activation functions are 
differentiable. A major problem with gradient descent for standard recurrent architectures is 
that error gradients vanish exponentially quickly with the size of the time lag. 

4. Design of the experiment 

By means of the Johansen test (see Table 1), we find a correlated evolution between all 
different visitor markets, which leads us to apply a multiple-output approach to obtain 
forecasts of tourism demand for different forecast horizons. Given that univariate 
specifications are limited and unable to capture dynamic interrelationships between 
different countries of origin, we use a multivariate approach, in which information about all 
visitor markets to a destination is simultaneously used. This is the first study to analyze the 
forecasting performance of ANNs in a multivariate setting that allows incorporating cross-
correlations between the evolutions of tourist arrivals from different countries to a specific 
destination. 



We carry out an out-of-sample forecasting comparison between three different ANN 
architectures (MLP, RBF and Elman) using a multivariate (multiple-output) setting. While 
a single-output approach requires implementing the experiment for each visitor country, a 
multiple-output approach allows to simultaneously obtaining forecasts for each visitor 
market. A multivariate approach seems especially suited for this particular data set in which 
seasonal adjusted levels of tourist arrivals from all the different countries of origin share a 
common stochastic trend.  

 
Table 1. Number of cointegrating relations by model 

Type of model 

Assume no deterministic 
trend in data 

Allow for linear 
deterministic trend in 

data 

Allow for 
quadratic 

deterministic 
trend in data 

No 
intercept in 

CE 

Intercept 
in CE 

Intercept 
in CE 

Intercept 
in CE 

Intercept and 
trend in CE 

Test type 

No test 
VAR 

No 
intercept in 

VAR 
Test VAR No trend 

in VAR 
Linear trend 

in VAR 

Trace 9 10 9 10 10 

Maximum 
Eigenvalue 9 10 9 10 10 

Notes: Estimation period 2001:01-2012:07. Critical values based on MacKinnon et al. (1999) 
 
Multivariate approaches to tourist demand forecasting are few and have yielded mixed 

results. Athanasopoulos and Silva (2012) compared the forecasting accuracy of exponential 
smoothing methods in a multivariate setting against univariate alternatives. They used 
international tourist arrivals to Australia and New Zealand and found that multivariate 
models improved on forecast accuracy over the univariate alternatives. Tsui et al. (2014) 
estimated multivariate ARIMA models (ARIMAX) with explanatory variables to forecast 
airport passenger traffic for Hong Kong and found similar forecasting results to SARIMA 
models. Contrary to what could be expected, Du Preez and Witt (2003) found that 
multivariate time series models did not generate more accurate forecasts than univariate 
time series models. 

Following Bishop (1995) and Ripley (1996), we divide the collected data into three sets: 
training, validation and test sets. This division is done in order to asses the performance of 
the network on unseen data. The partition between train and test sets is done sequentially in 
order to maximize the size of the training database. As the prediction advances, forecasts 
are incorporated to the training database, successively increasing its size. The effect of this 
strategy is to improve the training of the network as the prediction advances, thus refining 
the performance at the end of the test phase. 

Based on these considerations, the first sixty monthly observations (from January 2001 
to January 2006) are selected as the initial training set, the next thirty-six (from January 
2007 to January 2009) as the validation set and the last 20% as the test set. Due to the large 
number of possible networks’ configurations, the validation set is used for determining the 
following aspects of the neural networks: 

a. The topology of the networks. 



b. The number of epocs for the training of the MLP/Elman neural networks. The 
iterations in the gradient search are stopped when the error on the validation set increases. 

c. The number of neurons in the hidden layer for the RBF. The sequential increase in the 
number of neurons at the hidden layer is stopped when the error on the validation increases. 

d- The value of the spread jσ  in the RBF NN. 
To make the system robust to local minima, we apply the multistarting technique, which 

consists on repeating each training phase several times. The benefits of the multistarting 
technique derive from the fact that it is a technique for solving the problem that arises from 
using a gradient search for optimizing the parameters of the neural network. The use of 
gradient search yields solutions that might be a local minimum of the cost function. These 
local minima consist of flat zones of the cost function where the gradient is near zero, and 
therefore the optimization algorithm stops the search. As the geometry of the cost functions 
is difficult to analyze, one strategy to overcome the problem is to try different initial values, 
selecting the result with the best performance on the validation database. In our case, we 
repeat the training three times so as to obtain a low value of the performance error. 

