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Abstract—In this paper, we focus on a broadcast multiuser
multiple-input multiple-output (MIMO) system where we consider
that some terminals harvest power and, thus, recharge their
batteries through wireless power transfer from the transmitter,
while others are simultaneously being served with data transmis-
sion. The weighted sum-rate of the terminals that are receiving
information data is considered as the optimization policy where
minimum energy harvesting constraints are taken into account.
We propose a procedure for managing the minimum energy to
be harvested by the terminals considering the effect in the target
system performance.

I. INTRODUCTION

Energy harvesting is a promising technology to provide
longer connectivity to battery-powered nodes in wireless net-
works [1], [2]. Such technology enables to recharge the batteries
of the network terminals and, thus, to enhance their lifetimes. In
fact, energy harvesting is particularly useful in scenarios where
the nodes are placed in positions where the replacement of the
battery may incur high costs or even be impossible.

Traditionally, energy harvesting techniques have been devel-
oped based on energy sources such as, for example, wind or
solar energy. Nevertheless, there are other techniques that could
be applied to moving sensors (this may be the case of cellu-
lar phones) based on piezoelectric technologies. Additionally,
ambient radio frequency (RF) signals can be used as a source
for energy scavenging. Unfortunately, some measurements in
today’s urban landscape show that the actual strength of the
received electric field is not high and, thus, the proximity to
the transmitter is important [1]. In this sense, it is important
to emphasize that the newer applications require higher data
rates and that this implies that more capacity efficient network
deployments must be considered. Up to now, this increase in
capacity efficiency has been shown to be achieved through
the deployment of networks with reduced coverage area (e.g.
femtocells [3]). The use of this kind of networks allows to
increase the received power levels and, consequently, to make
mobile terminals be able to harvest power from the received
radio signals when they are not detecting information data. This
is commonly named as wireless power transfer.

The concept of simultaneous energy and data transmission
was first proposed by Varshney [4]. He showed that, for
the single-antenna additive white Gaussian noise (AWGN)
channel, there exists a nontrivial trade-off in maximizing the
data rate versus the power transmission. Later, in [5], authors
extended the previous work considering frequency-selective
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single-antenna AWGN channels. In [6] (and its journal ver-
sion [7]), authors considered a multiple-input multiple-output
(MIMO) scenario with one transmitter capable of transmitting
information and power simultaneously to two receivers. They
proposed two receiver architectures, namely time-switching
and power-splitting that were able to combine both sources
(information and energy) at the same time. There is another
extension that considers the case of wireless information and
power transfer with imperfect channel state information (CSI)
[8]. The key idea is that the users that harvest energy benefit
from the radiated power intended to the information users.

However, in the previous works, the minimum energy that a
given user must harvest is usually known and fixed. Only the
existing trade-off between the harvested energy and the system
performance has been evaluated [6]. The scope of this paper is
to provide a procedure that manages and configures how much
energy a given user should harvest from ambient RF signals
considering the impact in terms of weighted sum-rate for the
users that receive information data.

The rest of this paper is organized as follows. In Section II we
present the system model. Section III summarizes the precoder
design for simultaneous power and data transmission. In Section
IV we develop strategies for managing the minimum energy to
be harvested. Section V presents some numerical results and,
finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. Signal Model

We consider a wireless broadcast system consisting of one
base station (BS) transmitter equipped with nT antennas and a
set of receivers, denoted as UT = {1, 2, . . . ,K}, where the k-th
receiver is equipped with nRk

antennas. The proposed system
is depicted in Fig. 1.

We assume that nT > nR−mink{nRk
} is fulfilled. The set of

users is partitioned into two subsets. One of the sets contains the
users that receive information, denoted as UI , being UI ⊆ UT
and |UI | = N , and the other set contains users that harvest
energy coming from the power radiated by the BS which is
intended to the information receivers. This subset is denoted as
UE being UE ⊆ UT and |UE | = M . We assume that a given
user is not able to decode information and to harvest energy
simultaneously, i.e., UI ∩ UE = ∅, |UI |+ |UE | = N+M = K.
To simplify the notation when needed, we will assume that the
indexing of the users is such that UE = {1, 2, . . . ,M} and
UI = {M + 1,M + 2, . . . ,K}. The baseband channel from
the BS to the k-th receiver is denoted by Hk ∈ CnRk

×nT . We
assume perfect CSI at BS and at the receivers.

