MEDIDAS Y PROBABILIDADES EN ESTRUCTURAS ORDENADAS

Maria Congost Iglesias

ABSTRACT

This paper is concerned with lattice-group valued measures for which the o-additivity is defined by means of the order convergence properties. In the first section we treat the analogues for such order-measures with values in a Dedekind complete lattice-group of the Jordan, Lebesgue and Yosida-Hewitt descompositions. The second section deals with the construction of an integral for functions with respect to an order-measure, both taking their values in a Dedekind o-complete lattice-ring. Analogues of the monotone-convergence, dominated-convergence and Fatou theorems are obtained.

Preliminares.

Un grupo reticulado G (ℓ -grupo) es condicionalmente completo (resp. σ -condicionalmente completo) si todo subconjunto (resp. numerable) de G superiormente acotado tiene supremo. Escribiremos abreviadamente que es c.c. (resp. σ -c.c.). En todo lo que sigue G denotará un ℓ -grupo abeliano.

Una red $\{x_i\}_{i\in I}$ de elementos de G se dice que converge en orden (o-converge) hacia x (xeG) si y sólo si existen una red $\delta_i \!\!\!\!+\!\!\! 0$ y un índice i eI ta-

les que $|x_i - x| \le \delta_i$ para todo $i \ge i_0$. Escribiremos $x_i \xrightarrow{\circ} x$ ó o-lim $x_i = x$.

Una serie $\sum_{n=1}^{\infty} x_n$ de elementos $x_n \in G$ se dice que es o-convergente y que su suma es $x(x \in G)$ si o-lim $\sum_{i=1}^{\infty} x_i = x_i$; en este caso escribiremos $x = o - \sum_{n=1}^{\infty} x_n$, ó $x = o - \sum_{n=1}^{\infty} x_n$.

Una família $\{x_i\}_{i \in I}$ de elementos $x_{i \in G}$ se dice que es o-sumable si la red $\{S_j\}_{j \in F(I)}$ de las sumas $S_j = \sum\limits_{i \in J} x_i$, J variando en el conjunto filtrante F(I) de las partes finitas de I es o-convergente. Si $x=o-limS_j$, escribimos $x=o-\sum\limits_{i \in I} x_i$. Se dice que $\{x_i\}_{i \in I}$ es absolutamente o-sumable si $\{|x_i|\}_{i \in I}$ es o-sumable.

Es útil adjuntar formalmente a G un par de elementos, indicados por $+\infty$ y $-\infty$, y extender el orden parcial y la suma a $\bar{G}=G\cup\{+\infty,-\infty\}$ de la forma natural. Cuando un conjunto $\{x_i\}_{i\in I}$ de elementos de G no está superiormente acotado (inferiormente) definimos $\forall x_i=+\infty$ ($\land x_i=-\infty$).

Introducimos la noción de norma generalizada de la forma siguiente: Si H es un grupo, una aplicación $n:H\to G_+$ se dirá que es una G-norma en H si se cumple, para todo x,y \in H ,

- (i) $n(x)=0 \Leftrightarrow x=0$,
- (ii) $n(x+y) \leq n(x) + n(y)$,
- (iii) n(-x)=n(x),

y diremos que (H,n) es un l-grupo G-normado si H es un l-grupo y n una G-no<u>r</u> ma en H compatible con la estructura reticulada, es decir, cumple además de (i), (ii) y (iii):

(iv)
$$|x| \le |y| \Rightarrow n(x) \le n(y)$$
.

Dar una G-norma en H equivale a dar una distancia generalizada [10] invariante por traslaciones.

En un grupo G-normado (H,n) se dice que una red $\{x_i\}_{i\in T}$ de elementos

 $x_i \in H$ es n-convergente hacia $x \in H$, si $n(x_i - x) \stackrel{\circ}{\to} 0$. Se dice que una red $\{x_i\}_{i \in I}$ de elementos de H es n-fundamental si existen una red $\delta_i \downarrow 0$ en G y un índice $i \in I$ tales que $|x_i - x_j| \leq \delta_i$, para todo $j \geq i$ y $i \geq i$. Se dice que (H, n) es n-completo si toda red n-fundamental es n-convergente. Indicaremos por T_n y T_n^0 las topologías en H que tienen por cerrados los conuntos de H estables respecto al n-límite de redes y sucesiones respectivamente.

La o-convergencia en G es la convergencia según la G-norma n(x)=|x|, derivada de la métrica natural. Todo ℓ -grupo c.c. es o-completo [8]. Indicaremos por T_O y T_O^{σ} las topologias de G determinadas por la norma natural del grupo.

En general utilizaremos la notación y terminología de [1], [2] y [3]. Si S es un subgrupo sólido de G, diremos que S es una banda (σ -banda) si para to da colección (numerable) $\{x_i\}_{i\in I}$ de elementos x_i \in S para la que existe en G $\bigvee_{i\in I} x_i$, es $\bigvee_{i\in I} x_i$ \in S.

- Funciones de conjunto σ-aditivas en orden valoradas en un l-grupo.
- 1.1. Definiciones y propiedades generales.

En todo lo que sigue, sea lpha un anillo de partes de un conjunto X no vacío.

<u>Definición 1.1.1.</u> Se dirá que una función de conjunto $m: \alpha \to \overline{G}$ es una <u>medida</u> si es finitamente aditiva. Si además $m(\cup A_n) = o - \sum m(A_n)$ para toda sucesión $\{A_n\} \subset \alpha$ de conjuntos disjuntos entre sí tal que $\cup A_n \in \alpha$, se dirá que es una medida σ -aditiva en orden o simplemente una σ -medida.

Una medida m: $a \rightarrow G_+$ (positiva y finita) en una álgebra a se dirá que es una probabilidad generalizada o una o-probabilidad.

Las propiedades de la convergencia en orden en G permiten probar, como en el caso de medidas reales, los siguientes resultados: Proposición 1.1.2. Si m: $a \rightarrow \bar{G}_+$ es aditiva, entonces es superaditiva: Si $\{A_i\}_{i \in I} \subset a$ es una família de conjuntos mutuamente disjuntos y $A = \bigcup_{i \in I} A_i \in a$, enton i $\in I$.

Proposición 1.1.3. Sea $m:a \rightarrow \overline{G}$ una medida.

- a) m es σ -aditiva en orden si y sólo si $A_n \uparrow A$ en α implica $m(A_n) \stackrel{\circ}{\to} m(A)$.
- b) Si m es σ -aditiva en orden, entonces $m(A_n) \stackrel{\circ}{\to} 0$ cada vez que $A_n \downarrow \emptyset$ en α y $m(A_1) \neq \pm \infty$.
- c) Si m es finita y $A_n \downarrow \emptyset$ en α implica $m(A_n) \stackrel{\circ}{\to} 0$, entonces m es σ -aditiva en or den.

El objeto de esta parte es establecer los análogos de los teoremas clás<u>i</u> cos de descomposición de medidas, como son el de Jordan, el de Yosida-Hewitt y el de Lebesgue.

