Optimization of the digestible dry matter yield from semi-exotic populations of maize

Key Words: Forage maize, semi-exotic varieties, digestibility, breeding.

ABSTRACT

Semi-exotic populations of maize with late maturity can be obtained by crossing exotic germplasm with adapted inbred lines. Being very productive, these populations give an appropriate starting point for the development of long-season forage maize suitable for mild weather zones.

Criteria to be considered for the discrimination between semi-exotic populations regarding their production of digestible dry matter are discussed in base to preliminary results.

Although the materials are intended for use as forage, maximization of ear yields still appears as a basic factor. Selection for stover digestibility and/or cell wall and/or against NDF would be complementary aspects to be considered as a strategy for improving the nutritive quality of the plant. Although further research is needed, none of the criteria seem incompatible with increased production and the choice of a trait depends strongly on the ease of recording it.

INTRODUCTION

A forage maize breeding programme is being developed in our laboratory to obtain maize suitable for mild Mediterranean-type conditions, with long growing seasons (Casañas et al., 1989). The strategy followed takes advantage of the amplitude of the growing period in order to increase stover and grain production by

* Escola Superior d’Agricultura, Urgell 187, 08036 Barcelona, Spain.
** Facultad de Veterinaria, UAB, 08193 Bellaterra, Spain.
*** E.S. Ingenieros Agrónomos, Camino de Vera, 46022 Valencia, Spain.
increasing the maturity rating. South and Central American populations are used as very long season germplasm; these are crossed with high yielding inbreds, elite for the production of grain, to generate semi-exotic base populations from which to start the selection.

Information available regarding the digestibility of maize and the implications thereof in forage breeding programmes refer mostly to early materials. However, even within the limited amount of materials studied, optimal traits for selection have not been clearly established. This is true for both the ease of measurement and genetic characteristics of the trait. Opinions regarding the most effective way to improve nutritive quality range from selection in favor of the digestibility of the cell wall content of the stover (Deinum & Struik, 1986; Dolstra et al., 1987) to selection for the digestibility of the whole plant (Gallais et al., 1983).

The objective of this study is to generate preliminary data concerning the relationship between the traits involved in the yield and nutritive quality of the maize plant in very long season semi-exotic material. The parameters considered are discussed with regard to their suitability for use in forage maize breeding programmes using semi-exotic populations.

MATERIAL AND METHODS

The exotic populations (Table 1) were chosen from a previous study of a larger group in which the maturity rating of the material and its vegetative development were recorded. The earliest populations were disregarded. All the populations, except V-464 of unknown origin, were supplied by CIMMYT.

Table 1. Exotic populations studied.

<table>
<thead>
<tr>
<th>No.</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ETO Amarillo</td>
</tr>
<tr>
<td>2</td>
<td>ETO Blanco</td>
</tr>
<tr>
<td>3</td>
<td>Composite Pira Naranja</td>
</tr>
<tr>
<td>4</td>
<td>Composite Pracar</td>
</tr>
<tr>
<td>5</td>
<td>Composite Centroamericano A</td>
</tr>
<tr>
<td>6</td>
<td>Composite Caribeño M.C.2</td>
</tr>
<tr>
<td>7</td>
<td>Composite Centroamericano 1</td>
</tr>
<tr>
<td>8</td>
<td>Composite Centroamericano 5</td>
</tr>
<tr>
<td>9</td>
<td>Cuba 24</td>
</tr>
<tr>
<td>10</td>
<td>Chiapas 26</td>
</tr>
<tr>
<td>11</td>
<td>GUAT-GPO-12.5-A</td>
</tr>
<tr>
<td>12</td>
<td>GUAT-GPO-17.3-A</td>
</tr>
<tr>
<td>13</td>
<td>GUAT-GPO-18.2-A</td>
</tr>
<tr>
<td>14</td>
<td>GUAT-GPO-18.3-A</td>
</tr>
<tr>
<td>15</td>
<td>Pepitilla</td>
</tr>
<tr>
<td>16</td>
<td>USACA-MEX-1</td>
</tr>
<tr>
<td>17</td>
<td>Chiapas-13</td>
</tr>
<tr>
<td>18</td>
<td>V-464</td>
</tr>
</tbody>
</table>

The semiexotic populations were formed by crossing the exotic material with inbreds Mo17 and B73 which are considered good representatives of adapted late pure lines.