It can be assumed that the total harvested RF-band power
by the j-th user during the t-th frame, denoted by Q̄j(t), from
all receiving antennas is proportional to that of the equivalent
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Fig. 1. Schematic representation of the downlink broadcast multiuser communication system. Note that each user can switch from an information decoder
receiver to an energy harvester receiver.

baseband signal, i.e.,

Q̄j(t) = ζj
∑
i∈UI

∑
n∈t

E[‖Hj(t)Bi(t)xi(t, n)‖2], (1)

where ζj is a constant that accounts for the loss in the energy
transducer, t denotes frame, and n denotes the transmission
instant within the frame. In the previous notation, Bi(t)xi(t, n)
represents the transmitted signal for user i ∈ UI , where
Bi(t) ∈ CnT×nSi is the precoder matrix and xi(t, n) ∈ CnSi

×1

represents the information symbol vector. nSi
denotes the

number of streams assigned to user i ∈ UI and we assume
that nSi

= min{nRi
, nT − (nR − nRi

)} ∀i ∈ UI is fulfilled.
The transmit covariance matrix is Si(t) = Bi(t)BHi (t) if we
assume w.l.o.g. that E

[
xi(t, n)xHi (t, n)

]
= InSi

. Notice that,
for simplicity, in (1) we have omitted the harvested energy due
to the noise term since it can be assumed negligible.

As far as the signal model is concerned, the received signal
for the i-th information receiver can be modeled as

yi(t, n) = Hi(t)Bi(t)xi(t, n) (2)

+ Hi(t)
∑
k∈UI
k 6=i

Bk(t)xk(t, n) + ni(t, n), ∀i ∈ UI ,

where ni(t, n) ∈ CnRi
×1 denotes the receiver noise vector, that

is considered Gaussian with E
[
ni(t, n)nHi (t, n)

]
= InRi

. For
the sake of clarity, we will drop the frame and time dependence
whenever possible.

Let x̃ = Bx denote the signal vector transmitted by the
BS, where the joint precoding matrix is defined as B =
[B1 . . . BN ] ∈ CnT×nS , being nS =

∑N
i=1 nSi

the total
number of streams of all information users, and the data vector
as x =

[
xT1 . . . xTN

]T ∈ CnS×1, that must satisfy the power
constraint formulated as E[‖x̃‖2] =

∑N
i=1 Tr(Si) ≤ Pmax,

where Pmax is the total radiated power at the BS.

III. REVIEW OF THE SUM-RATE MAXIMIZATION WITH
INDIVIDUAL HARVESTED POWER CONSTRAINTS

In this section, we present a brief summary of the design
of the covariance matrices {Si} based on the maximization of
weighted sum-rate with individual power harvesting constraints
presented in [9]. The optimization problem is as follows:

maximize
{Si}∀i∈UI

∑
i∈UI

ωi log det
(
I + HiSiHH

i

)
(3)

subject to C1 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(Si) ≤ Pmax

C3 : HkSiHH
k = 0, ∀k 6= i, k, i ∈ UI

C4 : Si � 0, ∀i ∈ UI ,

where Qj =
Q̄min

j

ζj
, being {Q̄min

j } the set of minimum power
harvesting constraints. Constraint C1 is associated with the
minimum power to be harvested for a given user. Notice that
{Q̄min

j } are considered known and fixed. The goal of the
paper is to propose some strategies to configure the value of
such constants. These techniques will be described in Section
IV. Constraint C3 forces the complete cancellation of the
interference inspired by block-diagonalization [11] making the
problem convex since, otherwise, the objective function, i.e.,
the sum-rate, would not be convex. As a consequence, it can
be solved efficiently with, for example, interior point methods
[10]. However, in this case, it is possible to obtain the structure
of the transmit covariance matrices, {Si}, and then develop a
simplified and efficient iterative algorithm.

