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Abstract: The performance of microwave radiometers can be seriously degraded by the 

presence of radio-frequency interference (RFI). Spurious signals and harmonics from lower 

frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or 

out-of-band emissions not properly rejected by the pre-detection filters due to the finite 

rejection modify the detected power and the estimated antenna temperature from which the 

geophysical parameters will be retrieved. In recent years, techniques to detect the presence 

of RFI have been developed. They include time- and/or frequency domain analyses, or 

statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean 

Gaussian process. Current mitigation techniques are mostly based on blanking in the time 

and/or frequency domains where RFI has been detected. However, in some geographical 

areas, RFI is so persistent in time that is not possible to acquire RFI-free radiometric data. In 

other applications such as sea surface salinity retrieval, where the sensitivity of the 

brightness temperature to salinity is weak, small amounts of RFI are also very difficult to 

detect and mitigate. In this work a wavelet-based technique is proposed to mitigate RFI 

(cancel RFI as much as possible). The interfering signal is estimated by using the powerful 

denoising capabilities of the wavelet transform. The estimated RFI signal is then subtracted 

from the received signal and a “cleaned” noise signal is obtained, from which the power is 

estimated later. The algorithm performance as a function of the threshold type, and the 

threshold selection method, the decomposition level, the wavelet type and the interference-

to-noise ratio is presented. Computational requirements are evaluated in terms of 

quantization levels, number of operations, memory requirements (sequence length). Even 
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though they are high for today’s technology, the algorithms presented can be applied to 

recorded data. The results show that even RFI much larger than the noise signal can be very 

effectively mitigated, well below the noise level. 

Keywords: microwave radiometers; radio frequency interference; mitigation; cancellation 

 

1. Introduction  

The performance of microwave radiometers can be seriously degraded by the presence of radio-

frequency interference (RFI). This is especially important in populated land areas [1-3]. If RFI 

produces an increase in the power detected by the radiometer, which is larger than the natural 

variability of the geophysical phenomena, it can be flagged and the data discarded, but when the RFI is 

comparable or smaller than the natural variability, it is difficult to detect, and the retrieved geophysical 

parameters are erroneous [3]. In the last decade, RFI detection and mitigation methods have been 

devised to address this problem. The three approaches that have been used are: time, frequency or 

statistical analyses of the received signal. Time analysis looks for anomalous behavior of the received 

signal in form of power peaks above the expected range of values. These values are blanked 

(discarded) and only the RFI-free data are left [4,5]. However, since the detected power is a smoothed 

version of the instantaneous one, if the RFI peaks are shorter than the integration time they may not be 

detected. Frequency analysis looks for the spectrum of the received signal within the radiometer’s 

band, and discards sub-bands with power higher than the rest [6]. Finally, since for a zero-mean 

Gaussian signal, such as thermal noise, all the odd moments must be zero, and the even ones must 
satisfy    1 ...3 1n nx t n       (where  is the signal’s standard deviation), statistical tests analyze 

some mathematical properties of the received signal and compare them to the theoretical values within 

some error margin, discarding the data series that do not satisfy some pre-defined criteria. Among 

these test the most widely used is the Kurtosis (ratio of the fourth and the square of the second 

moments) which must be equal to 3 in RFI-free conditions [7-9]. The sixth order moment [10], and 

other algorithms [11,12] have also been studied. 

Most of the previous studies have focused on pulsed sinusoidal signals within the radiometer’s 

band. In radio-astronomy some techniques have been proposed to deal with GLONASS RFI [13], but 

since the RFI signal is much lower than the noise, some a priori knowledge of the interferent signal 

must be known. These are called “physical modeling” in communications’ terminology and a different 

model is required for each type of RFI.  

Another type of analyses fall within the so-called “statistical-physical modeling” category, that 

provide universal model for natural and man-made RFI. The main models are the Middleton’s class A 

(narrowband RFI within receiver’s band), class B (broadband RFI wider than receiver’s band), and 

class C (mixture of class A and B) canonical models for which the mathematical form is independent 

of the physical environment [14]. The RFI mitigation approach is then based on the estimation of the 

model parameters and apply a linear optimal filtering (Wiener filter) or optimal detection rules [15]. 
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In this work we propose a different approach to mitigate the effect of RFI in microwave radiometry. 

