
Distributed Q-Learning for Energy Harvesting

Heterogeneous Networks

Marco Miozzo;, Lorenza Giupponi;, Michele Rossi:, Paolo Dini;

;CTTC, Av. Carl Friedrich Gauss, 7, 08860, Castelldefels, Barcelona, Spain
:DEI, University of Padova, Via G. Gradenigo, 6/B, 35131, Padova, Italy
{mmiozzo, lgiupponi, pdini}@cttc.es, rossi@dei.unipd.it

Abstract—We consider a two-tier urban Heterogeneous Net-
work where small cells powered with renewable energy are
deployed in order to provide capacity extension and to offload
macro base stations. We use reinforcement learning techniques to
concoct an algorithm that autonomously learns energy inflow and
traffic demand patterns. This algorithm is based on a decentral-
ized multi-agent Q-learning technique that, by interacting with
the environment, obtains optimal policies aimed at improving the
system performance in terms of drop rate, throughput and energy
efficiency. Simulation results show that our solution effectively
adapts to changing environmental conditions and meets most of
our performance objectives. At the end of the paper we identify
areas for improvement.

Index Terms—Mobile Networks, HetNet, Sustainability, Re-
newable Energy, Energy Efficiency, Q-Learning.

I. INTRODUCTION

In the near future, mobile network operators will have to

handle a much higher capacity demand [1], especially within

urban areas. In fact, it is expected that fifth generation (5G)

mobile networks will support 1, 000 times more capacity per

unit area than 4G. On the downside, this trend will affect the

greenhouse gases emissions of ICT ecosystems, which already

consume about 1500 TWh of energy annually, approaching

10% of the world’s electricity generation and accounting for

2 ´ 4% of the carbon footprint due to human activities. This

calls for a radical change in the system design philosophy,

shifting from a coverage and capacity oriented optimization

(typical of 3G and 4G) to an energy oriented one. Besides,

operators are also looking at the massive deployment of small

scale factor base stations (BSs), which are referred to as small

cells (SCs). SCs will provide capacity extension to macro BSs,

giving rise to a multi-tier heterogeneous network (HetNet). In

addition, the reduced energy consumption of small cells could

be exploited to self-power these SCs through the use of e.g.,

small size solar panels, as we advocate in this paper, through

the concept of energy harvesting HetNets. This is expected to

reduce the cost associated with the purchase of energy from

the power grid, and so the carbon footprint of ICT [2].

A proper management of the SCs calls for a lightweight and

scalable architecture, including new management procedures.

In this respect, Self Organized Networking (SON) will be

key to bring intelligence and autonomous adaptability to

network elements, by diminishing human involvement, while

maximizing system performance, reducing operational costs,

meeting QoS requirements and improving the overall energy

efficiency (EE) [3]. This paradigm is of paramount importance,

especially considering that SCs will be operated in an unco-

ordinated fashion. Previous research work demonstrates that

sleep strategies (or switch ON-OFF) are a valuable means

to reach these goals [4]. However, in the case of energy

harvesting (EH) HetNets, we also need to consider the erratic

and intermittent nature of renewable energy sources, which

entails some additional complexity.

In this work, we consider solar energy as a reference

renewable energy source (RES), due to its widespread avail-

ability, the good efficiency of photovoltaic (PV) technology

and its competitive cost. On this matter, we observe that

one may obtain some prediction of the amount of energy

that is harvested on a daily basis and, taking into account

bad weather conditions, may over dimension the PV panel

and the associated energy storage (usually made of Lithium

ion rechargeable cells), to meet a certain service availability

criterion. This practice is commonly adopted for off-grid

installations (see, e.g., rural areas), where network elements

cannot be easily connected to the power grid and have to solely

rely on harvested or diesel-generated energy. In this case, the

resulting panel size for urban scenarios is not viable for macro

BS and still too large even for SCs [2], which are supposed to

be installed in street furnitures (i.e., traffic lamps, street lights,

transportation hubs, etc.).

To overcome this limitation, we target hybrid two-tier

deployments where macro BSs reside in the first tier and are

powered by the power grid, whereas SCs operate within the

second one supplied by solar panels. In this scenario, several

optimizations are possible, such as offloading some of the data

traffic from the macro BS to the SCs or switching ON or

OFF the SCs, based on the traffic demand and the energy

offer. This makes it possible to reduce the requirements (i.e.,

solar panel size and battery capacity) for the SCs, and the

energy cost of the macro BS, at the cost of some additional

complexity in terms of hardware (the installation of SCs) and

optimization algorithms (for traffic offloading). The design of

these algorithms, along with the quantitative assessment of

their effectiveness, is the main objective of the present paper.

