
Evaluating Link Prediction on Large
Graphs

Dario GARCIA-GASULLA a,1 Ulises CORTÉS a,b Eduard AYGUADÉ a,b

Jesús LABARTA a,b

a Barcelona Supercomputing Center
b Universitat Politècnica de Catalunya - Barcelona TECH

Abstract. Exploiting network data (i.e., graphs) is a rather particular case of data
mining. The size and relevance of network domains justifies research on graph min-
ing, but also brings forth severe complications. Computational aspects like scala-
bility and parallelism have to be reevaluated, and well as certain aspects of the data
mining process. One of those are the methodologies used to evaluate graph min-
ing methods, particularly when processing large graphs. In this paper we focus on
the evaluation of a graph mining task known as Link Prediction. First we explore
the available solutions in traditional data mining for that purpose, discussing which
methods are most appropriate. Once those are identified, we argue about their ca-
pabilities and limitations for producing a faithful and useful evaluation. Finally,
we introduce a novel modification to a traditional evaluation methodology with the
goal of adapting it to the problem of Link Prediction on large graphs.

Keywords. Graph Mining, Link Prediction, Evaluation Methodology

1. Introduction

The popularization of graph-based data sets (i.e., networks) in the early 21th century
motivated research on a new family of machine learning (ML) methods. While traditional
ML research has been focused on intra-entity patterns (known as the instance-attribute
paradigm), the data obtained from networks generates inter-entity patterns (an instance-
instance paradigm). These new methods of ML were designed to tackle network related
problems such as finding the relevance of entities based on their relations (link-based
object ranking, e.g., PageRank [24] and HITS [16]), finding groups of entities strongly
related (community detection, e.g., stochastic blockmodeling [14]) or finding reoccurring
association patterns (frequent subgraph discovery, e.g., Apriori based algorithms [12]).
All graph mining tasks having relations among entities as the cornerstone of their design.

The increased dimensionality of graph data sets often comes hand in hand with an
increase in size. Together, large dimensionality and size, define the increasingly frequent
family of domains known as large scale networks, which can be frequently found in so-
cial networks (e.g., Twitter), biological networks (e.g., brain connectome) or technolog-
ical networks (e.g., web graphs). Regardless of the underlying domain, computing large

1Corresponding Author: Dario Garcia-Gasulla, Omega building, Office 207, C/Jordi Girona, 1-3, Campus
Nord UPC, Barcelona, 08034, SPAIN; E-mail: dario.garcia@bsc.es

scale networks represents a challenge in terms of efficiency, parallelism and scalability.
Efficiency, because computing models and hardware architectures are not optimized for
handling graph data. Parallelism, because the size of large networks makes serial ap-
proaches unfeasible. And scalability because limited computational resources constrain
the applicability of exhaustive, model-based solutions. Beyond the challenges on how is
the process implemented, the particularities of large scale networks also generate novel
challenges on what must be done with the data from a Data Mining (DM) perspective.
A prime example of that is deciding how to evaluate the performance of the mining
algorithms in this novel setting.

In this paper we focus on the challenge of faithfully evaluating a graph mining task,
Link Prediction (LP), when working with large scale graphs. The goal of LP is to find
new or missing edges within a given graph. By using LP one can directly grow any data
set represented as a graph using the same graph language (i.e., adding edges among ver-
tices by using only previous edges and vertices). As a result one could apply LP algo-
rithms to virtually any domain that can be represented as a graph without supervision.
The complexity of achieving good performance on the LP task increases with the graph
size, as does the problems at faithfully evaluating performance. When a graph grows
linearly in vertices, the number of possible links within the graph grows quadratically.
This defines a needle in a haystack context where relevant or useful predictions are but
a tiny fraction of all predictions. Keeping a good precision in this type of problem turns
out to be very difficult, as the smallest false positive acceptance rate will amount to a
huge absolute number of wrongfully predicted edges (i.e., false positives). But in parallel,
estimating the quality and applicability of results also becomes particularly difficult.