Notice that constraint C3 from the original problem (3)
forces the precoder matrix Bi to lie in the right null space
of matrix H̃i = [HT

1 . . . HT
i−1 HT

i+1 . . . HT
i ]T [11].

Computing the SVD of H̃i yields H̃i = ŨiΛ̃i[Ṽ
(1)

i Ṽ
(0)

i ]H .
Thus, Bi = Ṽ

(0)

i B̃i and then, Si = Ṽ
(0)

i S̃iṼ
(0)H

i where we
define S̃i = B̃iB̃

H

i . Now, the optimization variables are {S̃i}.
Let Ĥi = HiṼ

(0)

i and Ĥji = HjṼ
(0)

i . Then, problem (3) is
reformulated as

maximize
{S̃i}∀i∈UI

∑
i∈UI

ωi log det
(

I + ĤiS̃iĤ
H

i

)
(4)

subject to C1 :
∑
i∈UI

Tr(ĤjiS̃iĤ
H

ji) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(S̃i) + P txc ≤ Pmax

C3 : S̃i � 0, ∀i ∈ UI ,

The above problem can be easily checked to be convex
and to satisfy Slater’s conditions [10]. Hence, the duality gap
is zero and the problem can be solved using tools derived
from the Lagrange duality theory and the optimal structure
of the transmit covariance matrices {S̃i} can be revealed. Let
λ = (λ1, . . . , λM ) be the vector of dual variables associated
with constraint C1 and µ be the dual variable associated with
constraint C2. The optimal solution of problem (4) is given by
the following theorem in terms of λ? and µ?.

Theorem 1: The optimal solution of problem (4) has the
following form:

S̃
?

i (λ
?, µ?) = A−1/2

i V̂iD̂iV̂
H

i A−1/2
i , (5)

where Ai = µ?I −
∑M
j=1 λ

?
j Ĥ

H

jiĤji, V̂i ∈ C(nT−nR+nRi
)×nSi

is obtained from the reduced SVD of the matrix Ĥ
H

i A−1/2
i =

ÛiΣ̂
1/2
i V̂

H

i , with Σ̂i = diag(σ̂1,i, . . . , σ̂nSi
,i), σ̂1,i ≥ σ̂2,i ≥

· · · ≥ σ̂nSi
,i > 0, and D̂i = diag(d̂1,i, . . . , d̂nSi

,i), with d̂k,i =



TABLE I
ALGORITHM FOR SOLVING PROBLEM (4)

1: initialize λ � 0, µ ≥ 0 such that

2: µI−
∑M

j=1 λjĤ
H

jiĤji � 0, ∀i
3: repeat
4: compute S̃i(λ, µ) ∀i using (5)
5: compute subgradient of g(λ, µ):

6: [t]j = Qj −
∑

i∈UI
Tr(ĤjiS̃iĤ

H

ji) for 1 ≤ j ≤M
7: [t]M+1 = Tr(S̃i)− PT

8: update λ, µ using ellipsoid method subject to:

9: λ � 0, µ ≥ 0 and µI−
∑M

j=1 λjĤ
H

jiĤji � 0, ∀i
10: until dual variables converge

(ωi/ log(2)− 1/σ̂k,i)
+, ∀i ∈ UI .

Proof: See [9].
Finally, the optimum data rate achieved by user i is, thus,

R?i =

nSi∑
j=1

ωi log(1 + σ̂j,id̂j,i), ∀i ∈ UI . (6)

Now, the computation of the dual variables can be obtained
by maximizing the dual function g(λ, µ) subject to λ � 0,
µ ≥ 0, and Ai � 0 ∀i. This can be addressed by applying
any subgradient-type method, such as for example the ellipsoid
method [10]. It can be shown that the subgradient of g(λ, µ)

denoted as t is given by [t]j = Qj −
∑
i∈UI Tr(ĤjiS̃iĤ

H

ji)

for 1 ≤ j ≤ M and [t]M+1 = Tr(S̃i) − PT [10], where
[t]j denotes the j-th entry of vector t and S̃i is the optimal
solution of problem (4) for a given λ and µ computed as in
(5). Since the duality gap is zero, when we obtain the optimal
dual variables (λ? and µ?), the optimal solution S̃

?

i (λ
?, µ?)

converges to the primal optimal solution of problem (4). The
algorithm that solves problem (4) is described in Table I.