Consideremos los siguientes conjuntos de medidas definidas en a y a valores en G:

$$M = M(\alpha; \overline{G}) = \{m: \alpha \to \overline{G}; \text{ aditivas }\}$$

$$M_F = M_F(\alpha; \overline{G}) = \{m: \alpha \to G; \text{ aditivas finitas }\}$$

$$BM = BM(\alpha; G) = \{m: \alpha \to G; \text{ aditivas, finitas y acotadas }\}$$

y los subconjuntos respectivos de las medidas σ -aditivas en orden, CM, CM $_{ extsf{F}}$ y BCM.

1.2. Descomposición de Jordan.

Una descomposición del tipo de Jordan puede establecerse para medidas valoradas en l-grupos en la forma siguiente:

Teorema 1.2.1. (Descomposición de Jordan). Toda medida acotada $m:a \to G$ definida en un anillo de partes de un conjunto y valorada en un ℓ -grupo c.c. puede expresarse como diferencia de dos medidas positivas $m_1, m_2: m=m_1-m_2$. Si

m es σ-aditiva, entonces m₁ y m₂ también lo son.

Este resultado se obtiene a partir del estudio de la estructura aditivoordenada del conjunto de las medidas $BM(\alpha;G)$, derivada de la correspondiente estructura de G. En el conjunto $M=M(\alpha;\bar{G})$ definimos el siguiente orden parcial: si m,neM, m \leq n si y sólo si m(A) \leq n(A) para todo Ae α , y la "suma", definida entre elementos m,neM que no tomen valores impropios distintos, por (m+n)(A)= = m(A)+n(A).

Proposición 1.2.2. Sea G un l-grupo c.c.. Entonces

a) En el parcialmente ordenado (M, \leq) existen, para cada m_€M, los elementos m v 0, -(m \wedge 0) y m v(-m) (por 0 denotamos la medida identicamente nula), indicadas respectivamente por m⁺, m⁻ y |m|, y que satisfacen:

(ii)
$$|m|=m^+ + m^-$$
,
 $m^+ = m + m^-$, si m no toma el valor $-\infty$,
 $m^- = m^+ - m$, si m no toma el valor $+\infty$;

b) Para toda colección $\{m_{\lambda}\}_{\lambda \in L} \subset M$ superiormente acotada (resp. inferiormente) por una medida m ϵ M que no tome el valor $+\infty$ (resp. $-\infty$) existe, en el parcialmente ordenado (M, \leq), la medida V m $_{\lambda}$; si las medidas m $_{\lambda}$ V m son σ -aditivas y Λ m $_{\lambda}$ (A)> $-\infty$ para todo A ϵ a (resp. V m $_{\lambda}$ (A)< $+\infty$), entonces V m $_{\lambda}$ también es σ -aditiva (resp. Λ m $_{\lambda}$).

Demostración. a) La función de conjunto ℓ definida por $\ell(A) = V m(B)$ es aditiva y verifica $\ell = m \ v \ 0$. De $\ell(-m) \ v \ 0 = -(m \ v)$ se sigue la $\ell = m \ v \ 0$ existencia de $\ell = m \ v \ 0$. Teniendo en cuenta las expresiones de $\ell(i)$ y que si $\ell = m \ v \ 0$ es finito entonces también lo es $\ell = m \ v \ 0$ para todo $\ell = m \ v \ 0$ que queda probada la existencia de $\ell = m \ v \ 0$ que $\ell = m \ v \ 0$ que queda probada la existencia de $\ell = m \ v \ 0$ que $\ell = m \ v \ 0$ que queda probada la existencia de $\ell = m \ v \ 0$ que $\ell = m \ v \ 0$ que $\ell = m \ v \ 0$ que queda probada la existencia de $\ell = m \ v \ 0$ que $\ell = m \ v$

Las mismas observaciones permiten establecer las otras dos relaciones en (ii). En cuanto a (iii) es suficiente ver que si m es σ -aditiva entonces m⁺ también lo es. Dado que m⁺ es una medida positiva, y por tanto superaditiva, es suficiente probar que si $\{A_n^-\}\subset a$ es una sucesión de conjuntos disjuntos entre sí tal que $\cup A_n^- \in a$, entonces m⁺(A) $\leq o - \sum m^+(A_n^-)$. Pero esta desigualdad se cumple ya que para cada B \subseteq A se tiene m(B)= $o-\sum m(BA_n^-)$ y m(BA_n^-) $\leq m^+(A_n^-)$.

b) Supongamos primero que $m_{\lambda}(A) \leqslant m(A) < +\infty$ para todo $\lambda \in L$ y $A \in a \cdot Considemos$ la función de conjunto $n: a \to \bar{G}$ definida por

$$n(A) = V\{\Sigma m_{\lambda_i}(A_i); \{A_i\} \in D(A) \ y \{\lambda_i\} \subset L\},$$

donde D(A) indica el conjunto de las particiones finitas de A en a. Resulta, de la definición y de la aditividad de las m_{λ} , que n es aditiva y que $n=V_{\lambda} m_{\lambda}$. Además, si $\Lambda_{\epsilon} m_{\lambda} (A) > -\infty$ para cada $A_{\epsilon} a$, entonces n es una medida finita que es σ -aditiva, como se deduce de la σ -aditividad de las m_{λ} y m, de $m_{\lambda}(A) \leq m(A) \leq m(A)$ y de 1.1.3.

De esta proposición, junto con 1.1.3, se deduce:

Corolario 1.2.3. Si G es un l-grupo c.c., entonces

- a) $(M_F,+,\leqslant)$ es un grupo ordenado c.c. del que BM y CM_F son subgrupos convexos y c.c. considerados como grupos ordenados.
- b) (BM,+, ≤) es un grupo reticulado c.c. del que BCM es un subgrupo sólido y c.c. considerado como grupo reticulado.

De este último resultado se deriva el análogo del teorema de descomposición de Jordan para medidas valoradas en L-grupos c.c. enunciado al principio. Este teorema, tal como está formulado, generaliza el que, con técnicas propias de la teoría de espacios de Riesz, obtienen Fayres y Morrison [6], para medidas valoradas en espacios vectoriales c.c.

El teorema aquí obtenido no es generalizable; como teorema de descomposición, al caso de medidas σ-aditivas no finitas definidas en una σ-álgebra, como ocurre en el caso de las medidas reales. En efecto, basta considerar el siguiente

Ejemplo 1.2.4. Sea α una álgebra f<u>ini</u>ta y m_o: $\alpha \to \overline{R}_+$ una medida positiva no f<u>i</u> nita. La función de conjunto m: $\alpha \to \overline{R}^2$ definida por m(A)=(m_o(A),-m_o(A)), si m_o(A) \neq + ∞ , y m(A)=+ ∞ en caso contrario, es una medida para la que m⁺ y m⁻ son ambas no finitas. En consecuencia m no es expresable como diferencia de dos medidas positivas.

Tampoco puede establecerse un análogo de la propiedad que tienen las medidas reales finitas σ -aditivas en una σ -álgebra de ser acotadas, como muestra el ejemplo que sigue:

Ejemplo 1.2.5. Sea X un conjunto no numerable, a la σ -álgebra numerable-conumerable de X y G el ℓ -grupo c.c. de las funciones reales definidas en X de soporte finito o numerable. La función de conjunto $m:a \to G$ definida por $m(A) = \varphi_A$, si A es numerable y $m(A) = -\varphi_{A^C}$, si A no es numerable, es una o-medida no acotada.