It is based on the use of the power of the wavelet transform to denoise (remove noise from a signal). 
The interfering signal ˆ( )s t  (RFI) is estimated without any a priori knowledge of it. This signal is then 

subtracted from the received signal ( )x t , to obtain a quasi RFI-free noise signal ˆ ˆ( ) ( ) ( )n t x t s t   from 

which the power is detected (Figure 1).  

Figure 1.  RFI mitigation technique: an estimate of the RFI signal ˆ( )s t is subtracted from 

the received signal ( ) ( ) ( )x t s t n t  , so as to obtain a quasi RFI-free noise signal ˆ( )n t . 

 
 

In the following sections the principles of denoising are briefly reviewed. The optimum parameters 

to detect and mitigate four different types of RFI (sinusoidal, Doppler-like1, chirp2, and pseudo-

random noise) are studied: type of thresholding, sequence length, decomposition level, and type of 

wavelet (among 75 different types). In order to the study completely general and a homogeneous inter-

comparison between these different signals:  

 the maximum instantaneous frequency has been set to be equal to 1 Hz for all of them, so that the 

sequence length corresponds to the number of samples per signal period, and  

 the amplitude of the different interfering signals has been properly scaled so that their power is also 

the same, and so the interference-to-noise (INR) ratio.  

The noise power is assumed to be equal to one, and the algorithm’s performance is expressed in 

terms of the error of the detected output power as a function of the INR. 

2. Principles of Denoising 

Wavelet analysis is based in the multi-resolution analysis. Signals are decomposed into localized 

component waves of variable duration (wavelets). A discrete signal f is first decomposed into a first 
trend a1 and a first fluctuation d1:  1 1|f a d . Then, in the second step (or level) the first trend a1 is 

decomposed again into a second trend a2, and a second fluctuation d2:  2 2 1| |f a d d . The process 

is repeated a number of steps L (levels):  1 2 2 1| | | ... | |L L L Lf a d d d d d  . By ordering the wavelet 

transform coefficients by decreasing magnitude, signal compression and denoising can be performed 

by neglecting (or attenuating) the amplitude of the coefficients below a given threshold (see [16] for an 

introduction on the wavelet theory and its applications). 

Consider the problem of denoising an unknown signal [17-23]: 

 ( ) ( ) ( )x t s t n t  ,        (1) 

                                                 
1 A Doppler signal exhibits an amplitude modulation associated to the different paths of the transmitter and receiver and a 
frequency modulation that is not linear, only around a time interval around the time in which transmitter and receiver are in 
their closest positions.  
2 A chirp signal exhibits a constant amplitude and a constant linear frequency shift. 
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from a set of samples i i ix s n  (i = 1,…, M) corrupted by a zero mean white Gaussian noise in . The 

Discrete Wavelet Transform (DWT) can be used for denoising a noisy signal. If W denotes a M by M 

orthonormal wavelet transformation matrix, the previous equation can be expressed in the wavelet 

domain as: 

 X S N  ,        (2) 

where ˆX Wx , ˆS Ws  and ˆN Wn  are the wavelet transforms of x, s and n. For a smooth function 

with additive Gaussian white noise, a theoretical threshold exists that completely removes the noise 

and successfully reproduces the original function: 
1ŝ W HWx ,        (3) 

where [ (1), (2),..., ( )]H diag h h h M  is a filter.  

One method of filtering is thresholding. A denoised signal is obtained by applying the inverse 

wavelet transform 1W   (with the same wavelet basis) to a limited number of the highest coefficients of 

the DWT spectrum (Y). There are a number of ways to decide which coefficients should be retained. 

The two simplest methods are the hard and soft thresholding: 

• The hard threshold filter Hhard removes the coefficients below a threshold value T, determined by 

the noise variance and keeps the others to the same value: 

 Y X X T           (4)  

• The soft threshold filter Hsoft shrinks the wavelet coefficients above, and below the threshold 

reduces them towards zero:  
    ( )Y sign X X T         (5) 

 Figure 2 shows the transfer function of the hard (red) and soft (blue) threshold filters (with T = 1). 

If the resulting signal has to be smooth, it has been shown that the soft threshold filter must be used 

[22].  