The thir irrigation us density of 6 plants. The employed w was hand pl

The foliage:
- days to
- ear he.
- total h
- days fr
from the et
approximatel
- index
statistical ana
==is+1/2.
- dry ma
- dry ma
- total dr
A single
population (p
oven, and wa
determination
- digestib
proposed by.
- content
Wine’s meth
- crude fi
- crude p
- ash (A)
- digestib
by Struik (198
Ddm through
Demarquilly (1
The yield
digestibility of
In the estimat
that the ear pr
The corre
phenotypic va
The thirty-six offspring (18 from Mo17 and 18 from B73) were studied under irrigation using a randomized complete block design with three replications and a density of 65,000 pl/ha. Each plot consisted of a single row with 36 competitive plants. The commercial hybrids P3183 (Pioneer, FAO 800) and Mo17 x B73, widely employed within its maturity rating (FAO 700), were used as checks. The experiment was hand planted and carried out in Terrassa (Barcelona, NE Spain).

The following traits were recorded in each plot:
- days to pollen shedding (df)
- ear height (eh)
- total height (th)
- days from planting to harvest (har). Plants were harvested (separating the stover from the ear) when the mean grain moisture in the three replications was approximately 40% (considered the optimum moment for whole plant silage).
- index of plants affected by smut on a scale from 0 to 2 (is). To improve statistical analysis original data were transformed according to the expression \(is' = is + 1/2 \).
- dry matter yield of the ear (ey)
- dry matter yield of the stover (sy)
- total dry matter yield (ty)

A single representative sample of stover from the three replications of each population (previously chopped as if for silage) was dried at 60°C in a forced air oven, and was ground to pass a 1 mm screen of a mill. With this material duplicated determinations were performed on:
- digestibility of the dry matter of the stover (Ddm), using the enzymatic method proposed by Aufre (1982)
- content of neutral detergent fiber of the stover (NDF), using Van Soest & Wine’s method (1967)
- crude fiber content of the stover (CF)
- crude protein of the stover (CP), using Kjeldhal method (Nx6.25)
- ash (A)
- digestibility of the cell wall content (Dwcc), by means of the equation used by Struiik (1983): \(Dwcc = 100 - (100 - (Dom + 9)) (100 - A)/NDF \); Dom was obtained from Ddm through the expression \(Dom = 0.875 \ Ddm + 9.19 \) proposed by Aufre and Demarquilly (1989).

The yield of digestible dry matter of the stover (PDdm) was estimated from the digestibility of the dry matter of the stover and the dry matter yield of the stover. In the estimation of the total yield of digestible dry matter (tPDdm), it was assumed that the ear presented a constant value of digestibility (Deinum & Bakker, 1981).

The correlations among the different traits were calculated from the mean phenotypic values of all populations, excluding the check hybrids.
RESULTS AND DISCUSSION

In several semi-exotic populations the total dry matter yield (ey + sy) was superior to that of the check hybrids (Table 2), although the total yield of digestible dry matter was similar, due to a higher proportion of ears in the hybrids. However, the fact that some unimproved semi-exotic populations produced as much or more than the commercial hybrids offers good prospects for breeding programs. In fact, the proportion of ear in the best semi-exotic materials is mostly above 40%, and exceeds the 30% proportion of grain proposed as a lower limit by Pinter (1986).

On the average, crosses with the inbred tester B73 yielded more grain than those with Mo17 (Table 2). This is reflected by the total yield of digestible dry matter, the grain being the most digestible part of the plant. No differences were presented between the two semi-exotic families for the rest of the traits (Table 2).

Traits related with yield showed the highest coefficients of variation (Table 2) probably due to their complex nature. Their variability would be the final expression of variabilities in all the traits influencing production. Furthermore, yield can be strongly influenced by the environment.

The variability within the traits for digestibility of the dry matter of the stover (Ddm) and its cell wall content (Dwcc) was very low. The low variability of the cell wall content had been previously cited by Zimmer and Wermke (1986), whereas Deinum (1987) indicated that this trait showed considerable variation (both estimates correspond mainly to groups of early hybrids). In general, all the coefficients of variation corresponding to traits related to nutritive quality were extremely low.

The correlation between the characters studied (Table 3, and Figures 1 and 2) suggest that the trait to be optimized (TPDdm) depends primarily on the production of ear. No correlations, however, were found between this trait and either the digestibility of the stover or the digestibility of the cell wall content. It is thus clear that, in the framework of these materials which show increased stover yield due to the introduction of exotic germplasm (Casañas et al., 1990), the first stage of selection should maximize the amount of grain produced within populations with a great vegetative development.

The digestibility of the cell wall seems to have a greater influence on the digestibility of the vegetative part (r = 0.84 ± 0.05) than does the proportion of cell wall (estimated from the NDF, r = 0.62 ± 0.10). Furthermore, in our material, Dwcc is not correlated to the proportion of the cell wall (NDF). This is contrary to the systematically negative correlations reported by Deinum (1987) in early hybrids. In any case, selection for the digestibility of the cell wall would be a good way to improve quality. The main drawback lies in that its estimation is more complex than for either NDF or stover digestibility, both candidates for selection (selection against NDF or in favour of stover digestibility). However, the estimation of these parameters could be simplified enormously by the use of the NIR method, modifying above considerations.