Con este segundo ejemplo queda probado también que en general, para medidas σ-aditivas en orden definidas en σ-álgebras, no existe conjunto de descom posición de Hahn, como ocurre en el caso de las medidas reales.

Supondremos a partir de aquí que G es un l-grupo c.c.

1.3. Descomposición de Yosida-Hewitt.

La descomposición de una medida real en suma de una parte σ -aditiva y de otra puramente aditiva también puede establecerse para las medidas valoradas en ℓ -grupos c.c.

Diremos que una medida m: $^{\alpha} \rightarrow G$ es puramente aditiva cuando la única o-medida n que satisface $0 \le n \le |m|$ es la medida nula. Se tiene:

Teorema 1.3.1. (Descomposición de Yosida-Hewitt). Toda medida acotada $m:a \to G$ definida en un anillo de partes de un conjunto y valorada en un ℓ -grupo c.c. admite una única expresión de la forma ℓ -ma, donde ma y ma son me-

didas acotadas, m $_{\rm C}$ σ -aditiva y m $_{\rm a}$ puramente aditiva. Además, m $_{\rm C}$ y m $_{\rm a}$ son ortogonales ($|{\rm m_a}|$ ^ $|{\rm m_C}|$ = 0).

Este resultado se obtiene del estudio de la <u>convergencia en orden</u> de medidas, inducida por la estructura ordenada que hemos considerado en $M(\alpha;G)$. En particular se tiene:

<u>Proposición 1.3.2.</u> En el ℓ -grupo BM(α ;G) el o-límite de una red de o-medidas es una o-medida, esto es, BCM(α ;G) es un T_O-cerrado de BM(α ;G).

En efecto: Sea $\{m_i^i\}_{i\in I}$ una red de medidas m_i^e BCM y sea meBM tal que $m_i^i \to m$. Veamos que meBCM. Puesto que BCM es un subgrupo sólido de BM, basta rá probarlo en el caso $m_i^i \uparrow m$. Si $A_n^i \uparrow A$ en a, tendremos $m_i^i (A_n^i) \leqslant m(A_n^i) \leqslant$

 $m(A) = V m_i(A) = V V m_i(A_n) = V V m_i(A_n) = V m(A_n) \le m(A)$. Por lo tanto, seie I ie I ne N ne N ie I ne N gún 1.1.3. a), m es σ -aditiva.

Teniendo en cuenta que BM es un ℓ -grupo c.c., de esta proposición se deduce que BCM es una banda y en consecuencia un sumando directo de BM, es decir, BM=BCM \oplus (BCM) [2]. De ahí el teorema enunciado, toda vez que (BCM) coincide con el conjunto de las medidas puramente aditivas.

En BM puede considerarse asimismo la <u>convergencia uniforme</u>: una red $\{m_i\}_{i \in I} \subset BM$ se dice que es uniformemente convergente hacia m ϵBM si existen una red $\delta_i \downarrow 0$ en G y un índice i ϵ I de modo que $|m_i(A) - m(A)| \leq \delta_i$ para todo $A\epsilon a$ y $i \geq i_0$.

La convergencia en orden implica la puntual y, si $X_{\mathcal{E}\,\mathcal{A}}$, la uniforme. La convergencia uniforme es normable por la G-norma generalizada $\|\cdot\|_{O}: BM \to G_{+}$ definida por $\|\cdot\|_{O} = V\{|m(A)|; A_{\mathcal{E}\,\mathcal{A}}\}$. Introduciendo las topologías $T_{\|\cdot\|_{O}}$ y $T_{\|\cdot\|_{O}}^{\mathcal{O}}$ asociadas a esta norma generalizada, se tiene

Teorema 1.3.3.

- a) $(BM,+, \leq, |||_0)$ es un ℓ -grupo G-normado $|||_0$ -completo.
 - b) Si en G la o-convergencia satisface la condición diagonal de Everett

[7] (resp. generalizada [11]), entonces BCM es $T_{\parallel\parallel_{0}}$ -cerrado (resp. $T_{\parallel\parallel_{0}}^{\sigma}$ -cerrado).

Demostración. a) Sólo es necesario probar que BM es $\| \|_{O}$ -completo, esto es, que toda red $\{m_i^{}\}_{i\in I}$ ofundamental es $\| \|_{O}$ -convergente. Ahora bien, si $\{m_i^{}\}_{i\in I}$ es $\| \| \|_{O}$ -fundamental, entonces $\{m_i^{}(A)\}_{i\in I}$ es o-fundamental para cada A ϵa . Como todo ℓ -grupo c.c. es o-completo [8], existirá o-lim $m_i^{}(A)$ =m(A), para cada A ϵa . La función de conjunto m así definida resulta ser un elemento de BM para el que $m_i^{}$ + m.

b) Supongamos que en G la o-convergencia satisface la condición general de Everett generalizada (el otro caso se demostraría analogamente) y sea $\{m_i^{}\}_{i\in I}$ una red de medidas $m_i^{} \in BCM$ tal que $m_i^{} \rightarrow m$ para una cierta medida $m \in BM$. Veamos que $m \in BCM$. Sea $A_n \neq \emptyset$ an α . Tendremos

$$0 \le |m(A_n)| \le |m(A_n) - m_i(A_n)| + |m_i(A_n)|.$$

Sean $\delta_i \downarrow 0$ y i ϵ I tales que

$$0 \le |m(A_n) - m_i(A_n)| \le \delta_i$$
, para todo $i \ge i_0$ y $n \in N$.

Puesto que m¡€BCM, para cada i €I existe una sucesión a +0 tal que

$$0 \le |m_i(A_n)| \le a_n^i$$
, para todo $n \in N$.

Por hipótesis, existirá un subconjunto I' cofinal en I, de modo que para cada $i \in I'$ habrá por lo menos un índice n=n(i) de forma que $b_i=a_{n(i)}^i \xrightarrow{\circ} 0$. Entonces,

$$0 \le |m(A_n)| \le \delta_i + a_n^i \le \delta_i + b_i$$
, para todo $i \in I'$, $i \ge i_0$ y $n \ge n(i)$,

de donde se deduce que o-lim $m(A_n)=0$.

1.4. Descomposición de Lebesgue.

En este apartado obtenemos un análogo del teorema de descomposición de

Lebesgue en el caso que el grupo G es super-condicionalmente completo [7].

<u>Definición 1.4.1.</u> Dadas dos medidas ℓ , m: $a \to \overline{G}$ diremos que ℓ es <u>m-contínua</u> si |m|(A)=0 implica $\ell(A)=0$ ($A \in a$); diremos que ℓ es <u>m-singular</u> si existe un conjunto $A_0 \in a$ tal que $|m|(A_0)=0$ y $\ell(A)=\ell(AA_0)$ para cada $A \in a$.

Dada una medida m: $a \to \bar{G}$ indicaremos por BM $_{mc}$ y BCM $_{mc}$ los conjuntos de medidas m-contínuas en BM y BCM respectivamente.