Figure 2.  Hhard and Hsoft transfer functions of the threshold filters (with T = 1) currently 

used in denoising. 
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The selection of the threshold value can be difficult. In practice, if the noise-free signal  s t  is 

unknown, a smooth approximation of the signal is looked for. Small threshold values lead to noisy 
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results, while large threshold values introduce bias. Experimental studies have demonstrated that for 

some applications, the optimal threshold is simply computed as a constant c times the noise variance 

[23]. Four approaches are used in this study [18]: 

 One approach utilizes a selection rule based on Stein's Unbiased Risk Estimate or SURE (quadratic 

loss function). If the signal to noise ratio is very small, the SURE estimate is very noisy. 

 The Universal method assigns a threshold level equal to the noise variance times  2log M , 

where M is the sample size [21]. 

 The heuristic approach is a mixture of the two previous ones, and if the signal to noise ratio is 

detected to be very small, the fixed threshold is used.  

 The fourth method uses a fixed threshold selected to yield the minimax performance for mean 

square error against an ideal procedure (minimum of the maximum mean square error).  

The choice of the proper wavelet scaling function is always the most important thing. Generally, for 

denoising, the wavelet scaling function must have mathematical properties (shape, continuity of the 

signal and its derivatives) similar to the original signal. For example, to denoise pulsed signals, the 

Haar wavelet (box scaling function) will perform well, but it will not perform as well to denoise 

sinusoidal signals. On the other hand, high order Daubechies wavelets (e.g. order 8) will perform well 

for sinusoidal signals. If the level of decomposition increases (higher fluctuation terms dL included), 

signals can be reproduced with increasingly accuracy. Therefore, a trade-off exists between the 

decomposition level and the complexity to evaluate the wavelet transform. The number of different 

wavelets is very large. See [25] for a quite detailed list of wavelet types and their properties.  

 

Figure 3.  Original noise-free signal (black), original noisy signal (crosses), and 

reconstructed signals using the Haar wavelet transform, level = 12, 32 samples per period 

(total 320) and threshold: SURE (red), universal (green), heuristic SURE (blue) and 
minimax (cyan). 2 2
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The effect of the wavelet type (Haar wavelet) and the threshold selection method can be visually 

seen in Figure 3 for the four different types of signals been analyzed in this work. In this case, the 
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pseudo-random noise signal (bottom panel) is better reconstructed than the other three continuous 

signals. 

3. Optimum Parameters Selection 

In this work 75 different wavelet types have been tested [25], but simulation results (average of 100 

realizations each) are presented first only for the simplest wavelet: Haar wavelet or Daubechies 1. 

Once the trends are understood and the optimum parameters are found for the Haar wavelet, the 

optimum performance for the each signal type and each wavelet type is presented.  

3.1. Threshold Selection and Sequence Length 

Figure 4 shows the performance of the proposed RFI mitigation wavelet technique using the Haar 

wavelet, as a function of the threshold methods described in Section II and the sequence length, for the 

four different types of interferent signals (sine, Doppler, chirp, and pseudo-random noise), 

decomposition level = 12, and INR = 100.  

Figure 4.  RFI mitigation performance using the Haar transform as a function of the 

threshold method and sequence length (number of samples per signal period) for four 

different types of interferent signals, and decomposition level = 12. Threshold method: 

squares = fixed threshold with single level noise estimation, circles = soft SURE, 

diamonds = soft heuristics SURE, and triangles = minimax. RFI signal: solid line = sine, 

dashed line = Doppler, dotted = chirp, and dash-dot = pseudo-random noise. 
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As it can be appreciated, at least 20 samples per period are required to reject RFI better than 20 dB, 

and as the sequence length increases, the estimated noise power error decreases (interference rejection 

increases) by the same factor, saturating around 3·10-4 (INR > 55 dB) for the PRN signal at sequence 

lengths longer than 213. In general, the fixed threshold estimation provides the worst performances, 

except for the SURE thresholding with the chirp signal for lengths between 64 and 1024. In general, 
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for all signal types, the best performance is achieved using the heuristic SURE thresholding for any 

sequence length. Only for the PRN type of signal and below 256 samples, the minimax thresholding 

methods outperforms the heuristic SURE method. 