IV. MANAGEMENT OF THE ENERGY HARVESTED

In the previous section, we considered that the minimum
energies to be harvested, i.e., {Qj}, ∀j ∈ UE were known
and fixed. However, the particular value of such constants
affects considerably the system performance, i.e., the weighted
sum-rate. In [9] we presented the multidimensional trade-
off that there exists between the sum-rate and the individual
harvesting constraints. In this section we will develop an ap-
proach to configure (i.e., recalculate) such harvesting constants
{Qj}, ∀j ∈ UE under a pre-established target weighted sum-
rate.

In situations where the original problem is feasible but the
sum-rate obtained is not enough, the system may be forced to
relax (decrease) the energy harvesting constraints so that the
overall sum-rate is enhanced. The idea is to identify which are
the harvesting constraints that produce the largest enhancement
of sum-rate when they are reduced and to apply a reduction on
them. On the other hand, if the target sum-rate is below the
one achieved, we could spend more resources on recharging
the batteries of the harvesting users. In this case, a strategy
for increasing the harvesting constants {Qj} is also needed.
Ideally, we would like to modify the harvesting constants that
accept a larger positive change and yield a small sum-rate loss.

In order to identify the constraints to be changed, we use the
theory of perturbation analysis from convex optimization theory
[10]. It is well-known that the Lagrange multipliers (dual vari-
ables) provide information about the sensitivity of the objective
function with respect to the perturbations in the constraints. Let
q0 be the vector of initial power harvesting constraints, i.e.,

q0 = [Q0
1, Q

0
2, . . . , Q

0
M ]T . Let p?(q0) be the optimal value

of problem (3), that is, f0({S?i }∀i) = p?(q0), where f0(·)
denotes the objective function in (3) and (4). From [10] we
know that the function p?(q) is concave with respect to q where
q = [Q1, . . . , QM ]T is the power harvesting perturbed vector
defined as q = q0 + ∆q, where ∆q = [∆Q1, . . . ,∆QM ]T

being ∆Qj a small change in the initial Q0
j . Given this, we

have that the optimal objective value of the relaxed problem
can be upper bounded as

p?(q) ≤ p?(q0) +∇q p
?(q0)T (q− q0). (7)

Then, applying the following result from local sensitivity [10],

∂p?(q0)

∂Qi
= −λ?i (q0), with λ?i (q0) ≥ 0, ∀i, (8)

it follows that

∇q p
?(q0) =

[
∂p?(q0)

∂Q1

∂p?(q0)

∂Q2
. . .

∂p?(q0)

∂QM

]T
(9)

=−
[
λ?1(q0) λ?2(q0) . . . λ?M (q0)

]T
= λ?(q0),

and the expression for the relaxed problem fulfills the following
inequality defined by an hyperplane:

p?(q) ≤ p?(q0)− λ?(q0)T (q− q0). (10)

Now let us define the target sum-rate as rt and let us assume
throughout the paper that rt > p?(q0)1. We would like to find
a vector q such that rt = p?(q), but since p?(q) is not known,
we force rt to be equal to the upper bound in (10):

rt = p?(q0)− λ?(q0)T (q− q0). (11)

However, since p(·)? is a concave function, the solution ob-
tained p?(q) will be indeed below the desired sum-rate, i.e.,
p?(q) ≤ rt. In order to get a very close solution, that is
p?(q) ≈ rt, we must proceed iteratively by applying successive
perturbations on vector q in a way similar to the well-known
Newton’s method [10]. Before presenting the iterative algo-
rithm, let us present different approaches (modeled as convex
optimization problems) of how we can compute the new relaxed
power harvesting parameters {Qj} since, as we are referring to
a vector of variables, there exist different ways to update the
vector q that yield the same sum-rate solution.