In §2 we explore the current solutions provided by the DM community, particularly
in the context of test set construction and class imbalance. We explore the features of
those methods for the particular case of LP in §3, and argue on the utility of popular
approaches like ten-fold cross validation and precision-recall curves. Then in §4 we pro-
pose an addapted evaluation methodology, and argue on how to export the lessons learnt
in this particular problem to other similar problems. Conclusions are presented in §5.
The challenges explored in this paper refer to the LP problem on large graphs, but can
be generalized to other large scale graph mining tasks.

2. Evaluation Context

LP and the rest of graph mining tasks represent a new family of DM algorithms. The
particularities of these algorithms originate from the special nature of networks. Partic-
ularities that include data dimensionality, variable dependency, and often log-scale dis-
tribution of information. Even with these differences, one can find analogies between
graph mining problems and general DM problems. From a traditional DM perspective,
LP can be reduced to a binary classification problem between two classes: the positive
class of edges that do or should exist, and the negative class of edges that do not and
should not exist. Given a directed graph G = (N,E), and all the possible edges in the
graph (of size |N ∗ (N−1)|), the problem of LP would be that of distinguishing between
those edges that exist, e ∈ E, and those that do not, e /∈ E. The analogy between LP
and binary classification is accurate in most cases, as the target of LP is often to identify
the positive class. Which in terms of graph mining is equivalent to finding and propos-

ing missing links. For the remaining of this paper we will assume this mainstream case.
In the bibliography there are a many methodologies available for the evaluation of this
type of problem. These methodologies are typically discriminated based on the problem
characteristics, which in the case of the LP classification problem are dominated by class
imbalance.

2.1. Test Sets

To evaluate a binary classifier empirically we require a test set. Given a graph, LP algo-
rithms can propose a number of edges to be added to it, however, to validate the quality
of those proposals, we need a set of edges known to be correct and missing from the
graph. In evaluation, each predicted edge found in the test set is considered as a correct
prediction, while each predicted edge not found is considered as a mistake. From these
results one can then obtain performance indicators like precision and recall.

The main problem with tests sets is how to obtain them. In the case of LP, the best test
set one can use is that which represents a natural extension of the graph being computed.
This is feasible on temporally grounded domains. For example, for a graph composed
from Wikipedia articles and the hyperlinks among them from 2012, we can obtain a
natural test set by considering the links added to Wikipedia between 2012 and 2013 [10].
Unfortunately, the domains and graphs having such incremental nature are rare. Instead,
in most cases one must settle for the more drastic approach of randomly removing a
number of edges from the graph in order to use them as test set. A frequent concern
when one must split a set of data to produce a test set is representativity. Typically, a
random split cannot guarantee a prototypical distribution. The most frequent solution for
avoiding bias is ten fold cross validation (10-fold CV). Within the LP problem, splitting
data to build a test set will be often necessary [25]. However, as we will see in §3.2
performing 10-fold CV is redundant.

2.2. Class Imbalance

To reduce the LP problem to a binary classification problem one needs to categorize
edges in two classes. However, the number of edges that exist is typically but a small
fraction of the edges that do not exist. In fact, in real world networks the average vertex
degree is rarely over fifty [19,21,1], a feature that is consistent even as graphs grow to
billions of vertices [27]. From a classification problem perspective, this implies a class
imbalance, as the negative class is very large in comparison to the positive class. As it
is well known, class imbalance can be a severely complicating factor in classification
problems [3,20,26,28].

The degree of class imbalance found on large graphs when performing LP is hard
to overestimate, and it only gets worse as graphs grow. In fact, examples with a similar
degree of class imbalance are rarely found in the bibliography. In LP, by adding vertices
to a graph one increases the size of the possitive class linearly (N ∗ k), since the average
vertex degree remains stable. Nevertheless, in parallel, the negative class grows quadrati-
cally (N ∗(N−1)). Consequently, class imbalance in LP grows linearly with the number
of vertices. To illustrate on the degree of class imbalance, Table 1 shows the topological
properties of some real world graphs obtained from WordNet [9], the Cyc project [8],
the movie-related IMDb knowledge base [10], and several web graphs from the Notre-

Dame University [2], Stanford/Berkley universities [15], a Google challenge [10], and
the Hudong, Baidu [17] and Wikipedia encyclopedias [18]. Notice how, in the best case
scenario, the class ratio is of 1 positive instance for every 11,382 negative instances.