The increasing interest in EH cellular networks is testified

by the rich literature on this topic [4]. In [5], the authors

present a design based on stochastic geometry for the manage-

ment of k-tier HetNets powered by RESs. Their model controls

the fraction of time that each tier can be kept on, according



to its energy reserve. Similarly, in [6], the authors propose an

algorithm to control the BS power consumption as a function

of the energy reserve and the expected amount of renewable

energy that will be stored. However, neither of these two works

considers the temporal variations in traffic and in harvested

energy processes, which is fundamental for a realistic model

of the scenario. In [7], the authors focus on off-grid mesh

networks of EH BSs. First, the problem of dimensioning

the renewable energy “add-on” (solar panel and battery) is

solved by considering typical daily traffic and harvested energy

profiles for different cities. Then, an optimization approach, for

two-tier networks, is proposed, based on SCs sleep modes.

However, the proposed optimization approach is based on

historical data, and is consequently unable to adapt to the

dynamic system conditions, in terms of harvested energy or

traffic demand, as it would be desirable in a realistic setting.

In this paper, we overcome the above mentioned problems,

and we propose to model the SC network by means of a multi-

agent system where each agent makes autonomous decisions,

according to the Decentralized SON (D-SON) paradigm. In

this context, we propose a distributed on-line solution based

on a multi-agent Reinforcement Learning (RL) algorithm,

known as distributed Q-learning. Through RL, each agent

(SC) independently learns a proper radio resource manage-

ment (RRM) policy, so as to jointly maximize the system

performance in terms of throughput, drop rate and energy

consumption, while adapting to the dynamic conditions of the

environment, in terms of energy inflow and traffic demand.

The performance of this algorithm is then assessed for two-tier

networks, considering realistic models for the data traffic and

for the energy harvested. While still preliminary, these results

are encouraging and show that our approach is viable as the

designed algorithm meets most of our design goals.

The remainder of the paper is organized as follows. In Sec-

tion II we present the system model, whereas the RL algorithm

is presented in Section III. In Section IV we discuss some

performance results. In Section V we draw our conclusions

and discuss future research directions.

II. SYSTEM MODEL

In this section we describe the network and energy man-

agement models. We consider a two-tier HetNet composed of

heterogeneous LTE BSs, which includes one macro BS and

N SCs. The macro BS is connected to the power grid and

provides baseline coverage to the whole cell. The SCs are

deployed in a hotspot manner to increase the capacity where

needed (e.g., shopping hall, city center, etc.). Also, these SCs

are solely powered through solar-harvested energy and are

controlled in a distributed fashion by means of Q-learning

agents, as we detail in the next section.

At the physical layer, LTE is based on OFDMA. The total

transmission bandwidth B is divided into R resource blocks

(RBs) of 1 msec each (referred to as TTI). Each SC i has a

set Ui of associated users, which depend on its geographical

location and on the distribution of the users (see Section IV-A

for further details). For the BS power consumption, we adopt

TABLE I
POWER MODEL PARAMETERS FOR VARIOUS TYPES OF BS.

BS Type P0 [W] β [W]

Macro 750.0 600
Small 105.6 39

the model presented in [8]. In particular, the energy consump-

tion of a LTE BS can be approximated by the linear function

P “ P0 ` βρ, where ρ P r0, 1s is the traffic load of the BS,

normalized with respect to its maximum capacity, and P0 is

the baseline power consumption. Typical values of β and P0

are reported in Table I for macro and small BSs. Regarding the

type of SC, we consider medium scale factor “metro cells”,

as the Alcatel-Lucent 9764 Metro Cell Outdoor, featuring a

maximum transmission power of 38 dBm. The (time-varying)

BS capacity (in terms of number of resource blocks allocated

to the users) is defined based on [9]. This includes the

simulation of the wireless channels and the selection of the

modulation and coding scheme (MCS) for each user, based

on the particular channel conditions and on the (dynamically

computed) system interference. For the SC management, we

assume a slotted time model with a slot duration of 1 hour.

This time granularity is deemed appropriate to track variations

in the system load and in the EH process.

III. ALGORITHM

In this section, we present a decentralized multi-agent radio

resource management algorithm for the SCs in the second tier.