The selection criterion for the topology and the parameters is the performance on the 
validation set. The results that are presented correspond to the selection of the best 
topology, the best spread in the case of the RBF neural networks, and the best training 
strategy in the case of the Elman neural networks. Forecasts for 1, 3 and 6 months ahead are 
computed in a recursive way. All neural networks are implemented using Matlab™ and its 
Neural Networks toolbox. 

5. Results of the out-of-sample forecasting competition 

In this section we implement a multiple-output approach to predict arrivals to Catalonia 
from the different visitor countries. We use the number of tourists (first destinations) 
provided by the Statistical Institute of Catalonia (IDESCAT). Data include the monthly 
number of tourists arriving from each visitor market over the time period 2001:01 to 
2012:07. In Fig.1 we present the evolution of tourist arrivals to Catalonia. Tabulation of the 
data is presented in Table 2. It can be seen that the first four visitor markets (France, 
Belgium and the Netherlands, the United Kingdom and Germany) account for more than 
half of the total number of tourist arrivals to Catalonia. 

 
Fig. 1. Level of tourists coming to Catalonia 

0

500000

1000000

1500000

2000000

2500000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

 



Source: Compiled by the author. 
 

Table 2. Distribution of the frequency of tourist arrivals 
Year 2011 Tourist arrivals % % cumulated 

France 3,614 24.1% 24.1% 
Belgium and the Netherlands 1,382 9.2% 33.4% 
United Kingdom 1,343 9.0% 42.4% 
Germany 1,257 8.4% 50.7% 
Italy 1,050 7.0% 57.8% 
US and Japan 988 6.6% 64.4% 
Russia 602 4.0% 68.4% 
Northern countries 576 3.9% 72.2% 
Switzerland 350 2.3% 74.6% 
Other countries 3,806 25.4% 100% 
Source: Compiled by the author, using data from the Statistical Institute of Catalonia (IDESCAT). 

Tourist arrivals expressed in thousands. 
 
We have compared the forecasting performance of three different multiple-output 

artificial neural networks architectures: MLP, RBF and Elman recursive neural network. 
We have repeated the experiment using alternative approaches for data pre-processing: 
levels, growth rates, seasonally adjusted levels and seasonally adjusted growth rates. 
Seasonally adjusted series are obtained using a Census X12 filter with a multiplicative 
decomposition. Forecasts for 1, 3 and 6 months ahead are computed in a recursive way 
(Pérez-Rodríguez et al. 2005). To summarize this information we have computed the Mean 
Absolute Percentage Error (MAPE) statistic for forecast accuracy. The results of our 
forecasting out-of-sample comparison are shown in Tables 3, 4 and 5. We have also used 
the DM test (Table 6) to obtain significant differences between each two competing series: 
levels vs. seasonally adjusted levels, rates vs. seasonally adjusted rates and seasonally 
adjusted levels vs. seasonally adjusted rates. 

When analysing the forecast accuracy of the different ANN models, MLP and RBF 
networks show lower MAPE values than Elman networks. MLP and RBF networks 
outperform Elman networks in most countries and forecasting horizons. A possible 
explanation for this result is the length of the time series used in the analysis. The fact that 
the number of training epocs had to be low in order to maintain the stability of the network 
suggests that this architecture requires longer time series. For long training phases, the 
gradient sometimes diverged. The worse forecasting performance of the Elman neural 
networks compared to that of MLP and RBF architectures indicates that the feedback 
topology of the Elman network could not capture the specificities of the time series. 
Conversely, RBF networks display the lowest MAPE values in most countries, especially 
for growth rates. 