Acerca de la estructura aditivo-ordenada de los conjuntos de medidas si \underline{n} gulares ó contínuas respecto a una medida m fijada se tiene:

Proposición 1.4.2. Dadas medidas ℓ , n, m: $a \rightarrow \bar{G}$,

- a) Si ℓ y m son m-singulares y está definida la medida ℓ +n, entonces ℓ +n es m-singular.
 - b) Si ℓ es m-singular entonces ℓ^+ , ℓ^- y $|\ell|$ también lo son.
- c) Las medidas m-singulares en BM (resp. BCM) constituyen un subgrupo sólido de BM (resp. de BCM, que si α es σ -anillo y m σ -aditiva es una σ -banda).

Demostración. Todas las afirmaciones se deducen de las definiciones y de 1.1.3 salvo la última, esto es, que en las hipótesis señaladas, BCM es σ -banda. Para probarlo, basta ver que si $0 \le \ell_i \uparrow \ell_i$ en BCM y las ℓ_i son m-singulares entonces ℓ_i también lo es. Para cada neN, sea ℓ_i atal que ℓ_i ℓ_i ℓ_i entonces ℓ_i también lo es. Para cada neN, sea ℓ_i atal que ℓ_i ℓ_i

Proposición 1.4.3. Dadas medidas $\ell, n, m: a \rightarrow \bar{G}$,

- a) Si l y m son m-contínuas y está definida l+n, entonces l+n es m-contínua.
 - b) Si ℓ es m-contínua, entonces ℓ^+, ℓ^- y $|\ell|$ también lo son.
- c) Las medidas m-contínuas en BM (resp. BCM) constituyen una banda en BM (resp. BCM).

Demostración. a) es inmediato y b) se deduce de las expresiones de 1.2.2. a). En cuanto a c), teniendo en cuenta que en BM se satisfacen las identidades $\ell = \ell + (n-\ell)^+$ y $\ell = \ell - (n-\ell)^-$ [9], resulta que las medidas m-contínuas en BM constituyen un subgrupo subreticulado convexo. Para ver que es una banda será suficiente probar que si $0 \le \ell$ the BM siendo las ℓ m-contínuas, entonces ℓ también lo es. Ahora bien, si las ℓ son m-contínuas, de ℓ (A) = ℓ (A) se deduce que ℓ (A)=0 implica ℓ (A)=0. En cuanto a la afirmación relativa a BCM, basta recordar que BCM es una banda y que la intersección de bandas es una banda.

De esta última proposición se obtiene el siguiente resultado:

Corolario 1.4.4. Dada una medida m: $a \to \overline{G}$, toda medida acotada $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de dos medidas acotadas: $\ell:a \to G$ se expresa de forma única como suma de forma úni

En efecto, teniendo en cuenta que BM es un ℓ -grupo c.c. de 1.4.3. c) se sigue que BM $_{mc}$ es sumando directo de BM, es decir, que BM=BM $_{mc}$ \oplus $\left(BM_{mc}\right)^{\perp}$. An $\underline{\acute{a}}$ logamente, BCM=BCM $_{mc}$ \oplus $\left(BCM_{mc}\right)^{\perp}$.

En el caso en que G=R y m es σ -aditiva sobre una σ -álgebra , este resultado conduce al teorema de descomposición de Lebesgue, según el cual toda medida finita σ -aditiva se expresa de forma única como suma de una medida σ -aditiva m-contínua y de una m-singular. Esto es así, porque en este caso (BCM $_{mc}$) coincide con el subgrupo de las medidas m-singulares [7]. De las dos inclusiones una es clara: toda medida m-singular es de (BCM $_{mc}$) y ésto es cierto también para medidas valoradas en ℓ -grupos. La otra se obtiene mediante la consideración del conjunto de descomposición de Hahn asociado a una medida que en el caso general, según se ha visto, no existe. No obstante, una demostración similar a la que da [5] del teorema de descomposición de Lebesgue en el caso real, permite probar, si G es super-condicionalmente completo, que fijada una o-medida $m: \alpha \to \bar{G}$ sobre una σ -álgebra α , toda o-medida acotada $\ell: \alpha \to G$ es expresable como suma de una o-medida m-contínua y de una m-singular, las dos acotadas. Este resultado, junto con el corolario anterior, que da la unicidad de tal expresión, permite enunciar:

Teorema 1.4.5. (Descomposición de Lebesgue). Sea m: $\alpha \to \overline{G}$ σ -aditiva definida en una σ -álgebra α y sea G un ℓ -grupo super-condicionalmente completo. Enton ces toda medida σ -aditiva acotada ℓ : $\alpha \to G$ se expresa de forma única como suma de dos medidas σ -aditivas acotadas: ℓ = ℓ _m + ℓ _s, donde ℓ _m es m-contínua y ℓ _c m-singular.

1.5. Construcción de o-medidas.

Acabamos esta primera parte indicando brevemente la forma de obtención de dos tipos especiales de o-medidas.

Medidas en ℓ -grupos producto. Sea α un anillo de partes de un conjunto X no vacío, $\{G_i^{}\}_{i \in I}$ una familia de ℓ -grupos σ -c.c., G= $\prod_{i \in I}$ $G_i^{}$ el ℓ -grupo producto, $\pi_i^{}$ la proyección i-ésima de G sobre $G_i^{}$.

Toda función de conjunto $m:a \to G$ queda univocamente determinada por la colección $\{m_i\}_{i \in I}$ de las funciones de conjunto $m_i = \pi_i \circ m: a \to G$, de forma que

- a) m es o-medida si y sólo si cada m. lo es;
- b) m es acotada si y sólo si cada m_i lo es y en este caso, si G es c.c. y escribimos $m=(m_i)$, se tiene

$$m^{+} = (m_{i}^{+}), m^{-} = (m_{i}^{-}) y |m| = (|m_{i}^{-}|).$$

Para ello, basta tener en cuenta 1.1.3, 1.2.2. a) y que la o-convergencia de sucesiones en el ℓ -grupo producto equivale a la o-convergencia por componentes.

Medidas discretas. Dado un conjunto X no vacío y un l-grupo c.c. G,

- a) Toda función $F: X \to G_+$ determina una o-medida $m: P(X) \to \overline{G}_+$ definida por $m(A) = \circ \overline{\Sigma} \ F(x)$, si $A \neq \emptyset$, y $m(\emptyset) = 0$. (o- $\Sigma \ F(x)$ indica la suma en orden de la fa- $x \in A$ $x \in A$ milia $F(A) = \{F(x); x \in A\} \subset \overline{G}_+$; si esta familia no es sumable se toma $m(A) = +\infty$).
- b) Toda función $F:X \to G$ con F(X) absolutamente o-sumable, determina una o-medida acotada $m:P(X) \to G$ definida, como la anterior, por $m(A) = o \sum_{x \in A} F(x)$,

si $A\neq\emptyset$, y $m(\emptyset)=0$.

En este caso son las propiedades de la sumabilidad en un l-grupo c.c., análogas a las de la sumabilidad en un grupo conmutativo topológico, separado y completo, [3], las que permiten probar que las funciones de conjunto así definidas son o-medidas.

Integración respecto a una o-medida positiva.

2.1. Construcción de la integral.

Sea m: $\alpha \rightarrow R_+$ una o-medida definida en una σ -álgebra de partes de un conjunto X no vacío, que toma valores en la parte positiva de un anillo reticulado σ -c.c. R, en el que el producto es secuencialmente o-contínuo: si $x_n \rightarrow x$ y $y_n \rightarrow y$ entonces $x_n \cdot y_n \rightarrow x \cdot y$ (en particular en todo f-anillo arquimediano lo es). En este primer apartado construimos una integral respecto a m para funciones $f: X \rightarrow R$.