A. Q-learning-based Radio Resource Management (RRM)

We consider a network setup of N distributed agents (the

SCs), which can be modeled by means of a multi-agent system,

as it fulfils the following conditions: (1) the intelligent RRM

decisions are made by multiple intelligent and uncoordinated

agents; (2) the agents partially observe the overall scenario;

and (3) their inputs to the intelligent decision process differ

from agent to agent, since they come from spatially distributed

sources of information. In particular, the inputs to the RRM

algorithm depend on the SC’s particular location and on

the geographical distribution of the users (i.e., the load).

The objective of the algorithm is for each agent to learn,

through real-time interactions with the environment, an energy

management policy by means of a Q-learning approach. The

decision making process of each agent is defined by a Markov

Decision Process with state vector ~xt “ tx1
t , x

2
t , . . . , x

N
t u,

where xi
t is the state associated with SC i (described in the

next Section III-B), at time t. Based on xi
t, each agent i

independently chooses an action ait from an action set A.

As a result of the execution of this action, the environment

returns an agent dependent reward rit, which allows the local

update of a Q-value, Qpxi
t, a

i
tq, indicating the appropriateness

of selecting action ait in state xi
t. The Q-value is computed

according to the rule:

Qpxi

t, a
i

tq Ð Qpxi

t, a
i

tq`αrrit ` γmin
a

Qpxi

t`1, a
1q ´ Qpxi

t, aqs

(1)



where α is the learning rate, γ is the discount factor, xi
t`1

is the next state for agent i and a1 is the associated optimal

action. For more details on RL and Q-learning the reader is

referred to, e.g., [10], [11].

B. States, actions and rewards

In this section we provide details on the Q-learning algo-

rithm, by defining state, action set and reward function, for

the N agents.

State: The local state xi
t is defined by:

xi

t “ tSi

t , B
i

t, L
i

tu , (2)

where Si
t is the state of the renewable energy source based on

the incoming amount harvested energy (e.g., day and night),

Bi
t is the normalized battery energy level, Li

t is the normalized

load for SC i in slot t, which depends on the number of users

served by this SC. We uniformly quantize Si
t , B

i
t and Li

t into

2, 5 and 3 levels, respectively.

Action set: The set of possible actions A consists of the two

actions of switching ON and OFF the SC. We have not consid-

ered the option of modulating the load ρ between 0 and 1, due

to the energy profile of SCs. In fact, the β parameter in Table I

for the SCs is usually small, and therefore the parameter ρ

has a marginal impact on their energy consumption. When a

SC is switched OFF, the associated users have to connect to

the macro BS. However, in case the macro BS is not able

to provide them with service, they will be dropped, until the

next time slot, when a variation of system state may lead to

different RRM decisions.

Reward function:

rit “

$

’

&

’

%

0 Bi
t ă Bth or Dt ă Dth

κT i
t Bi

t ě Bth and Dt ě Dth and SC i is ON

1{Bi
t Bi

t ě Bth and Dt ě Dth and SC i is OFF
(3)

where T i
t is the normalized throughput of SC i in slot t, Dt is

the instantaneous system drop rate, defined as the ratio between

the total amount of traffic dropped and the traffic demand in

the entire network (accounting for macro and small BSs). Dth

is the maximum tolerable drop rate. Finally, Bth is a threshold

on the battery level. The rationale behind (3) is the following.

The condition in the first line implies a zero reward when the

battery level falls below Bth (Bi
t ă Bth) or the system drop

rate is below Dth (Dt ă Dth). This incentivizes the SC to

turn itself OFF to save energy, as this implies a higher reward.

When Bi
t ă Bth, this is necessary to promote the energetic

self-sustainability of the SC, whereas when Dt ą Dth, the

system performance is deemed sufficient. Thus, the SC can

be switched OFF and offload the macro BS at a later time.

In the second and third line of (3), the reward is proportional

to the throughput when the SC is turned ON and is instead

proportional to the inverse of the energy buffer level when

the SC is OFF. Note that the SC, after a learning phase, will

choose to remain ON (and offload the macro BS) when the

reward in the second line is higher, i.e., when κT i
t ą 1{Bi

t.

Note that 1{Bi
t may dominate over κT i

t in case battery level

and throughput are both low. In this case, the SC switches

OFF to save energy. The constant κ is used to balance the

impact of the two terms (throughput vs energy saving).