When comparing the different pre-processing options, we obtain the best forecasting 
performance with raw data, especially for seasonally adjusted levels. In this context all 
three architectures show low MAPE values. The relative performance of MLP and Elman 
networks compared to RBF worsens when using growth rates, although the lowest MAPE 
is obtained with RBF networks in most cases. When using levels we also observe that the 
forecasting accuracy for longer time horizons improves in some countries, showing that 
working with levels is more indicated for longer term predictions. 

 



 
Table 3. MAPE (2010:04-2012:02) Levels vs. SA Levels 

 Levels (original series) Levels (seasonally adjusted) 
 MLP RBF Elman MLP RBF MLP 
France       
1 month 0.69 0.36 1.03 0.10 0.04 0.12 
3 months 0.87 0.36 0.91 0.09 0.05 0.12 
6 months 0.91 0.24 1.08 0.15 0.05 0.10 
United Kingdom        
1 month 0.70 0.79 1.06 0.36 0.36 0.44 
3 months 1.10 0.91 1.37 0.43 0.51 0.33 
6 months 0.73 0.42 1.00 0.47 0.48 0.41 
Belgium and the NL       
1 month 1.44 0.68 2.22 0.12 0.05 0.11 
3 months 1.68 0.74 2.29 0.11 0.06 0.12 
6 months 1.44 0.35 2.49 0.18 0.07 0.12 
Germany       
1 month 0.72 0.55 0.83 0.08 0.12 0.10 
3 months 0.84 0.63 0.98 0.12 0.15 0.16 
6 months 0.71 0.20 1.02 0.17 0.15 0.13 
Italy       
1 month 0.45 0.17 0.91 0.32 0.07 0.21 
3 months 0.68 0.16 0.97 0.33 0.06 0.18 
6 months 0.94 0.19 0.74 0.41 0.05 0.26 
US and Japan       
1 month 0.43 0.30 0.30 0.15 0.25 0.22 
3 months 0.52 0.35 0.72 0.25 0.30 0.16 
6 months 0.40 0.31 0.53 0.27 0.30 0.17 
Northern countries       
1 month 0.67 0.34 0.62 0.43 0.16 0.30 
3 months 0.56 0.44 0.83 0.27 0.20 0.30 
6 months 0.65 0.31 0.46 0.31 0.23 0.24 
Switzerland        
1 month 0.54 0.35 0.67 0.11 0.05 0.13 
3 months 0.87 0.45 0.86 0.14 0.07 0.09 
6 months 0.81 0.25 0.80 0.17 0.07 0.08 
Russia       
1 month 0.66 0.60 0.93 0.22 0.46 0.27 
3 months 1.02 0.60 1.35 0.37 0.55 0.38 
6 months 1.16 0.51 0.99 0.52 0.57 0.38 
Other countries        
1 month 0.32 0.23 0.27 0.24 0.16 0.24 
3 months 0.39 0.26 0.38 0.25 0.18 0.24 
6 months 0.32 0.18 0.37 0.26 0.21 0.18 
Total       
1 month 0.45 0.31 0.67 0.11 0.04 0.15 
3 months 0.53 0.38 0.60 0.13 0.04 0.13 
6 months 0.46 0.14 0.56 0.16   0.03* 0.11 
Italics: best model for each country. * Best model 