The first approach we propose is the simplest one. In this
case, we fix the perturbed vector q to be a scaled version of
the original vector, that is, q = αq0. In such a case, all the
power harvesting constraints are reduced proportionally by the
same amount. We seek to find the maximum value of α that
produces the perturbed vector to yield the desired sum-rate. Let
us define r̃t = p?(q0)+λ?(q0)Tq0−rt and assume that r̃t ≥ 0,
otherwise we cannot find any feasible vector q, i.e., any q � 0,
where � refers to component-wise non-negativity. The problem
is modeled as follows:

maximize
α

α (12)

subject to C1 : αλ?(q0)Tq0 ≤ r̃t
C2 : α ≥ 0.

Lemma 1: The optimal solution of problem (12) and the
optimal perturbed vector are given by

α? =
r̃t

λ?(q0)Tq0
, q? =

r̃t
λ?(q0)Tq0

q0. (13)

1In case we had rt < p?(q0), then we should modify slightly the
optimization problems presented in the paper in order to increase the initial
harvesting constraints until rt = p?(q).



TABLE II
ALGORITHM FOR ADJUSTING THE HARVESTING CONSTRAINTS

1: k = 0, q(k) = (Q
(k)
1 , . . . , Q

(k)
M )T

2: solve problem (3) −→ r(k) = p?(q(k)), λ?(q(k))

3: while (r(k) < rt − ε)
4: obtain q(k+1) following any strategy from

(13), (15), and (17)
5: solve problem (3) −→ r(k+1) = p?(q(k+1)), λ?(q(k+1))

6: update k ←− k + 1

7: end while

Proof: See Appendix A.
Now, we propose a different approach to compute the

perturbed vector q. In this approach, we let the harvesting
constraints have different relaxations and the objective is to
minimize the sum of the harvesting reduction, i.e., ‖∆q‖1 =
‖q− q0‖1. The problem is modeled as follows:

minimize
q

‖q− q0‖1 (14)

subject to C1 : λ?(q0)Tq ≤ r̃t
C2 : q � 0.

The optimal solution of previous problem is given in the
following result.

Lemma 2: Let n be the index corresponding to the maximum
Lagrange multiplier, i.e., λ?n > λ?m, ∀m 6= n.2 The optimal
solution of problem (14) is given by

q?n =
1

λ?n

r̃t −∑
i 6=n

λiQ
0
i

 , q?m = Q0
m ∀m 6= n. (15)

Proof: See Appendix B.
As it can be seen, the optimal solution applies the harvesting

power reduction to the user who has the largest Lagrange
multiplier associated with its harvesting constraint whereas the
rest of the users remain with the same harvested power.

The final proposed approach tries to be fair in terms of
harvested reduction. The fairness in achieved by considering
the objective function to be the maximization of the minimum
qi. The reformulated (differentiable) problem is

maximize
q, t

t (16)

subject to C1 : t1 � q
C2 : λ?(q0)Tq ≤ r̃t
C3 : q � 0.

Lemma 3: The optimal solution of problem (16) is given by

q? =
r̃t

λ?(q0)T 1
1. (17)

Proof: See Appendix C.
As it can be seen, due to the maximin approach, when we

introduce fairness in terms of harvested power reduction, all
users end up with the same perturbed power constraint. As a
consequence, some users could end up with more harvested
energy than the initial one (i.e., q?j > Q0

j for some j).
As it was commented before, the three previous approaches

only yield a solution such that the actual rate rt ≥ p?(q) due
to the concavity of function p?(·). For this reason, it is not
enough with just one iteration and we have to apply the previous

2We have assumed that there is just one maximum Lagrange multiplier. In
case there were more than just one, we would choose one randomly.

Fig. 2. Performance of the proposed algorithm with minimum energy man-
agement based on (16).
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Fig. 3. Performance of the proposed algorithm based on (12).

algorithm iteratively to get a better solution (closer solution to
the target sum-rate). Let us denote the obtained perturbed vector
and the sum-rate at iteration k be q(k) and r(k) = p?(q(k)),
respectively. Let us introduce the parameter ε that trades-off
the speed of convergence and the solution accuracy. The idea
behind the iterative algorithm, presented in Table II, is to use
the previous procedures ((13), (15), and (17)) but with different
iterations over Qj , starting with Q0

j .