Si $\{f_n\}$ es una sucesión de funciones $f_n: X \to R$ y $f: X \to R$ es tal que $f_n(x) \stackrel{\circ}{\to} f(x)$ para cada xeX, se dice que f_n converge puntualmente hacia f y escribimos $f_n \stackrel{\circ}{\to} f$. Si $\{f_n\}$ es monótona, escribiremos $f_n \uparrow f$ (ó $f_n \uparrow f$).

Integral elemental (ε, I) . De forma natural queda definida la integral respecto a m de las funciones α -simples, esto es, de las funciones $f:X \to R$ para las que existe un número finito de conjuntos disjuntos $A_1, \ldots, A_n \in \alpha$ sobre los que toma valores constantes $a_1, \ldots, a_n \in R$. La función f puede representarse en la forma $f = \sum_{i=1}^n a_i X_A$ y se define su integral por la expresión f

$$I(f) = \sum_{i=1}^{n} a_{i} m(A_{i}).$$

El conjunto ϵ de las funciones α -simples es un ℓ -submódulo de R X (considerado aquí y en todo lo que sigue como ℓ -módulo sobre R por la izquierda) y

la integral, como aplicación que asigna a cada función f $_{\epsilon}$ E un elemento de R es monótona y homogénea: si f,g $_{\epsilon}$ E y a,b $_{\epsilon}$ R, entonces

$$f \leq g \Rightarrow (f) \leq I(g),$$

$$I(af+bg) = aI(f) + bI(g)$$
.

A partir de esta integral sobre las funciones simples, se amplia la clase de funciones a las que se les puede atribuir una integral, de tal forma que la clase obtenida es cerrada respecto al límite puntual de funciones. Para ello consideramos dos extensiones sucesivas:

 $\frac{\text{Primera extension }(L_{\omega}(m), \textbf{I}).}{\text{ciones }f \in R^X} \text{ para las que existe una sucesion } \{f_n\} \subset \epsilon_+ \text{ tal que } f_n^+ f. \text{ En este caso decimos que } \{f_n\} \text{ determina } f.$

El conjunto de funciones $f \in \mathbb{M}_+$ que admiten una sucesión determinante $\{f_n\}$ de forma que $\{I(f_n)\}$ está acotada, lo designaremos por $L_{\sigma}(m)$. M_+ y $L_{\sigma}(m)$ son subsemigrupos subreticulados estables por el producto por elementos de R_+ . Consideremos los conjuntos asociados $M=M_+-M_+$ y $L_{\omega}(m)=L_{\sigma}(m)-L_{\sigma}(m)$, ambos ℓ -submódulos de R_+ . Se tiene:

<u>Proposición 2.1.1.</u> Si la integral elemental I: $\epsilon \rightarrow R$ es secuencialmente contínua, entonces ésta admite una única extensión, que conserva las propiedades de monotonía, homogeneidad (positiva) y continuidad secuencial hacía arriba, $I':L_{\sigma}(m) \rightarrow R_{+}. \text{ A su vez, } I' \text{ se extiende de forma única como aplicación monótona y homogénea a } L_{\sigma}(m).$

Esta extensión viene dada de la forma siguiente: Si $f \in L_{\sigma}(m)$ y $\{f_n\}^{\subseteq \varepsilon}_+$ es una sucesión tal que $\{I(f_n)\}$ está acotada y $f_n \uparrow f$, se define $I'(f) = VI(f_n)$. Si $f \in L_{\omega}(m)$ y es f = g - h con $g, h \in L_{\sigma}(m)$, se toma I'(f) = I'(g) - I'(h).

Esta extensión I', indicada a partir de aquí, y como es habitual, con la misma letra I, conserva de forma natural la propiedad de ser secuencialmente contínua hacia arriba. Si $L_{\sigma}(m)$ es estable respecto a diferencias positivas, esto es, si $L_{\sigma}(m)=(L_{\sigma}(m))_{+}=\{f\in L_{\sigma}(m); f\geq o\}$, entonces I también es

secuencialmente contínua hacia abajo; pero en general $(L_{\omega}(m))_{+} \neq L_{\sigma}(m)$. En la siguiente proposición damos una condición suficiente para que sea $L_{\sigma}(m) = (L_{\omega}(m))_{+}$; ésta es que M_{+} sea σ -subretículo (dada la estructura de los elementos de M_{+} , basta que M_{+} sea δ -subretículo ($f_{n} \in M_{+} \Rightarrow \Lambda f_{n} \in M_{+}$) para que sea σ -subretículo). Tenemos la siguiente

Proposición 2.1.2.

- a) M_{+} es σ -subretículo si y sólo si $M_{+}=\{f_{\epsilon}M;\ f\geqslant 0\};$
- b) Si M_+ es σ -subretículo, entonces $L_{\sigma}(m)$ es δ -subretículo;
- c) $L_{\sigma}(m)$ es δ -subretículo si y sólo si $L_{\sigma}(m)=(L_{\omega}(m))_{+}$.

y podemos concluir:

Proposición 2.1.3. Si I es secuencialmente contínuo en ϵ y M_+ es σ -subretículo, entonces

- a) La extensión $(L_{\omega}(m),I)$ conserva las propiedades de monotonía, homogeneidad y continuidad secuencial de (ϵ,I) .
- b) Si feM, entonces feL $_{\omega}$ (m) si y sólo si $|f|\epsilon L_{\omega}$ (m) y en este caso $|I(f)| \leq I(|f|)$.

Para la extensión ($L_{\omega}(m)$,I), denominada primera extensión de la integral elemental, se cumplen en las hipótesis de 2.1.2. los teoremas clásicos de convergencia:

Teorema 2.1.4. (Teorema de convergencia monótona). Si $\{f_n\} \subset L_{\omega}(m)$ es una suce sión tal que $f_n \uparrow f$ y $I(f_n) \leqslant a$, para todo neN, y algún elemento $a \in R$, entonces $f \in L_{\omega}(m)$ y $I(f_n) \uparrow I(f)$.

Teorema 2.1.5. (Propiedad de Fatou). Dada una sucesión de funciones $\{f_n\} \subset L_{\omega}(m)$,

a) Si existe una función $h \in L_{\omega}(m)$ tal que $f_n \le h$ para todo $n \in N$, entonces o-lim sup $f_n \in L_{\widetilde{\omega}}(m)$ y o-lim sup $I(f_n) \le I(o-\lim \sup f_n)$.

- b) Si existe una función $g \in L_{\omega}(m)$ tal que $f_n \geqslant g$ para todo $n \in \mathbb{N}$, entonces o-lim inf $f_n \in L_{\omega}(m)$ y I(o-lim inf f_n) \leqslant o-lim inf I(f_n).
- Teorema 2.1.6. (Teorema de convergencia dominada). Si $\{f_n\}\subset L_{\omega}(m)$ es una sucesión de funciones tal que $|f_n|\leqslant g$ para todo neN, donde $g\in L_{\sigma}(m)$ y $f_n \to f$, entonces $f\in L_{\omega}(m)$ y $I(f)=o-limI(f_n)$.