 
Table 4. MAPE (2010:04-2012:02) Rates vs. SA Rates 

 Raw Rates SA Rates 
 MLP RBF Elman MLP RBF MLP 
France       
1 month 9.52 2.79 28.58 2.13 2.86 12.70 
3 months 10.00 2.53 16.39 4.83 1.64 15.86 
6 months 20.94 2.67 37.07 3.91 1.33 16.81 
United Kingdom        
1 month 1.78 1.18 4.42 1.50 0.77 4.80 
3 months 2.68 1.17 2.96 6.19 1.36 6.10 
6 months 3.22 1.11 3.25 6.73 1.91 10.94 
Belgium and the NL       
1 month 9.44 1.03 5.87 0.76 0.65 2.52 
3 months 3.20 1.06 5.18 1.86 0.96 3.06 
6 months 5.65 1.06 7.68 2.19 1.15 2.88 
Germany       
1 month 4.32 1.11 5.09 3.20 2.10 8.56 
3 months 3.42 1.03 6.13 4.24 1.66 13.53 
6 months 4.54 1.17 3.61 2.91 2.30 14.87 
Italy       
1 month 11.65 10.01 38.88 29.84 8.97 48.33 
3 months 28.29 9.27 18.31 23.98 11.66 51.24 
6 months 33.59 5.19 88.64 41.43 11.29 45.96 
US and Japan       
1 month 1.82 1.07 2.96 1.46 0.69 2.13 
3 months 3.00 1.00 3.16 1.37 1.14 3.46 
6 months 2.30 1.15 4.47 2.40 1.08 4.15 
Northern countries       
1 month 3.06 1.88 3.33 2.52 1.49 4.32 
3 months 2.47 2.03 4.42 2.87 2.09 4.47 
6 months 4.38 1.88 5.05 3.72 2.55 5.23 
Switzerland        
1 month 2.37 1.13 5.39 0.59 0.63 2.18 
3 months 3.49 0.96 4.10 1.04 1.06 1.36 
6 months 4.04 1.04 4.25 1.38 1.06 1.96 
Russia       
1 month 0.86 0.79 1.67 0.53   0.31* 0.95 
3 months 0.94 0.80 1.47 1.01 0.62 1.13 
6 months 1.25 0.75 1.75 1.44 0.74 1.34 
Other countries        
1 month 3.39 0.90 5.96 1.13 0.77 2.30 
3 months 1.53 0.95 3.06 3.05 0.96 2.79 
6 months 5.68 1.06 2.88 2.72 0.73 2.27 
Total       
1 month 5.15 3.22 37.67 1.22 0.50 1.74 
3 months 7.17 3.78 12.32 2.40 0.49 2.88 
6 months 11.63 3.72 38.35 1.69 0.47 2.55 
Italics: best model for each country. * Best model 



 
Table 5. MAPE (2010:04-2012:02) SA Levels vs. SA Rates 

 Levels (seasonally adjusted) Rates (seasonally adjusted) 
 MLP RBF Elman MLP RBF MLP 
France       
1 month 0.10 0.04 0.12 2.13 2.86 12.70 
3 months 0.09 0.05 0.12 4.83 1.64 15.86 
6 months 0.15 0.05 0.10 3.91 1.33 16.81 
United Kingdom        
1 month 0.36 0.36 0.44 1.50 0.77 4.80 
3 months 0.43 0.51 0.33 6.19 1.36 6.10 
6 months 0.47 0.48 0.41 6.73 1.91 10.94 
Belgium and the NL       
1 month 0.12 0.05 0.11 0.76 0.65 2.52 
3 months 0.11 0.06 0.12 1.86 0.96 3.06 
6 months 0.18 0.07 0.12 2.19 1.15 2.88 
Germany       
1 month 0.08 0.12 0.10 3.20 2.10 8.56 
3 months 0.12 0.15 0.16 4.24 1.66 13.53 
6 months 0.17 0.15 0.13 2.91 2.30 14.87 
Italy       
1 month 0.32 0.07 0.21 29.84 8.97 48.33 
3 months 0.33 0.06 0.18 23.98 11.66 51.24 
6 months 0.41 0.05 0.26 41.43 11.29 45.96 
US and Japan       
1 month 0.15 0.25 0.22 1.46 0.69 2.13 
3 months 0.25 0.30 0.16 1.37 1.14 3.46 
6 months 0.27 0.30 0.17 2.40 1.08 4.15 
Northern countries       
1 month 0.43 0.16 0.30 2.52 1.49 4.32 
3 months 0.27 0.20 0.30 2.87 2.09 4.47 
6 months 0.31 0.23 0.24 3.72 2.55 5.23 
Switzerland        
1 month 0.11 0.05 0.13 0.59 0.63 2.18 
3 months 0.14 0.07 0.09 1.04 1.06 1.36 
6 months 0.17 0.07 0.08 1.38 1.06 1.96 
Russia       
1 month 0.22 0.46 0.27 0.53 0.31 0.95 
3 months 0.37 0.55 0.38 1.01 0.62 1.13 
6 months 0.52 0.57 0.38 1.44 0.74 1.34 
Other countries        
1 month 0.24 0.16 0.24 1.13 0.77 2.30 
3 months 0.25 0.18 0.24 3.05 0.96 2.79 
6 months 0.26 0.21 0.18 2.72 0.73 2.27 
Total       
1 month 0.11 0.04 0.15 1.22 0.50 1.74 
3 months 0.13 0.04 0.13 2.40 0.49 2.88 
6 months 0.16   0.03* 0.11 1.69 0.47 2.55 
Italics: best model for each country. * Best model 