The impact of class imbalance on classifiers was explored in [13], and authors con-
cluded that this impact was largely reduced when all classes were of reasonable size.
A priori this should be good news for LP on large graphs, as its classes seem to be of
reasonable size; the positive class of all graphs shown in Table 1 is over 10,000 entities.
Unfortunately, this assumption does not apply to the LP problem [19], and the reason
for this is twofold. On one hand the imbalance found in LP on large graphs is several
orders of magnitude larger than any imbalance tested in [13]. Thus its impact may re-
main significant. On the other hand, LP is not a typical classification problem, and given
the small amount of information provided by each edge (e.g., positive instances have no
attributes), a class composed 30,000 elements could still be considered to be small. In
reality, class imbalances of 1:10,000 or larger translate as a strong tendency towards false
positive classification mistakes, as incorrectly accepting negative instances becomes al-
most inevitable. The main challenge of LP is therefore precision, a notion that should be
taken into account by the evaluating methodologies.

2.3. Evaluation under Class Imbalance

A frequent approach of supervised or semi-supervised learning methods to overcome
class imbalance is to equilibrate the training set through over-sampling, under-sampling
or feature selection [3,20,26,28]. Unsupervised LP algorithms cannot benefit from these
solutions as adding or removing edges from the data set would equal to perform arbitrary
classification, and there are no features to be removed beyond the existence of edges
among vertices.

The most frequently used methods for classifier evaluation are based on accuracy.
However, these methods are biased towards the classification of instances within the large
class, making them inappropriate for imbalanced data sets [3,20,26,11]. Using them for
LP would be almost analogous to measuring the capability of algorithms at predicting
which edges should not be added to the graph, which is not the goal of LP. For data sets
with large class imbalance, the most frequently used methodology is the Receiver Oper-
ating Characteristic (ROC) curve and the derived Area Under the Curve (AUC) measure
[6]. The ROC curve sets the True Positive Rate (TPR) against the False Positive Rate
(FPR), making this metric unbiased towards entities of any class regardless of their size.

Data source Number of vertices Average edges per vertex positive:negative class ratio
WordNet 89,178 15.66 1:11,382

Cyc 116,835 5.9 1:39,496

webND 325,729 9.18 1:70,867

webSB 685,230 22.18 1:61,775

webGL 875,713 11.64 1:150,217

hudong 1,984,484 14.98 1:264,848

baidu 2,141,300 16.72 1:257,667

IMDb 2,930,634 5.12 1:1,140,835

DBpedia 17,170,894 19.44 1:2,151,672
Table 1. Sample of average number of edges per vertex and class imbalance on real graphs

The AUC measures the area below the curve in order to compare the overall predictive
performance of two different curves.

ROC curves are unbiased in imbalanced contexts, but their consideration of miss-
classifications can result in mistakenly optimistic interpretations [5,25]. When the nega-
tive class is very large, showing mistakes as relative to the negative class size (i.e., FPR)
can hide their actual magnitude, and make it complicated to assess the overall perfor-
mance quality. From a practical perspective, most of the ROC curve is irrelevant when
dealing with large class imbalance, as it represents completely unacceptable precisions.
For example, one may consider that a classifier achieving a TPR of 0.95 (finding 95%
of all positive edges) and a FPR of 0.01 (incorrectly accepting 1% of all negative edges)
in the ROC curve demonstrates an excellent performance. However, for a data set with a
positive:negative rate of 1:100 those results imply that the classifier accepts more nega-
tive edges than positive edges (i.e., it has a precision smaller than 0.5). For domains with
a 1:11,000 or worse ratio, like the ones shown in Table 1, the limitations of the ROC
curve become even more striking. In those even a FPR of 0.0001 implies a very poor
precision/performance regardless of the TPR achieved.