Supondremos a partir de ahora que I es secuencialmente contínua en ϵ y que M $_{\perp}$ es σ -subretículo.

Observaciones. 1) El proceso de extensión aquí desarrollado es aplicable a todo par (L,I) formado por un ℓ -submódulo L \subset R y una aplicación I:L \to R que sea monótona, homogénea y secuencialmente contínua, siempre que el conjunto (L $_{\sigma}$) $_{+}$ de las funciones f:X \to R $_{+}$ para las que existe una sucesión {f $_{n}$ } \subset L $_{+}$ tal que f $_{n}$ $^{\uparrow}$ f sea σ -subretículo. Para la extensión así obtenida, indicado por (L $_{\omega}$ (I),I), se cumplen los tres teoremas de convergencia 2.1.4, 2.1.5 y 2.1.6.

2) Si R = R, entonces ε es el conjunto de las funciones α -medibles simples finitas, I es la integral ordinaria de Lebesgue respecto a m y, por tan to, I es secuencialmente contínua. En general, creemos que I puede no serlo, dado que la demostración de esta propiedad en el caso real [11] depende fuertemente del orden total de R. Si R es totalmente ordenado, entonces ciertamen te I es secuencialmente contínua ya que por ser R σ -c.c. también es arquimediano y todo anillo totalmente ordenado arquimediano es isomorfo como tal a un subanillo de R ([2]). No obstante, aunque R no sea totalmente ordenado I puede ser secuencialmente contínua, como se verá en el ejemplo 2.2.3 y en la sección 2.4.

Segunda extensión ($_{A}$ (m),I). La reiteración del proceso que permite obtener (L_{ω} (m),I) a partir de (ϵ ,I), aplicado a (L_{ω} (m),I), no genera nuevas funciones, según se sigue de 2.1.4. Por tanto, si se desea obtener una segunda extensión de la integral es necesario recorrer a otros métodos. La idea es hacer integrables aquellas funciones que pueden ser aproximadas, de alguna forma, por funciones que ya lo son.

Introducida la noción de conjunto nulo respecto a m en la forma usual: A $\subset X$ es m-nulo si y sólo si existe un $B \in \alpha$ tal que $A \subset B$ y m(B)=0; la noción asociad asociada de "propiedad satisfecha casi por todo respecto a m" (notado m-c.p.t.); y la relación de equivalencia en R^X : si f, $q \in R^X$, f \sim g si y sólo si f = g m-c.p.t., damos la siguiente

<u>Definición 2.1.7.</u> Se dirá que una función $f:X \to R$ es <u>m-integrable</u> si es m-equivalente a alguna función $g \in L_{\omega}(m)$. En este caso se define la integral de f respecto a m por I(f) = I(g).

Por $_{A}$ (m) indicamos el conjunto de las funciones m-integrables y el par ($_{A}$ (m), $_{I}$) lo denominamos segunda extensión de (ϵ , $_{I}$).

De las propiedades de la integral $(L_{\omega}(m),I)$, y de la definición anterior se deduce el siguiente resultado:

Proposición 2.1.8.

- a) ($_{A}$ (m),I) extiende (L_{ω} (m),I) y conserva las propiedades de monotonía homogeneidad y continuidad secuencial, así como los teoremas de convergencia 2.1.4, 2.1.5 y 2.1.6 que se cumplen en (L_{ω} (m),I).
- b) Si $f \in \mathbb{R}^X$, $f \in A^{(m)}$ si y sólo si |f| es m-equivalente a una función $g \in L_{\sigma}^{(m)}$ y en este caso $|I(f)| \leq |I(|f|)$.

Acerca de la relación entre la integral respecto a m y la m-equivalencia de funciones considerada en ${\sf R}^{\sf X}$, se tiene

Proposición 2.1.9.

- a) Si f,geR X , f ~ g y fe $_{A}$ (m), entonces ge $_{A}$ (m) y I(g)= I(f).
- b) Si $f \in A(m)$, entonces de I(|f|)=0 se deduce que f=0 m-c.p.t. si y sólo si $m(a)=\{m(A); A \in a\}$ no contiene divisores de cero con codivisores positivos por la izquierda.

Demostración. a) se deduce de la definición. En b) la condición es necesaria, puesto que si a,b>0 son tales que b.a=0 y a=m(A), entonces la función $f=bX_A \in E_+$, que no es m-equivalente a la función nula, es tal que I(|f|)=0. La suficiencia de la condición se demuestra primero para las funciones de E y luego para las de $L_{(i)}(m)$ y $A_{(i)}(m)$.

Dada la compatibilidad de la integral con la relación de equivalencia, se puede definir la integral en el cociente $L_A(m) = A(m)/_{\sim}$ a través de los representantes: si \bar{f} indica la clase de la función $f \in A(m)$ se define $I(\bar{f})$ por I(f). Podemos extender asimismo la noción de integrabilidad a aquellas funciones $f:X \to \bar{R}$ que coincidan m-c.p.t. con una función de $L_{\omega}(m)$. En el caso en que R=R, $L_A(m)$ resulta coincidir con el espacio L'(m) de las funciones reales m-integrables Lebesgue.

2.2. Una caracterización de las funciones m-integrables.

<u>Proposición 2.2.1.</u> Si m(a) no contiene divisores de cero con codivisores positivos por la izquierda, entonces una función $f:X \to R$ es m-integrable si y sólo si existen sucesiones $\{g_n\} \subset L_\delta$ y $\{h_n\} \subset L_\sigma(m)$ tales que

a)
$$g_n \le |f| \le h_n$$
 m-c.p.t., para todo $n \in N$;

b)
$$I(h_n-g_n) \stackrel{\circ}{\rightarrow} 0.$$

La demostración de esta proposición se basa en el lema que sigue. Si

 $f \in \mathbb{R}^X$ y $A \subseteq X$ e indicamos por f_A la función definida por $f_A(x)$, si $x \in A$, y $f_A(x) = 0$, si $x \notin A$:

Lema 2.2.2.

- a) Si $f \in L_{\omega}(m)$ y $A \in a$, entonces $f_{A} \in L_{\omega}(m)$ y si m(A) = 0, $I(f_{A}) = 0$.
- b) Si f,g \in L $_{\omega}$ (m) y f \leq g m-c.p.t., entonces I(f) \leq I(g).

Demostración de la proposición. La necesidad es consecuencia de las definiciones de $_A(m)$, $_{C}(m)$ y de que $\varepsilon + \subset _{\delta}$. En cuanto a la suficiencia, resulta de a) que $g = Vg_n$ y $h = \Lambda h_n$ son funciones de $L_{\sigma}(m)$ tales que $g \leqslant |f| \leqslant h$ m-c.p.t. El lema anterior permite deducir que $_{I}(g) \leqslant _{I}(h)$ y la condición b) concluir que $_{I}(g) = _{I}(h)$. Entonces, según 2.1.9 b), $g \sim h$ y por tanto $f \in _{\Lambda}(m)$.

En esta última proposición, la condición sobre los divisores de cero es una condición suficiente para la validez de la caracterización; no obstante el siguiente ejemplo muestra que no es necesaria:

Ejemplo 2.2.3. Sea m: $P(N) \rightarrow R_+$ una o-medida a valores en un anillo reticulado σ -c.c. con el producto secuencialmente o-contínuo. La caracterización de las funciones m-integrables descrita en 2.2.1. es válida independientemente de si m(P(N)) contiene divisores de cero con codivisores positivos por la izquierda o no.