The broad-sense heritability of these traits estimated in hybrids show similar values: Dolstra and Medema (1990) obtained a value of 0.77 for the Dwcc, and Zimmer and Wermke (1986) obtained a value of 0.81 for NDF, whereas the
Table 2. Mean values of the traits studied in the 15 semiocytic populations which were found to be the best producers of digestible dry matter. Average of all the offspring with lines Mo17 (Mo17x) and B73 (B73x).

<table>
<thead>
<tr>
<th>Population</th>
<th>tPDm kg/ha</th>
<th>cy kg/ha</th>
<th>cy/ly</th>
<th>sy kg/ha</th>
<th>P/Dm kg/ha</th>
<th>har</th>
<th>Dwdc</th>
<th>df</th>
<th>eh cm</th>
<th>th cm</th>
<th>is'</th>
<th>CP %</th>
<th>CF %</th>
<th>NDF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>B73x18</td>
<td>15390</td>
<td>10799</td>
<td>.41</td>
<td>15198</td>
<td>.43</td>
<td>6555</td>
<td>.44</td>
<td>84.7</td>
<td>228</td>
<td>342</td>
<td>.87</td>
<td>7.36</td>
<td>34.06</td>
<td>70.47</td>
</tr>
<tr>
<td>Mo17x5</td>
<td>15354</td>
<td>8347</td>
<td>.34</td>
<td>16055</td>
<td>.53</td>
<td>8509</td>
<td>.55</td>
<td>82.7</td>
<td>193</td>
<td>297</td>
<td>.76</td>
<td>7.09</td>
<td>34.58</td>
<td>70.19</td>
</tr>
<tr>
<td>P.3183</td>
<td>15041</td>
<td>12550</td>
<td>.58</td>
<td>9135</td>
<td>.52</td>
<td>4750</td>
<td>.56</td>
<td>76</td>
<td>127</td>
<td>234</td>
<td>.74</td>
<td>6.1</td>
<td>35.85</td>
<td>73.96</td>
</tr>
<tr>
<td>B73x2</td>
<td>14969</td>
<td>9063</td>
<td>.39</td>
<td>13703</td>
<td>.55</td>
<td>7537</td>
<td>.55</td>
<td>80.7</td>
<td>197</td>
<td>302</td>
<td>.79</td>
<td>8.39</td>
<td>32.48</td>
<td>65.63</td>
</tr>
<tr>
<td>B73x5</td>
<td>14404</td>
<td>11101</td>
<td>.51</td>
<td>10294</td>
<td>.48</td>
<td>4941</td>
<td>.51</td>
<td>82.7</td>
<td>216</td>
<td>316</td>
<td>.90</td>
<td>8.3</td>
<td>36.1</td>
<td>70.15</td>
</tr>
<tr>
<td>Mo17x9</td>
<td>13726</td>
<td>8806</td>
<td>.40</td>
<td>13276</td>
<td>.49</td>
<td>6505</td>
<td>.49</td>
<td>81.3</td>
<td>194</td>
<td>300</td>
<td>.86</td>
<td>7.47</td>
<td>34.41</td>
<td>67.8</td>
</tr>
<tr>
<td>B73x12</td>
<td>13035</td>
<td>8901</td>
<td>.44</td>
<td>11247</td>
<td>.51</td>
<td>5736</td>
<td>.53</td>
<td>86</td>
<td>223</td>
<td>325</td>
<td>.84</td>
<td>7.29</td>
<td>35.38</td>
<td>69.82</td>
</tr>
<tr>
<td>Mo17x18</td>
<td>12977</td>
<td>5731</td>
<td>.27</td>
<td>13330</td>
<td>.54</td>
<td>8278</td>
<td>.52</td>
<td>86.3</td>
<td>207</td>
<td>316</td>
<td>.79</td>
<td>7.58</td>
<td>33.3</td>
<td>64.75</td>
</tr>
<tr>
<td>B73x16</td>
<td>12850</td>
<td>9218</td>
<td>.47</td>
<td>10374</td>
<td>.51</td>
<td>5291</td>
<td>.54</td>
<td>80.7</td>
<td>181</td>
<td>286</td>
<td>.76</td>
<td>7.48</td>
<td>35.37</td>
<td>70.78</td>
</tr>
<tr>
<td>B73x6</td>
<td>12814</td>
<td>8849</td>
<td>.42</td>
<td>11825</td>
<td>.47</td>
<td>5558</td>
<td>.50</td>