V. NUMERICAL EVALUATION

In this section we present illustrative examples of the behav-
ior of the different strategies developed in the paper. The set
up is a BS with four transmit antennas, and two information
users and two harvesting users with two antennas each. The
maximum transmission power at the BS is Pmax = 10 W. The
entries of the matrix channels are generated from a complex
Gaussian distribution with zero mean and unit variance. The
values of the initial minimum power to be harvested are
Q0

1 = 33 J/s and Q0
2 = 19 J/s. The target weighted sum-rate is

rt = 8.5 bits/s/Hz where the weights are ωj = 1/2, ∀j .
Figure 2 depicts the three dimensional curve of the achieved

sum-rate as a function of different values of {Qj} known as
Rate-Energy curve [9]. In the figure, we have considered the
solution based on (16). The blue dot represents the achieved
sum-rate for the particular values of Q1 and Q2 assigned. In
the figure, the black line represents the target sum-rate, which
in this particular case is greater than the initial case. In the plot,
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we show the different iterations that the newton-like proposed
algorithm in Table II performs. As it can be seen, in just 3
iterations we obtain a solution closer to 10−6 bits/s/Hz to the
target sum-rate. Note that, when the algorithm converges, both
users end up with the same amount of power to be harvested
(approximately 20 J/s each one).

The performance of the solution based on (12) is presented in
Figure 3. In this case, the figure shows the contour lines of the
3D Rate-Energy curve in order to better visualize the behavior
of the algorithm. Also in this case, just 3 iterations are enough
to yield a solution in the neighborhood of the target rate. Now,
both harvesting users decrease their harvesting requirements by
the same amount.

Finally, the behavior of the algorithm based on (14) is shown
in Figure 4. As expected, just the user who has the largest
harvesting requirement is modified while the other is left with
its initial value.

VI. CONCLUSIONS

In this paper, we have proposed different strategies for man-
aging the minimum energy to be harvested under the framework
of simultaneous transmission of information and energy from
the transmitter to multiple receivers. The procedures were
derived from the sensitivity analysis of the duality theory
where we also considered the effect on the system performance
increase or decrease when adjusting the harvesting constraints.

APPENDIX A

The Lagrangian of the problem is L(α, µ, σ) = −α +
µ
(
αλ?(q0)Tq0 − r̃t

)
− σα. From the KKT conditions, If we

take the partial derivative with respect to α we get ∂L(α,µ,σ)
∂α =

−1+µλ?(q0)Tq0−σ = 0. By inspection we have that if α? =
0, then α?λ?(q0)Tq0 = 0 and α?λ?(q0)Tq0 < r̃t which is not
possible if r̃t > 0. Thus, α? > 0 which implies that σ? = 0
(from the complementary slackness α?σ? = 0). As a conse-
quence, µ? = 1

λ?(q0)T q0 > 0. Finally, substituting this value
into the complementary slackness µ?

(
α?λ?(q0)Tq0 − r̃t

)
= 0,

yields α? = r̃t
λ?(q0)T q0 .

APPENDIX B

Before attempting to obtain the optimum solution, let us
characterize the sign of the perturbation q−q0. We claim that,
at the optimum, q? � q0, that is, q?i ≤ Q0

i , ∀i. The proof is
straightforward. Suppose qi > Q0

i . Then, constraint C1 can be
rewritten as

∑
j 6=i λ

?
jqj ≤ r̃t − λ?i qi. Since λ?i ≥ 0, then we

could reduce qi (for example assign qi = Q0
i ), the objective

function would decrease its value and constraint C1 would
become looser. We can proceed similarly by induction with

the rest of variable to complete the proof. Thanks to this claim,
we know the sing of the derivative of the term ‖q − q0‖1 but
we need to add explicitly q? � q0 to the original optimization
problem. Thus, problem (14) is modified as

minimize
q

‖q− q0‖1 (18)

subject to C1 : λ?(q0)Tq ≤ r̃t
C2 : q � q0.

C3 : q � 0.