IV. PERFORMANCE EVALUATION

A. Simulation Scenario

We consider N SCs operating within a square macro cell

area with a side of 1 km (N is varied as a free parameter

in Section IV). The macro BS is placed in the center of

this area, whereas SCs are randomly positioned with the

constraint that their cells do not overlap. Specifically, we pick

a transmission power of 38 dBm for SCs, which translate into

a coverage radius of 50 m. 120 users (UEs) are uniformly

placed within the coverage area of each SC. The number of

UEs has been selected so that the SCs are congested during

the traffic peaks. The traffic of these users follows a urban

profile [7] (i.e., traffic peaks are concentrated around working

hours). For what concerns the distribution of traffic among

users, we adopt the model in [8], configuring 20% of the

UEs as heavy users (their data volume is 900 MB/h), while

the remaining UEs are ordinary users (112.5 MB/h). For the

renewable energy sources we consider the Panasonic N235B

solar modules, which have single cell efficiencies of about

21%, delivering about 186W/m2. For SCs, an array of 16ˆ16

(4.48 m2) solar cells has been chosen. The battery size of

the small cell is 2 kWh (panel and battery sizes have been

chosen so that SC batteries can be replenished in a full winter

day). Harvested energy traces have been obtained using the

SolarStat tool [12], considering the city of Los Angeles as the

deployment location. These traces have been translated into a

Markov process with 12 energy states that, as shown in [12],

provide an excellent approximation of the harvested energy

process, and so are used for this purpose in our simulations.

Fig. 1 shows typical profiles for the traffic demand and the

harvested energy across two subsequent days. Interestingly,

we see that the maxima in the energy inflow and in the traffic

demand are not aligned. This means that some optimization

actions that could be taken are e.g., saving energy resources

and use them when the next traffic peak occurs.

The decentralized Q-learning algorithm of Section III is

independently implemented by each SC. The learning rate

is set to α “ 0.5 and the discount factor to γ “ 0.9 for

all SCs, according to our simulation analysis. The constant κ

(see (3)) is set to 10 as this provides a good tradeoff for the

considered system parameters. The Q-learning algorithm also

implements exploration features [10], i.e., random states are

visited by the learning agents with probability ε “ 0.1. In the

following plots, we refer to “QL” as our Q-learning solution.

We compare QL against a greedy scheme (“greedy” in the

figures) where SCs are put into a sleep mode (OFF) when

their battery level Bt drops below Bth, and they are switched

ON when Bt ě Bth. The battery threshold Bth is set to 30%

of the battery capacity. The threshold on the instantaneous

traffic drop rate is set to Dth “ 0.05. Simulations are run

for 420 consecutive days, where 60 of them are used for

the training phase, while the results from the remaining 360
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Fig. 1. Examples of total traffic demand and amount of energy harvested.

 7

 8

 9

 10

 11

 12

 13

 3  4  5  6  7  8  9  10

T
h
ro

u
g
h
p
u
t 
G

a
in

 [
%

]

Number of SCs

Winter
Summer

Fig. 2. Throughput gain [%] of QL with respect to the greedy scheme.

days are used to evaluate the behaviour of QL and the greedy

approach. In the following plots, we treat separately the winter

and the summer months, as the energy harvesting statistics are

very different in these two cases. Specifically, we consider as

winter the months of January, February, October, November

and December, while the remaining months are classified as

summer.

B. Numerical Results

In Fig. 2, we show the system throughput gain provided by

QL with respect to the greedy scheme. It can be observed that

the QL approach offers improvements of up to 14%, during

the winter months.

In Fig. 3, we plot an example of the temporal system

behavior for a HetNet including 3 SCs and a macro BS for

the last week of December. Here, from top to bottom we show

temporal traces concerning traffic demand and instantaneous

harvested energy (in the same plot), battery level, policy

adopted at the SCs (y-label “Action”) and normalized load

at the macro BS (y-label “Macro Load”). From these results

various observations can be made. First, the policy adopted by

QL tends to save energy during the night, and this makes it

possible to offload more the macro BS during the day, as it

can be seen in the bottom plot of Fig. 3 in correspondence

of the points marked with “(a)”. Also, the impact of our

reward function (see (3)) can be appreciated in correspondence

of label “(b)”. Here, the QL keeps the SCs ON, as the

traffic demand is high, and in this case sleeping would cause

congestion at the macro BS. We remark that QL is capable of

doing this as it proactively saves some of the harvested energy

when the energy inflow is abundant. In contrast, the greedy

scheme shows a more aggressive behavior and, as a result, it

has no residual energy to compensate for an upsurge in the

traffic load.