Precision-recall (PR) curves are an alternative to ROC curves. A PR curve is resis-
tant to class imbalances as it focuses only on the performance achieved for the positive
class (typically the small one), and does not show the number of correct classifications
for the negative class. ROC and PR curves are strongly related; a curve dominates another
(it is above it) in the ROC space if and only if it also dominates it in PR space [5]. The
main difference between ROC and PR curves is on how errors are represented. While
ROC curves show miss-classifications as relative to the total number of negative cases,
PR curves show miss-classifications as relative to the total number of predictions done.
PR curves plot precision (y axis) against recall (x axis), thus focusing on high precision
predictions. As an illustration on the impact of these differences, consider how the two
curves represent a random classifier, which always performs poorly in an imbalanced
data set. The ROC curve always represents the random classifier as a straight line be-
tween points (0, 0) and (1, 1), regardless of class imbalance, with all better than random
classifiers rep resented as lines above that diagonal. PR curves on the other hand repre-
sent random classifiers in imbalanced data sets a flat line on the x axis, as their precision
in imbalanced settings is always close to zero.

3. Evaluating Link Prediction

Current solutions for performance evaluation, like the ones shown in §2, have severe lim-
itations when applied to large graph mining problems. Issues like test set representativity,
or the evaluation under class imbalance, reach a new degree of relevance when consid-
ering problems like LP on large networks. In this section we discuss these problems in
depth and propose solutions fitting our LP problem.

3.1. Representativity of Test Sets

The use of a test sets to evaluate LP implies the assumption that the test set (the prediction
of which is evaluated by the curves) faithfully represents the correct edges missing from
the graph. Or in other words, that all edges not found in neither the graph nor in the

test set, are wrong. In certain cases, where the graph topology is stable, this may be
an accurate assessment. For example, a graph obtained from WordNet data (as shown
in [9]) can be considered as almost perfect, as WordNet relations have been identified,
discussed and implemented by linguists for years. In other cases though test sets are an
imperfect measure of the right edges missing from the graph. Consider for example a
graph obtained from Wikipedia articles and hyperlinks, in which the pagelinks among
Wikipedia articles from 2012 are used as training and the new pagelinks added on 2013
are used as test. This graph is clearly incomplete, as new links are being added every
day. The Wikipedia grows continuously and the fact that a link is not implemented so
far does not mean it is wrong. As a result, one must take into account that some of the
edges predicted, not found in the test set and labeled as mistakes, will in fact be correct
predictions corresponding to edges not yet added to the graph.

Using a test set which does not fully represent the target class implies an underesti-
mation of performance, as the predictions being made outside of the test set will always
(and not always correctly) be considered as mistakes. Nevertheless, since this limitation
applies to all the methods being evaluated (assuming all methods are evaluated using the
same test set), it can be argued that the resultant performance indicators remain valid for
comparative purposes. That is, we can still find out which LP algorithm works better.
The unavoidable shortcoming of representativity comes when evaluating the precision
of a score in the context of applicability. That is, we cannot be sure of how well per-
forms the best LP algorithm. The only way to obtain a faithful, non-comparative eval-
uation of performance of a single LP algorithm would be a hand-made validation. One
could achieve an approximate solution by performing a sampling process of all edges
predicted, manually evaluating the sampled edges as correct or incorrect predictions, and
then extrapolating the performance obtained on the sample to the rest of the graph. There
are several aspects to keep in mind with this solution. First of all, the sampling needs
to be large for the extrapolation to be faithful, which equals to many hours of manual
labeling. And second, the sampling would have to be done at several thresholds so that
extrapolations are representative of the whole curve. Sampling may therefore be the only
accurate evaluation methodology for estimating predictive performance of a given score
on a specific domain, at the price of a huge amount of manual labeling hours.