3.2. Decomposition Level 

Figure 5 shows the performance of the proposed RFI mitigation wavelet technique using the Haar 

wavelet, with 216 sequence length, as a function of the decomposition level. As intuitively expected, 

the larger the number of decomposition levels, the better the reconstruction (slope ~-1/3 decade per 

unit level), the smoother the function, and the smaller the number of terms in the decomposition that 

have to be used to reconstruct the signal properly. The quality of the reconstruction of the sinusoidal 

signal (and later cancellation) saturates above five levels, the Doppler signal saturates above six levels, 

the chirp signal saturates above seven levels, and only the PRN signals starts saturating at 11 levels. In 

all cases the heuristic SURE thresholding method is used, which is the one that achieves the best 

performance, only matched by the fixed thresholding for PRN signal. 

Figure 5.  RFI mitigation performance using the Haar transform as a function of the 

threshold method and decomposition level for four different types of interferent signals, 

and sequence length 216. Threshold method: squares = fixed threshold with single level 

noise estimation, circles = soft SURE, diamonds = soft heuristics SURE, and 

triangles = minimax. RFI signal: solid line = sine, dashed line = Doppler, dotted = chirp, 

and dash-dot = pseudo-random noise. 
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3.3. RFI Mitigation Performance vs. Interference-to-Noise Ratio (INR) 

Figures 6 and 7 show the RFI mitigation performance using the Haar transform or the optimum 

wavelet transform respectively, as a function of the threshold method and INR, for a sequence length 

of 216 and a decomposition level equal to 12. As it can be appreciated, using the soft heuristic SURE 

thresholding the rejection is very good (~40 dB) for high INR = 100, decreasing with decreasing INR. 

Below INR ~ 2·10-4 the algorithm is no longer able to estimate the RFI signal (Figure 6).  
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Figure 6.  RFI mitigation performance using the Haar transform as a function of the 

threshold method and INR for four different types of interferent signals, sequence length 

216 and decomposition level = 12. Threshold method: squares = fixed threshold with single 

level noise estimation, circles = soft SURE, diamonds = soft heuristics SURE, and 

triangles = minimax. RFI signal: solid line = sine, dashed line = Doppler, dotted = chirp, 

and dash-dot = pseudo-random noise. 
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Figure 7. RFI mitigation performance using the optimum wavelet type for each signal as a 

function of the INR for the heuristic SURE threshold method for four different types of 

interferent signals, sequence length 216 and decomposition level = 12. RFI signal: solid 

line = sine, dashed line = Doppler, dotted = chirp, and dash-dot = pseudo-random noise. 
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The optimum wavelets for each signal type have found to be the symlet 3 (sym 3) for the sinusoidal 

RFI, the reverse biorthogonal wavelets 1.5 (rbio1.5) for the Doppler signal, the discrete approximation 

of Meyer (dmey) wavelet for the chirp signal, and the reverse biorthogonal wavelets 1.3 (rbio1.3) for 
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the PRN signals. When using the optimum wavelet types for each RFI signal the performance is 

significantly improved for high INRs (Figure 7), but remains stable as INR decreases so below 

INR ~ 2·10-4, as in the case of the Haar wavelet, no improvement is seen. 

3.4. Noise Correlation Effects 

As shown in Section 3.1, at least 20 samples are required per signal period to achieve a good 

performance (interference rejection  20 dB) of the RFI mitigation algorithm (or 300-400 samples per 

period for an interference rejection  30 dB), while the Nyquist sampling rate requires just two 

samples per period. It is worth to address the effect of the correlation between consecutive samples 

introduced by the receiver’s frequency response.  

To analyze this effect, the input white noise (zero-mean random Gaussian variable) is convolved 

with a constant FIR (Finite Impulse Response) filter of variable length (C) and amplitude such that the 

variance of the output remains the same (2=1)3. The RFI is then added to the “colored” (filtered) 

noise and the wavelet-based RFI mitigation algorithm is applied. Figure 8 shows the average of 10 

realizations using different correlation lengths from 1 (no correlation) up to 32. Results show that the 

impact of the correlation in the interference mitigation is negligible (< 0.1 dB). Results appear a bit 

noisy, but this is due to the small scale in the vertical axis. 