Veamos que se cumplen las condiciones que permiten construir la integral respecto a m. En primer lugar, veamos que la integral respecto a m, indicado por $\int fdm$, es secuencialmente contínua en ϵ . Para ello, consideremos el par (L,I) formado por el ℓ -submódulo de R^N , $L=\{f:N\to R; supp(f) finito\}$, y la aplicación $I:L\to R$ definida por $I(f)=\sum\limits_{n\in N}f(n).m(\{n\})$.

El conjunto $(L_{\sigma})_+$ de las funciones $f: \mathbb{N} \to \mathbb{R}_+$ para las que existe una suce sión $\{f_n\} \subset L_+^{\mathbb{N}}$ tal que $f_n \uparrow f$ coincide con el conjunto de las funciones $f: \mathbb{N} \to \mathbb{R}_+$ y es por lo tanto σ -subretículo. Además I es secuencialmente contínua en L, de forma que aplicando el proceso de extensión indicado en la observación 2 de la sección 2.1, (L, \mathbb{I}) admite una única extensión $(L_{\omega}(\mathbb{I}), \mathbb{I})$. Puesto que $\mathcal{E} \subset L_{\omega}(\mathbb{I})$ y $\int fdm = \mathbb{I}(f)$ para las funciones $f \in \mathcal{E}$, en virtud del teorema de conver-

gencia dominada 2.1.6. válido en $(L_{\omega}(I),I)$, la integral \int respecto a m resulta ser secuencialmente contínua en ϵ .

Como $M_+=\{f\colon N\to R_+\}$, M_+ es σ -subretículo , y por tanto podemos considerar la extensión ($_{\Delta}(m)$, $_{}$) de la integral elemental respecto a m.

Veamos que la caracterización descrita en 2.2.1. es válida:

Sea $f: N \to R$ una función para la que existan sucesiones $\{g_n\}^{\subset} L_{\delta}$ y $\{h_n\} \subset L_{\sigma}(m)$ tales que $g_n \leqslant |f| \leqslant h_n$ m-c.p.t., para todo $n \in N$ y $\{h_n^{-1} - g_n\} \to 0$. Hay que probar que $f \in A(m)$. Consideremos las funciones $g, h \in L_{\sigma}(m)$, $g = V \cdot g_n$ y $h = \Lambda \cdot h_n$, para las que $g \leqslant |f| \leqslant h$ m-c.p.t. y $\{g \cdot dm\} = \{h \cdot dm\}$. Sea $A \in \alpha$ tal que $g \leqslant |f| \leqslant h$ en $A \lor m(A^c) = 0$; entonces $g_A \leqslant |f|_A \leqslant h_A$. Puesto que para una función $K: N \to R_+$, es $K \in L_{\sigma}(m)$ si y sólo si la serie $\sum_{n \in N} K(n) \cdot m(\{n_n\})$ es o-converne $n \in N$ gente y, según 2.2.2, $h_A \in L_{\sigma}(m)$, resulta que $|f|_A \in L_{\sigma}(m)$ y, en consecuencia, que $f \in A(m)$.

En todo lo que sigue indicaremos la integral de f ϵ (m) respecto a m por $\int\!\!\mathrm{fdm}.$

2.3. La integral indefinida y el problema de la derivación.

Así como en el caso de una medida real μ , la ecuación $\lambda(A) = \int_A f d\mu = \int f_A d\mu$ define para cada función μ -integrable Lebesgue f una nueva medida en a que es absolutamente contínua respecto a μ , podemos enunciar el siguiente

Teorema 2.3.1. Para cada función $f \in A(m)$ la función de conjunto $\ell_F : a \to R$ definida por $\ell(A) = \int_A f dm = \int_A dm$ es una medida σ -aditiva acotada m-contínua.

Demostración. Se ve primero que es cierto para las funciones f $\epsilon\epsilon_+$ y luego para las funciones de L $_{\sigma}$ (m) y $_{A}$ (m), teniendo en cuenta que BCM y BCM $_{mc}$ son bandas de BM.

Este teorema permite hablar pues de la <u>integral indefinida</u> ℓ_f de una función $f \in A(m)$. Si $f \in A(m)$ y $f \sim g$ entonces f y g definen la misma integral indefinida. Por tanto el teorema anterior permite asociar a cada función $f \in L_A(m)$

una o-medida acotada m-contínua ℓ_f . ¿Sería posible establecer un análogo del teorema de Radon-Nikodym?. Es decir, ¿para cada o-medida $\ell: \alpha \to R$, acotada y m-contínua existe alguna función f m-integrable tal que $\ell(A) = \int_A f dm$ para todo $A \in \alpha$?. Y en caso de existir, ¿ésta es única?.

En cuanto a la existencia de la función, el siguiente ejemplo muestra, como era de preveer, que el teorema no se cumple:

Ejemplo 2.3.2. Sea X={a,b} un conjunto de dos elementos, α =P(X). Consideremos las medidas ℓ ,m: $\alpha \to R^2$ definidas por m(a)= ℓ (b)=(1,0) y m(b)= ℓ (a)=(0,1); ℓ es m-contínua y no existe ninguna función f:X ℓ tal que ℓ (A)= ℓ fdm en ℓ 0, ya que de existir, sería (1,0)= ℓ (b)= ℓ 0 fdm=f(b)m(b)=(0,f(b)).

La unicidad de la posible derivada de Radon-Nikodym, suponiendo que exista, tampoco se puede asegurar; por ejemplo si m(a) contiene divisores de cero con codivisores positivos por la izquierda no hay unicidad: la función f considerada en la demostración de 2.1.9. b) sería una derivada no nula de la medida nula.

2.4. La integral respecto a una o-medida $m: \alpha \rightarrow R^{I}$.

En este apartado se estudia la integral respecto a una o-medida $m: a \to R^T$ definida en una σ -álgebra a. Como era de esperar, la integral se reduce a la integración por componentes. Además, bajo ciertas hipótesis, toda o-medida m-contínua es una integral indefinida y la derivada es única.

Sea I un conjunto de índices cualquiera, a una σ -álgebra de partes de un conjunto X. Toda medida positiva m: $a \rightarrow R^I \sigma$ -aditiva en orden queda determinada por la colección $\{m_i\}_{i \in I}$ de medidas σ -aditivas reales $m_i = \pi_i \circ m: a \rightarrow R_+$.

Para cada función $F: X \to R^{\mathbf{I}}$, sea $F_i = \pi_i \circ F(i \in I)$; escribamos $m = (m_i)$ y $F = (F_i)$. Indiquemos por N el σ -ideal de los conjuntos m-nulos de α y por N, el de los m_i -nulos $(i \in I)$; es $N = \bigcap_{i \in I} N_i$.

<u>Lema 2.4.1.</u> Sea I numerable y consideremos dos funciones $F=(F_i)$ y $G=(G_i)$. De

la m-equivalencia de F_i con G_i para cada i ϵ I se sigue la m-equivalencia de F y G si y sólo si $N_i=N_i$ para todo i,j ϵ I.