3.2. 10-fold CV

10-fold CV is a commonly used technique for reducing variance in test set construction
and improving representativeness. Although 10-fold CV is almost universally expected
when using test sets that are a random portion of a complete data set, we argue that it is
not needed when performing large graph mining. The main reason behind that argument
being the large size of these domains, which naturally avoid variance. To asses the utility
of 10-fold CV we test a webgraph obtained from a Google challenge, composed by
875,713 vertices and 5,105,039 edges. This particular graph could be considered to be
medium sized, as it is easy to find much larger ones (see Table 1). The conclusions
obtained for this graph could be extended, even with more reliability, to larger graphs. A
random 10% test set of the Google challenge webgraph is composed by 510,503 edges.
We obtain ten different random test sets from this graph, and use each one of them to
evaluate seven different LP algorithms. As a result we obtain ten PR curves (as these are
preferred to ROC curves, see §2.3), for seven different LP algorithms. In Figure 1 we

Algorithm Minimum AUC Maximum AUC Mean Standard Deviation
#1 0.0892558 0.0899991 0.08971357 0.0002287783

#2 0.10017 0.10083 0.1005145 0.0001902058

#3 0.0618143 0.0625483 0.06225763 0.0002040158

#4 0.128201 0.128857 0.1285072 0.0001879318

#5 0.124934 0.125385 0.1251525 0.0001210622

#6 0.419577 0.421239 0.4204078 0.0004921798

#7 0.491902 0.4935 0.4925985 0.0005283041
Table 2. Using the Google challenge webgraph, AUC obtained by seven different algorithms on ten different
random test sets.

shown the ten curves belonging to one of those algorithms, to show the minimal variance
found among curves. The ten curves are virtually identical, which implies that variance
among random splits is irrelevant. To empirically validate this assertion, in Table 2 we
show the AUC of the seventy curves obtained, ten for each algorithm. Results show that
the variance of 10 executions using 10 randomly selected tests sets is very low. In fact,
the standard deviation represents a 0.32% of the mean value in the worst case (algorithm
#3). Such a low variance is the result of having a large test set, which, given the law
of large numbers, will tend towards a stable sample. In this context it seems clear that
performing 10-fold CV is not necessary, as a single run is a representative and accurate
sample of the performance.

Regardless of these results, performing 10-fold CV is not a wrong or misguiding
strategy. Our argument here is that 10-fold CV is not required in order to consider some
results representative. This fact is particularly relevant due to the computational cost of
computing large scale graphs. Building test sets and running graph mining algorithms on
them is typically expensive in computational terms. Hence, the physical resources and
time spent doing ten equivalent executions could be use more efficiently elsewhere.

3.3. Precision-Recall Curves in Link Prediction

Most research on LP use ROC curves[22,7,4,21] or PR curves [23,1] for evaluation, but
for the reasons discussed in §2.3 we find PR curves to be more appropriate. PR curve
shows the performance of a classifier at various thresholds: at the left part of the curve
are the high-certainty predictions where precision is higher, while at the right part of
the curve are low-certainty predictions where recall grows at the expense of a lower
precision. Through the PR curve one can see which classifier performs better at each
threshold. The derived AUC metric of the PR curve on the other hand determines which
classifier performs better overall, when all thresholds are considered at the same time
with the same importance. Due to this last point, we find the PR-AUC score to be sub-
optimal for evaluating the applicability of results. Given the imbalance of the graphs
used (see Table 1), a large part of the PR curve represents very low precisions. As recall
grows precision can quickly reach levels unacceptable from a practical point of view. At
this point one must consider which results are worth taking into account when evaluating
performance. If we intend to achieve an applicable methodology we should focus on its
performance where it matters, when a reasonable number of mistakes are being done.
At extremely low precisions (e.g., 0.01%) results are likely to be useless, and therefore
should not be taken into account (certainly not with equal weight) into the evaluation.
For this reason in §4 we propose a AUC measure focusing on applicability.

Figure 1. Precision-Recall curve of a LP algorithm us-
ing 10 different random splits.

Figure 2. PR curve of a LP score on two different
graphs. Grey area shows the CAUC.