Figure 8.  RFI mitigation performance using the Symlet 3 wavelet transform and a 

sinusoidal RFI for the heuristic SURE threshold method as a function of the correlation 

length (in samples) of the noise. Sequence length 216, decomposition level = 12. 

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-3.9

10
-3.8

10
-3.7

10
-3.6

10
-3.5

10
-3.4

Interference-to-Noise Ratio [lin]

N
o

is
e

 p
o

w
e

r 
e

rr
o

r,
 

2 no
is

e =
 1

RFI mitigation performance including correlation between consecutive samples - Sym 3 transform & sinusoidal RFI

Correlation length = 1 sample
Correlation length = 2 samples
Correlation length = 4 samples
Correlation length = 8 samples
Correlation length = 16 samples
Correlation length = 32 samples

 

3.5. Quantization Effects 

So far, the analysis has been performed using floating point representation. It is worth to evaluate 

the impact of signal quantization in this process, since analog signals are sampled using analog-to-

digital converters (ADC) with finite number of bits, and usually the higher the sampling frequency, the 

                                                 
3 The practical implementation of the filtering is carried out with the in-phase and quadrature low-pass signals, from which 
the filtered band-pass signal is then reconstructed. 
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smaller the number of bits. To test the impact of quantization in the performance of the above-

described algorithms, signals (noise + RFI) have been quantized using a variable number of bits from 4 

to 16, and the ADC window has been set to 3.5·. Enlarging the ADC window truncates less the 

input signal, better capturing the tails of the noise probability density function and –eventually- the 

RFI that may be present, but reduces the number of sampling levels per , which degrades the quality 

of the signal representation. Reducing the ADC window the input signal is truncated and the detected 

power is smaller than it actually is. With an ADC window of 3.5·, the detected power is 1% less 

(0.99·2) the true input power.  

Figure 9 shows the simulation results for a sinusoidal RFI and the Symlet 3 wavelet transform. For 

large INR, the interference signal is so large that is clipped by the ADC and noise power error saturates 

to 1 (recall that noise variance is normalized to 2 = 1). Only for INR < 10-3, the effect of the number 

of bits used in the quantization can be distinguished, with better performance when a larger number of 

bits are used in the ADC. The reason for obtaining good results with a moderate number of bits is due 

to the fact that noise power is estimated after integration of thousands or millions of samples (sampling 

frequency times the integration time). Bosch-Lluis et al. [26] demonstrated that for a 4.05· ADC 

window and 8 bits quantization, the estimated antenna temperature error was smaller than 0.01 K, 

suitable for sea surface salinity measurements, while coarser quantization schemes can be used for less 

demanding applications. 

Figure 9.  RFI mitigation performance using the Symlet 3 wavelet type for a sinusoidal 

signal as a function of the INR for the heuristic SURE threshold method as a function of 

the number of bits of the analog-to-digital converter (ADC) from 4 to 16, assuming a 

sampling window of 3.5· to minimize signal clipping in the absence of RFI. Sequence 

length 216, decomposition level = 12. At high INR values of RFI clipping occurs. For larger 

ADC sampling windows RFI is better sampled, but noise signals suffer more from 

discretization effects due to the smaller number of samples per . 
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4. Computing Requirements 

When considering the practical implementation of the described algorithms, it is critical to evaluate 

the number of floating operations (Flops) required. Figure 10 shows the number of floating operations 

required to perform the described RFI cancellation algorithm for INR = 100, as a function of the 

wavelet type (Haar and optimum ones in Figure 7) and the sequence length, both for decomposition 

levels equal to 6 (Figure 10a) and 12 (Figure 10b), for which the algorithm performance is very similar 

except for PRN like signals (Figure 5). Differences in the number of Flops with other INR values down 

to 0 (no RFI) are 4% and are not shown not to overload the figure. 

As expected, the simplest wavelet type (Haar) is the one that requires the smallest number of Flops. 

On the other hand, the discrete Meyer (dmey) is the one that requires the largest number of Flops, 

about 10-20 times more than the Haar wavelet. For the other wavelet types (reverse biorthogonal 1.3 

and 1.5 –rbio1.3 and rbio1.5-, and symlets 3 –sym3-) the number of required floating operations is 

about 2-3 times larger than the Haar one, which may justify its use in large RFI scenarios when the 

highest RFI rejection may be required (Figures 6 and 7). The improved performance of the discrete 

Meyer transform may be questioned when balanced with the much larger computation requirements.  