Table 6. Diebold-Mariano loss-differential test statistic for predictive accuracy 
 Levels vs. Seasonally 

adjusted levels 
Growth rates vs. 

Seasonally adjusted rates 
Seasonally adjusted levels 

vs. SA growth rates 
 MLP RBF Elman MLP RBF Elman MLP RBF Elman 
France          
1 month 3.69 4.57 5.30 6.26 2.75 5.35 -4.37 -2.97 -2.70 
3 months 4.80 4.48 3.98 5.34 6.98 -0.47 -2.73 -1.92 -3.94 
6 months 2.84 5.14 3.73 4.70 6.54 2.61 -2.73 -1.74 -2.13 
UK           
1 month 1.65 1.49 2.46 2.45 4.58 2.41 -2.28 -1.21 -2.28 
3 months 1.99 1.28 2.24 0.63 2.20 -1.22 -1.74 -3.43 -2.71 
6 months 1.19 -0.51 1.98 1.82 0.21 1.06 -1.41 -2.57 -1.35 
Belgium and the NL         
1 month 4.23 3.91 6.58 3.12 5.45 2.34 -3.31 -4.16 -4.79 
3 months 3.90 4.34 3.44 2.56 2.33 3.59 -1.93 -18.65 -3.08 
6 months 2.08 3.14 4.15 5.50 1.63 2.22 -2.69 -25.33 -2.38 
Germany          
1 month 3.39 2.59 9.19 3.39 3.46 4.92 -1.27 -1.93 -1.59 
3 months 4.11 2.76 3.35 4.11 3.38 3.18 -1.50 -2.57 -1.48 
6 months 2.46 0.84 3.14 5.15 3.24 5.24 -2.41 -1.99 -1.33 
Italy          
1 month 1.25 3.14 5.59 1.56 3.32 2.84 -2.18 -1.82 -1.68 
3 months 2.74 3.61 3.51 0.81 1.84 2.35 -2.41 -2.01 -1.76 
6 months 1.94 5.25 2.86 1.25 2.11 0.49 -2.58 -2.14 -1.48 
US and Japan         
1 month 4.25 1.19 1.25 2.62 2.44 1.76 -2.24 -3.17 -4.55 
3 months 3.21 1.25 7.18 1.06 1.52 1.27 -4.46 -2.75 -2.60 
6 months 2.18 0.26 3.97 2.41 1.85 1.40 -2.46 -4.61 -2.01 
Northern countries         
1 month 1.12 5.20 3.98 2.23 3.79 1.06 -2.87 -2.11 -2.85 
3 months 2.37 3.38 3.79 -0.46 1.95 0.61 -3.36 -3.09 -2.91 
6 months 1.54 1.55 2.36 -0.70 1.25 0.25 -3.52 -2.77 -3.12 
Switzerland           
1 month 3.21 3.09 5.22 5.73 6.06 2.37 -5.20 -5.94 -3.21 
3 months 4.97 3.66 7.54 3.25 3.47 2.94 -4.55 -15.64 -5.62 
6 months 2.57 2.94 4.96 3.00 3.06 3.65 -5.96 -12.33 -5.82 
Russia          
1 month 2.60 2.35 5.64 2.20 4.91 3.07 -2.63 1.47 -2.83 
3 months 2.96 0.62 2.75 0.11 4.17 0.88 -2.31 -0.81 -3.27 
6 months 2.31 -1.35 3.92 0.58 -0.90 1.13 -2.04 -1.62 -3.80 
Other countries         
1 month 1.39 2.70 0.67 3.76 3.01 3.89 -3.61 -1.61 -2.23 
3 months 1.80 2.62 2.15 0.25 1.89 0.86 -1.82 -1.36 -2.46 
6 months 0.89 -1.26 2.01 2.29 1.14 -0.51 -2.09 -1.92 -3.96 
Total          
1 month 3.35 5.33 4.78 2.10 1.58 3.49 -7.92 -4.70 -5.43 
3 months 4.25 6.30 3.42 0.36 1.92 1.82 -4.73 -6.82 -3.49 
6 months 2.31 4.34 3.41 3.53 1.80 2.10 -5.92 -6.09 -3.04 
Notes:  Diebold-Mariano test statistic with NW estimator. Null hypothesis: the difference between the 