4. Constrained AUC

One of the main goals of LP is to produce high certainty and high utility predictions.
In this context, in order to be successful LP does not need to classify most edges cor-
rectly. LP needs only to correctly classify a significant set of edges with high certainty
to become useful. Instead of building two clearly delimited classes of edges, LP ought
to focus on building one high-certainty class of edges for which its existence is well
founded. We consider the necessity of evaluating performance in the context of applica-
bility, so that we can determine which LP score produces the most useful results. The
classic AUC measure equally considers the performance of a classifier at any threshold,
therefore evaluating which classifier performs the best overall. However, we consider
that the performance of LP scores at low thresholds, where millions of mistakes are done,
is irrelevant for assessment purposes.

We propose to evaluate LP scores based only on the predictions produced while
keeping an acceptable ratio of mistakes. In order to be fair with the particularities of each
domain, we define this acceptable ratio of mistakes based on the number of edges orig-
inally found in the graph. The more edges there are in a graph, the more predictions we
expect to obtain, therefore extending the limit of mistakes considered as acceptable; we
assume that one will rarely want to predict more new edges than edges already found in
the graph. Formally, the proposed Constrained AUC score (CAUC) is obtained by calcu-
lating the AUC of the PR sub-curve where the number of non-existing edges mistakenly
accepted by the score is equal or lower than the total number of edges in the graph.

The CAUC considers only the part of the PR curve where the score is incorrectly
accepting less edges than the number of edges in the graph, dismissing the rest of the
area under the curve. CAUC therefore calculates a portion of the AUC starting from the
left of the curve, ending when too many mistakes are done. Nevertheless, if a LP score
is precise enough the CAUC can be equal to the AUC. Notice that, unlike the AUC, the
CAUC can be 0, if the top E edges evaluated by a score in a graph with E edges are
incorrect predictions.

As said before, the goal of this performance measure is to focus on the relevant parts
of the PR curve. By accepting only mistakes up to the number of edges in the graph one
puts a limit to what one considers are potentially useful predictions. Thus, scores which
perform better at low precisions are penalized by this score, whereas they are not by
the AUC. Furthermore, by making the threshold dependent on graph properties (i.e., on
the number of edges in it) the CAUC score adapts to domain specific properties such as
sparsity and graph size. This is a interesting novel feature not found in the AUC measure,

as a contextual evaluation allows the cross-domain comparison of results. As an example
consider Figure 2, where the PR curves of a LP score are shown for two different graphs.
The vertical cut on each curve represents the location of the CAUC threshold for each
particular data set and score, limiting the CAUC to the area at the left of the threshold
(colored in grey), whereas the AUC considers the whole curve.

A relevant feature of the CAUC measure is that it adapts to the graph under evalu-
ation. CAUC defines the threshold stating which predictions are relevant and which are
not according to each graph size. Simply put, CAUC does not take into account predic-
tions made after more mistakes are done than actual edges in the graph. As a result, more
predictions will be demanded for graphs with more edges. AUC on the other hand evalu-
ates the predictions done on a graph with N vertices and 1000 edges and the predictions
done on a graph with N vertices and 100,000 edges under the same conditions, as if these
two problems were equally difficult. A clearly unrealistic assumption that may lead to
the underestimation or overestimation of results.

5. Conclusions

In LP, as in many other graph mining tasks, one must face certain properties unprece-
dented in DM. Data set size and class imbalance are the most important features in terms
of evaluation methodologies. Data set size for example complicates the use of exhaustive
testing policies such as 10-fold CV, due to an increased computational cost. However, the
same data set size fixes this problem, as 10-fold CV may not be needed in most cases due
to the little variance there is in a random sample of a large graph. As for class imbalance
it forces to use evaluation unbiased by imbalance methods if one wish to obtain mean-
ingful results. However, class imbalance, in some cases, is so large that even unbiased
methods like ROC curves can produce miss-informative results.

Class imbalance impacts classification performance, typically by reducing precision.
This condition has constrained the broad applicability of LP so far. However, in our
opinion, most performance measures like the AUC-PR or AUC-ROC are not a reliable
measure when evaluating LP algorithms. Since the test set is so large, one can focus
on high confident predictions at the cost of a smaller recall, and still obtain thousands
of reliable predictions with good precision. Which is the goal of LP in most applied
cases. Following this notion we proposed a constrained version of the AUC-PR measure
(CAUC), focusing on high confidence predictions. This proposal follows the common
sense idea that through LP one does not intend to generate more links than the ones
previously existing. The CAUC adapts to the size and sparsity of every graph, serving
thus as a comparative measure.