En efecto. Suficiencia: si $A_i \in N_i$ es tal que $F_i = G_i$ en A_i^C , entonces $A = \bigcup A_i \in N$ y F = G en A^C . Necesidad: Supongamos que para unos índices i_0 , $j \in I$ es $N_i = N_j \neq \emptyset$ y sea $A \in N_i = N_j$. Entonces la función $G = (G_i)$ definida por $G_i = aX_A$ y $G_i = 0$ para todo $i \neq i_0$ es tal que $G_i = 0$ m_i-c.p.t. para todo $i \in I$ y sin embargo $G \neq 0$ m-c.p.t.

En este lema es esencial que I sea numerable. En efecto, sea X=I=[0,1] y consideremos la función $F:[0,1] \to R^{[0,1]}$ definida por $F(x)=x\delta_x$ y la o-medida m: $a \to R^{[0,1]}$ cuyas componentes my sean la medida de Lebesgue de la longitud en a=B [0,1] Entonces $N_y=N_z$ para todo y,z ϵ [0,1] y $F_y=y\delta_y\sim 0$ para cada y ϵ [0,1]. Sin embargo $F \neq 0$ puesto que $[F\neq 0]=[0,1]$.

<u>Proposición 2.4.2.</u> Si I es numerable y $N_i = N_j$ para todo $i, j_{\ell}I$, entonces una función $F_{\ell}L_A(m)$ si y sólo si $F_i \in L^1(m_i)$ para todo $i_{\ell}I$ y en este caso $\int Fdm = (\int F_i dm_i)$.

Demostración. De las definiciones se sigue que si $F \in \mathcal{E}$, entonces $F_i \in \mathcal{E}$ para cada $i \in I$ y $\int F dm = (\int F_i dm_i)$; de ahí se deduce que la integral respecto a m es secuencialmente contínua en \mathcal{E} y que si $F \in L_{\sigma}(m)$, entonces $F_i \in L_{\sigma}(m_i)$ para todo $i \in I$ y $\int F dm = (\int F_i dm_i)$. Si I es numerable, M_+ es σ -subretículo y está por tanto definida la integral respecto a m en $A^{(m)}$. Además si $F \in L_{A}(m)$, será $F_i \in L^{(m)}$ para cada $i \in I$ y seguirá siendo cierto que $\int F dm = (\int F_i dm_i)$.

Veamos que reciprocamente, si $F_i \in L^1(m_i)$ para todo $i \in I$, entonces $F \in L_A(m)$. Podemos suponer que $F \ge 0$ m-c.p.t. Para cada $i \in I$ consideremos una función $G_i \in L_{\sigma}(m_i)$ tal que $G_i = F_i$ m_i -c.p.t. De la numerabilidad de I se deduce que $G = (G_i) \in L_{\sigma}(m)$ y, si además $N_i = N_j$ para todo $i, j \in I$, entonces, según el Lema 1, $G = F_i$ m-c.p.t. y por tanto $F \in L_A(m)$.

Lema 2.4.3. Sean $\ell, m: \alpha \to R^{I}$ dos medidas en un anillo α .

- a) Si ℓ_i es m $_i$ -contínua para todo i ϵ I, entonces ℓ es m-contínua.
- b) De la m-continuidad de ℓ se deduce la m_i-continuidad de ℓ _i para cada i ϵ I si y sólo si N_i=N_i para todo i,j ϵ I.

En efecto: a) es inmediato. En b) también es inmediata la suficiencia de la condición. En cuanto a la necesidad, basta considerar las medidas m y ℓ del ejemplo 2.3.2: ℓ es m-contínua y ni ℓ es m₁-contínua ni ℓ es m₂-contínua.

Finalmente, podemos establecer el siguiente resultado:

Proposición 2.4.4. Sea m: $a \to R^I$ una o-medida positiva en una σ -álgebra a de partes de un conjunto X, y ℓ : $a \to R^I$ una o-medida acotada m-contínua. Si I es numerable y $N_i = N_j$ para todo $i, j \in I$, entonces existe una única función $F \in L_A(m)$ tal que $\ell(A) = \int_A F$ dm para todo $A \in a$.

Demostración. Siendo $N_i = N_j$ para todo $i, j \in I$, cada ℓ_i será m_i -contínua. Sea $F_i \in L^r(m_i)$ una función tal que $\ell_i(A) = \int_A F_i dm_i$. Podemos suponer que $F_i \in L_\omega(m_i)$. Entonces, siendo I numerable, $F = (F_i) \in L_\omega(m)$ y $\int_A F_i dm_i = \int_A dm_i = (\int_i F_i) dm_i = (\int_i F_i) dm_i = \ell_i(A)$, es decir, $F_i \in I$ es una derivada de $\ell_i(A)$. Veamos que es única: si $G = (G_i)$ es otra derivada de $\ell_i(A)$, será $\int_A F_i dm_i = \int_A G_i dm_i = \ell_i(A)$, para todo $i \in I$ y $i \in I$ y $i \in I$ y $i \in I$ y $i \in I$ de modo que tendremos, dada la unicidad de la derivada de $i \in I$ y $i \in I$ de modo que tendremos, dada la unicidad de la derivada de $i \in I$ y $i \in I$ de modo que tendremos, $i \in I$ para todo $i \in I$. De ahí se deduce, según el Lema $i \in I$ que $i \in I$ que $i \in I$ para todo $i \in I$. De ahí se deduce, según el Lema $i \in I$ que $i \in I$ que $i \in I$ que $i \in I$ para todo $i \in I$. De ahí se deduce, según el Lema $i \in I$ que $i \in I$ q

Referencias

- [1] ASH, R.B.: "Real Analysis and Probability". Academic Press. Londres, 1972.
- [2] BIGARD, A., KEIMEL, K., WOLFENSTEIN, S.: "Grupes et anneaux réticulés". Lectures Notes in Math. 608, Springer Verlag. Berlin-Heildelberg-N.Y., 1977.
- [3] BOURBAKI: "Eléments de Mathématique". Topologie Générale. Hermann. Paris, 1971.
- [4] DESCOMBES, R.: "Intégration". Hermann. Paris, 1972.

- [5] DUNFORD, N., SCHWARTZ, J.: "Linear Operators (part I)". Interscience. New-York, 1967.
- [6] FAYRES, B., MORRISON, T.J.: "The Jordan Descomposition of vector-valued measures". Amer. Math. Soc. Vol. 60 (139-143), 1976.
- [7] LUXEMBURG, W., ZAANEN, A.: "Riesz Spaces". North Holland. Amsterdam, 1971.
- [8] PAPANGELOU, F.: "Order convergence and topological completion of commutative lattice-groups". Math. Annalen 155, (81-107), 1964.
- [9] RIBENBOIM, R.: "Théorie des groupes ordonnés", Univ. Nac. del Sur. Bahía Blanca, 1959.
- [10] TRILLAS, E.: "Sobre distancias estadísticas". Tesis doctoral. Publ.Univ. Barcelona, 1972.
- [11] WILLARD: "General topology". Addison. Wesley. Reading, 1970.

Dpt. de Matemàtiques i Estadística. E.T.S. d'Arquitectura. Universitat Politècnica de Barcelona. Diagonal 649. Barcelona (28).