We observe that the energy harvesting traces are the same

for all SCs. We implement this choice since it is expected

that the level of solar irradiation will not change much within

a macro cell area. In addition, this sort of synchronization

with respect to the experienced energy inflow from RESs is

enforced by the traffic demand processes, as different SCs

will as well undergo similar traffic profiles. This implies that,

in the considered setup, SCs are often switched ON/OFF

simultaneously. This can be appreciated from Fig. 4, where

the average load is plotted as a function of the hour of the

day for a network with 3 SCs. The greedy scheme usually

leads to a higher load for the macro BS during the morning

peak hours, where the batteries are likely to be drained, and

therefore most of the SCs must be turned OFF. On the contrary,

QL loads the macro BS slightly more during most of the day

in order to put some of the SCs to sleep (saving energy at

these SCs) and serve more traffic during the morning peak.

The traffic drop rate as a function of the number of SCs

is shown in Fig. 5, where it can be observed that the QL

algorithm considerably reduces the drop rate compared to

the greedy scheme. The throughput improvements directly

translate into improvements in terms of user QoS, as depicted

in Fig. 6, where the Jain’s fairness index (JFI) is plotted as

a function of the number of SCs. If T i is the throughput

experienced by UE i, T i
req is the capacity requested by this

user and Nu is the number of UEs, the JFI is defined as

JFI “ r
řNu

i“1pT i{T i
reqqs2{rNu

řNu

i“1pT i{T i
reqq2s. In terms of

JFI, QL provides an improvement higher than 5% with respect

to the greedy scheme, as fewer users are dropped.

We define by battery outage the amount of time a SC spends

with a battery level B below the threshold Bth. In this case,

the SC has to be momentarily put into sleep, independently

of the adopted policy. Based on our model, the battery outage

of the greedy scheme is always higher than 4 hours per day,

reaching a maximum of 8 hours in the winter. On the other

hand, QL offers an average battery outage below 1 hour, except

in winter, when it gets close to 2 hours. This is achieved thanks

to the intelligent behavior of QL, which proactively reacts to

the reward function, defined to optimize the battery outage.

In Fig. 7, we show the average cell load for the macro BS.

It can be observed that in general, when implementing QL,

the macro cell ends up serving more load. The reason is that

with QL, during off-peak hours, the SCs tend to save some of
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the harvested energy by turning themselves OFF for a longer

period of time than with the greedy solution. As a result of this,

the macro BS may result to be more loaded. The saved energy

is then used by QL to compensate for the traffic peaks, where

more SCs are turned ON. Overall, this reduces the amount

of traffic dropped, increases the average throughput and loads

more the macro BS when the traffic volume is moderate.

In Fig. 8, we look at the EE, which is defined as EE “
ES{TS , where ES is the total energy drained by the macro

BS from the power grid and TS is the system throughput. As

we can see, QL offers a higher EE than the greedy scheme.

However, the EE diminishes for an increasing number of SCs
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Fig. 5. Traffic drop rate for QL and greedy.

because the macro BS has to serve a higher number of UEs

when the SCs are switched OFF. Finally, when we look at the

total amount of energy spent by the system, it is proportional

to the served traffic (which is higher for the QL option), so that

it approximatively amounts to 7.5 MWh in a year for a greedy

solution, while it varies from 7.5 (with 3 SCs) to 8.3 MWh

(with 10 SCs) when QL is adopted.

As a final remark, it is worth mentioning that the same

system implemented without energy harvesting capabilities

(i.e., where the SCs are grid-connected) would consume from

9.6 (3 SCs) to 17 MWh (10 SCs) in a year, which implies an

increment in terms of used energy of more than 50%.
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V. CONCLUSIONS AND WAY FORWARD

In this paper, we have presented a distributed Q-learning

algorithm for the management of energy harvesting SCs in

heterogeneous networks. Our scheme is designed to increase

the system throughput, offload the macro BSs and decrease

the drop rate at the macro BS. Our simulation results are

encouraging and show that the proposed approach is viable,

as the algorithm meets most of our design goals and also

improves the energy efficiency of the system.

Nevertheless, there are various aspects that need to be

further investigated. First, we would like to enhance the

decisions made by the distributed small cells so that they

will cooperatively compute optimal policies accounting for

common (and global) performance objectives. Note that in the

current algorithm this cooperation is only marginally achieved

through the use of the global drop rate Dt in the reward

functions that are locally computed by the small cells (see

(3)). Finally, we need to explore further reward functions so

as to still obtain performance gains even when the number of

small cells is large. In particular, we also plan to embed the

energy efficiency metrics into the learning algorithm.
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