The Lagrangian of problem (18) is L(q,γ, µ) = ‖q−q0‖1 +
µ
(
λ?(q0)Tq− r̃t

)
+γT (q−q0). Let γ = (γ1, . . . , γM ). Then,

taking the derivative with respect to the primal variables yields
∂L(q,γ,µ)

∂qj
= −1 + µ?λ?j + γ?j = 0 =⇒ 1 = µ?λ?j + γ?j . If

qi < Q0
i , ∀i =⇒ γ?i = 0 ∀i. Then, it implies that 1 = µ?λ?i ∀i

which is not possible since in general λ?i 6= λ?j . By inspection,
we can claim that there is only one possible γ?i that could be
equal to 0. Let qi < Q0

i and qj = Q0
j ∀j 6= i. Then γ?i = 0

and γ?j > 0. We have that µ? = 1
λ?
i

and substituting back,

1 =
λ?
j

λ?
i

+ γ?j . Since γ?j > 0 =⇒ λ?i > λ?j for the previous
equation to be true. Finally, we have that q?j = Q0

j and from

constraint C1, q?i = 1
λ?
i

(
r̃t −

∑
j 6=i λjQ

0
j

)
.

APPENDIX C
The Lagrangian of the problem is L(t,q,ν,γ, µ) = −t +

νT (t1−q)+µ
(
λ?(q0)Tq− r̃t

)
−γTq. Let us for the moment

omit the positivity constraints (γTq) since (as it will be
shown later) the solution will automatically satisfy them. Taking
the derivatives with respect to the primal variables yields,
∂L(t,q,ν,µ)

∂t = −1 + ν?T 1 =⇒ ν?T 1 = 1 and ∂L(t,q,ν,µ)
∂qj

=

−ν?j + µ?λ?j (q0) = 0 =⇒ ν?j = µ?λ?j (q0). Summing at
both sides, ν?T 1 = µ?λ?(q0)T 1 and so µ? = 1

λ?(q0)T 1 . In

this case, ν?j =
λ?
j (q0)

λ?(q0)T 1 > 0 and from the complementary
slackness it is implied that t?1 = q?. Multiplying both sides
with λ?(q0) yields tλ?(q0)T 1 = λ?(q0)Tq ≤ r̃t, and hence
tλ?(q0)T 1 ≤ r̃t. Given that, the maximum value of t is attained
at t? = r̃t

λ?(q0)T 1 . Finally, we have q? = r̃t
λ?(q0)T 1 1 which

fulfills the positivity constraint.

REFERENCES

[1] J. Paradiso and T. Starner, “Energy scavenging for mobile wireless
electronics,” IEEE Computing Pervasive, vol. 4, pp. 18–27, Jan. 2005.

[2] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: survey
and implications,” IEEE Communications Surveys & Tutorials, vol. 13,
pp. 443–461, Third Quarter 2011.

[3] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: a
survey,” IEEE Comm. Magazine, vol. 46, pp. 59–67, Sep. 2008.

[4] L. R. Varshney, “Transporting information and energy simultaneously,” in
International Symposium on Information Theory, Jul. 2008.

[5] P. Grover and A. Sahai, “Shannon meets Tesla: wireless information and
power transfer,” in International Symposium on Information Theory, Jun.
2010.

[6] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wire-
less information and power transfer,” in IEEE Global Communications
Conference (Globecom), 2011.

[7] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless
information and power transfer,” IEEE Trans. on Wireless Communica-
tions, vol. 12, pp. 1989–2001, May 2013.

[8] Z. Xiang and M. Tao, “Robust beamforming for wireless information
and power transmission,” IEEE Wireless Communications Letters, vol. 1,
pp. 372–375, Aug. 2012.

[9] J. Rubio and A. Pascual-Iserte, “Simultaneous wireless information and
power transfer in multiuser MIMO systems,” in IEEE Global Communi-
cations Conference (GLOBECOM), Dec. 2013.

[10] D. P. Bertsekas, Nonlinear programming. Athena Scientific, second ed.,
1999.

[11] Q. H. Spencer et al., “Zero-forcing methods for downlink spatial multi-
plexing in multiuser MIMO channels,” IEEE Trans. on Signal Processing,
vol. 52, pp. 461–471, Feb. 2004.