two competing series is non-significant. A negative sign of the statistic implies that the second 
model has bigger forecasting errors. * Significant at the 5% level. 



 
When testing for significant differences between each two competing series (Table 6), 

we obtain better forecasts for seasonally adjusted levels than for levels, although not always 
significant. The only exception is Russia, the UK and Other countries for 6 months ahead 
forecasts. We also obtain significantly better forecasts for seasonally adjusted rates than for 
growth rates. The only exception being the predictions for longer forecast horizons in 
Russia and Other countries. Finally, when comparing seasonally adjusted levels and 
seasonally adjusted growth rates, with the exception of Russia, we always obtain 
significantly better forecasts for seasonally adjusted levels. These results show the 
suitability of deseasonalizing but not detrending, especially for longer forecasting horizons, 
for neural network forecasting with time series. 

In contrast to previous studies (Hamzaçebi 2008; Alon et al. 2001; Franses, Draima 
1997), we find that ANNs produce significantly more accurate forecasts when built with 
deseasonalized data. Our finding on the suitability of working with seasonally adjusted 
levels for neural network forecasting confirms previous research by Zhang and Kline 
(2007), Zhang and Qi (2005), Virili and Freisleben (2000) and Nelson et al. (1999). The 
fact that we do not find evidence in favour of detrending can be explained by the fact that 
the data used for the analysis does not present a strong trend component. 

Conclusions 

Tourism demand forecasting has become essential in one of today’s fastest growing 
industries. Accurate forecasts of tourist arrivals are crucial to develop a sustainable tourist 
model at the destination level. In this context, Artificial Neural Networks are a very useful 
technique for forecasting purposes. This study analyzes the effects of data pre-processing in 
the forecast performance of ANNs when using seasonal time series. This is an important 
issue in order to improve the accuracy in neural network based time series forecasting. We 
implement a multiple-output approach to predict international tourism demand in order to 
compare the forecasting performance of three different neural network architectures (multi-
layer perceptron, radial basis function and Elman neural network). We repeat the 
experiment using alternative approaches for input pre-processing (levels, growth rates, 
seasonally adjusted levels and seasonally adjusted growth rates) to analyze the effects of 
data pre-processing on the forecast accuracy of the different ANN models. To assess the 
differences between each two competing series we compute the Diebold-Mariano loss-
differential test statistic for predictive accuracy. 

When comparing the forecasting accuracy of the different input pre-processing 
techniques for each visitor market and for different forecasting horizons, we obtain 
significantly better forecasts with levels than with growth rates. We also find that 
seasonally adjusted series significantly improve the forecasting performance of the 
networks, indicating the importance of deseasonalizing when using neural networks with 
forecasting purposes. These results reveal that, when using seasonal data, neural networks 
performance can be significantly improved by working directly with seasonally adjusted 
levels. When comparing the forecasting accuracy of the different techniques, we find that 
multi-layer perceptron and radial basis function neural networks outperform Elman neural 
networks. These results suggest that issues related with the divergence of the Elman neural 
network may arise when using dynamic networks with forecasting purposes.  

The forecasting out-of-sample comparison reveals the suitability of applying multi-layer 
perceptron and radial basis function neural networks models to tourism demand forecasting. 
A question to be considered in further research is whether the implementation of supervised 
learning models such as support vector regressions, or the combination of the forecasts of 



different topologies, may improve the forecasting performance of practical neural network-
based tourism demand forecasting. 
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