Below 10-20 samples length there is a saturation effect due to the computational overhead, which 

suggests using sequences longer than 20 samples. The differences between Figures 10a and 10b are 

just a factor  2.5 for the shortest sequence lengths, being nearly identical for the sequences longer 

than ~10-100 samples per period.  

Figure 10.  Number of floating operations required by the RFI cancellation algorithm 

(INR = 100) vs. sequence length, for different wavelet types and decomposition levels 

equal to a) 6, and b) 12. 
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Figure 10. Cont. 
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Assuming a system operating at L-band (1.400-1.427 MHz) that acquires 20 samples per period to 

warrant enough RFI rejection (Figure 4), the sampling rate is 20 samples/period 

· 27·106 periods /s = 540 Msamples/s. Unfortunately, this high data rate cannot be processed with 

today’s spaceborne processors (e.g. 4 MFlops/s with Leon 3 [27]) or even ground-based FPGAs [28]. 

However, the proposed algorithm can be applied either at intermediate frequency or for the in-phase 

and quadrature components of the demodulated signal separately, to reduce the signal bandwidth by a 

factor of 2 and accordingly the computing requirements per processor, at the expense of doubling the 

number of processors. Further reductions can be achieved by sub-banding (dividing the original band 

into smaller ones) and applying the proposed algorithm to each of the sub-bands.  

5. Conclusions 

A RFI mitigation algorithm has been presented. It is based on the estimation of the RFI signal using 

wavelet denoising techniques, and its subtraction from the original signal so as to obtain an estimate of 

the noise-only signal. 

It has been found that in general, the soft heuristic SURE thresholding method is the one that best 

performs for any type of signal, except for very weak RFI (INR ~ 10-3 … 10-4) in which the fixed 

thresholding performs slightly better.  

The minimum number of samples per period is ~20, for which at least a 20 dB interference 

rejection is achieved using the Haar transform (depending on the signal type and the thresholding 

method). Higher rejections (40 dB) are achieved at the expense of longer sequences (216 samples) and 

increased computational load (~3·105 Flops for 20 samples/period to 7·108 Flops for 216 

samples/period, Figure 10a). Increasing the number of decomposition levels above 6-7 does not 

improve the quality of the RFI mitigation, except for PRN (pulsed) signals. 
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The minimum inteference rejection (cancellation) is ~40 dB for high INRs (INR~100) when using 

the Haar wavelet transform, but this value may increase up to ~60-70 dB if the optimum wavelet type 

for each signal is selected: symlet 3 for the sinusoidal RFI, the reverse biorthogonal wavelets 1.5 for 

the Doppler signal, the discrete approximation of Meyer wavelet for the chirp signal, and the reverse 

biorthogonal wavelets 1.3 for the PRN signals. Therefore there is a trade-off between interference 

rejection and computational complexity which must be evaluated depending on the application. 

Even in the case of using the simple Haar transform, the proposed RFI mitigation algorithm allows 

one to make useful radiometric measurements in areas heavily corrupted by RFI. Since it is unlikely 

that with today’s computers and FPGAs this technique can be applied for real time processing in 

microwave radiometers, the RFI cancellation could be applied a posteriori to the recorded data. This 

can be of special interest in scenarios corrupted by human activity where the errors induced by RFI are 

equal or larger than the measurement uncertainty (T) and blanking is not an option due to the data 

loss. For example, if the antenna temperature is 100 K, the receivers noise temperature is 300 K, and 

the measurement uncertainty is T = 1 K, the minimum detectable power is 

1 K/(100 K + 300 K) = 2.5·10-3 (assuming 2 = 1), which determines the minimum useful INR for 

which it makes sense to apply the RFI mitigation algorithm. In other demanding applications, such as 

sea surface salinity retrieval, where the required T is much smaller (T = 0.05 K), RFI mitigation can 

be useful down to INR of ~0.05 K/(100 K +300 K)  10-4, which is at the limit of the performance of 

the RFI cancellation algorithm, regardless of the wavelet type used. 
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