References

[1] Aggarwal, C. C., Xie, Y., and Yu, P. S. (2013). A framework for dynamic link prediction in heteroge-
neous networks. Statistical Analysis and Data Mining.

[2] Albert, R., Jeong, H., and Barabási, A.-L. (1999). Internet: Diameter of the world-wide web. Nature,
401(6749):130-131. 51

[3] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321-357.

[4] Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98-101.

[5] Davis, J. and Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. In Pro-
ceedings of the 23rd Int Conf on Machine learning, pages 233-240. ACM.

[6] Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers.
[7] Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., and Elovici, Y. (2011). Link prediction in

social networks using computationally efficient topological features. In 2011 IEEE 3rd international
conference on social computing, pages 73-80.

[8] Garcia-Gasulla, D. and Cortés, U., Hierarchical inference on semantic graphs applied to CyC, Proceed-
ings of the 16th International Conference of the Catalan Association of Artificial Intelligence, 2013.

[9] Garcia-Gasulla, D. and Cortés, U., Link Prediction in Very Large Directed Graphs: Exploiting Hierar-
chical Properties in Parallel, 3rd Workshop on Knowledge Discovery and Data Mining Meets Linked
Open Data - 11tth Extended Semantic Web Conference, 2014.

[10] Garcia-Gasulla D (2015). Link Prediction in Large Directed Graphs. PhD Dissertation, Universitat
Politècnica de Catalunya - Barcelona TECH.

[11] He, H. and Garcia, E. (2009). Learning from Imbalanced Data. Knowledge and Data Engineering, IEEE
Transactions on, 21(9):1263-1284.

[12] Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based algorithm for mining frequent sub-
structures from graph data. In Principles of Data Mining and Knowledge Discovery, 13-23. Springer.

[13] Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent data
analysis, 6(5):429-449.

[14] Karrer, B. and Newman, M. E. (2011). Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107.

[15] Khalil, A. and Liu, Y. (2004). Experiments with PageRank computation. Indiana University, Department
Computer Science. URL: http://www.cs.indiana.edu/akhalil/Papers/pageRank.pdf.

[16] Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM),
46(5):604-632.

[17] Kunegis, J. (2013). KONECT: the Koblenz network collection. In Proceedings of the 22nd international
conference on World Wide Web companion, pages 1343-1350. International World Wide Web Confer-
ences Steering Committee.

[18] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., and Bizer, C. (2014). DBpedia - A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web Journal.

[19] Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. (2010). New perspectives and methods in link
prediction. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 243-252. ACM.

[20] Liu, X.-Y., Wu, J., and Zhou, Z.-H. (2009). Exploratory undersampling for classimbalance learning.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(2):539-550.

[21] Lü, L., Jin, C.-H., and Zhou, T. (2009). Similarity index based on local paths for link prediction of
complex networks. Physical Review E, 80(4):046122.

[22] Lü, L. and Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical
Mechanics and its Applications, 390(6):1150-1170.

[23] Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning on multi-
relational data. In Proceedings of the 28th international conference on machine learning (ICML-11),
pages 809-816.

[24] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank citation ranking: bringing order
to the web.

[25] Yang, Y., Lichtenwalter, R. N., and Chawla, N. V. (2014). Evaluating link prediction methods. Knowl-
edge and Information Systems, pages 1-32.

[26] Wasikowski, M. and Chen, X. W. (2010). Combating the small sample class imbalance problem using
feature selection. Knowledge and Data Engineering, IEEE Transactions on, 22(10):1388-1400.

[27] Watanabe, M. and Suzumura, T. (2013). How social network is evolving? A preliminary study on billion-
scale twitter network. In Proceedings of the 22nd Int Conf on World Wide Web companion, pages 531-
534. Int WWW Conferences Steering Committee.

[28] Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newslet-
ter, 6(1):7-19.