<td>81</td>
<td>201</td>
<td>308</td>
<td>.76</td>
<td>7.8</td>
<td>35.57</td>
<td>71.98</td>
</tr>
<tr>
<td>B73x4</td>
<td>12480</td>
<td>8951</td>
<td>.47</td>
<td>10280</td>
<td>.50</td>
<td>5140</td>
<td>.53</td>
<td>80.3</td>
<td>202</td>
<td>300</td>
<td>.91</td>
<td>7.1</td>
<td>37.04</td>
<td>71.55</td>
</tr>
<tr>
<td>Mo17x17</td>
<td>12423</td>
<td>5203</td>
<td>.45</td>
<td>13588</td>
<td>.60</td>
<td>8153</td>
<td>.57</td>
<td>81.3</td>
<td>190</td>
<td>292</td>
<td>.92</td>
<td>8.10</td>
<td>31.06</td>
<td>61.45</td>
</tr>
<tr>
<td>Mo17x17B73</td>
<td>12406</td>
<td>10697</td>
<td>.59</td>
<td>7126</td>
<td>.51</td>
<td>3634</td>
<td>.55</td>
<td>76.7</td>
<td>133</td>
<td>240</td>
<td>.71</td>
<td>7.39</td>
<td>36.07</td>
<td>72.18</td>
</tr>
<tr>
<td>B73x1</td>
<td>12391</td>
<td>7886</td>
<td>.40</td>
<td>11615</td>
<td>.51</td>
<td>5924</td>
<td>.54</td>
<td>80.7</td>
<td>191</td>
<td>285</td>
<td>.79</td>
<td>8.35</td>
<td>35.39</td>
<td>69.54</td>
</tr>
<tr>
<td>Mo17x4</td>
<td>12236</td>
<td>8524</td>
<td>.45</td>
<td>10929</td>
<td>.48</td>
<td>5246</td>
<td>.52</td>
<td>77.3</td>
<td>191</td>
<td>291</td>
<td>.74</td>
<td>6.31</td>
<td>37.39</td>
<td>73.55</td>
</tr>
<tr>
<td>B73x</td>
<td>12302</td>
<td>8096</td>
<td>.41</td>
<td>11394</td>
<td>.50</td>
<td>5663</td>
<td>.51</td>
<td>82.5</td>
<td>208</td>
<td>311</td>
<td>.89</td>
<td>7.76</td>
<td>34.86</td>
<td>69.32</td>
</tr>
<tr>
<td>Mo17x</td>
<td>10758</td>
<td>5613</td>
<td>.31</td>
<td>12113</td>
<td>.51</td>
<td>6155</td>
<td>.51</td>
<td>82.6</td>
<td>193</td>
<td>300</td>
<td>.90</td>
<td>7.74</td>
<td>35.24</td>
<td>68.30</td>
</tr>
<tr>
<td>CV</td>
<td>.169</td>
<td>.314</td>
<td>.03</td>
<td>.152</td>
<td>.07</td>
<td>.188</td>
<td>.03</td>
<td>.07</td>
<td>.030</td>
<td>.07</td>
<td>.05</td>
<td>.072</td>
<td>.047</td>
<td>.039</td>
</tr>
<tr>
<td>LSD (p<0.05)</td>
<td>2566</td>
<td>2402</td>
<td>.28</td>
<td>2303</td>
<td>1161</td>
<td>2.6</td>
<td>29</td>
<td>33</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Correlations among mean phenotypical values of the traits studied (* p<0.05).

<table>
<thead>
<tr>
<th></th>
<th>tP/Ddm</th>
<th>cy</th>
<th>sy</th>
<th>ey/ly</th>
<th>Ddm</th>
<th>tP/Ddm</th>
<th>har</th>
<th>df</th>
<th>ch</th>
<th>th</th>
<th>is'</th>
<th>CP</th>
<th>CF</th>
<th>NDF</th>
<th>Dewc</th>
</tr>
</thead>
<tbody>
<tr>
<td>tP/Ddm</td>
<td></td>
<td>.83*</td>
<td>- .03</td>
<td></td>
<td>.58*</td>
<td>.91*</td>
<td>- .54*</td>
<td>.13</td>
<td>- .27</td>
<td>.29</td>
<td>- .23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cy</td>
<td></td>
</tr>
<tr>
<td>sy</td>
<td>- .50*</td>
<td></td>
<td></td>
<td></td>
<td>.92*</td>
<td>.55*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ey/ly</td>
<td>.58*</td>
<td>-.03</td>
<td></td>
</tr>
<tr>
<td>Ddm</td>
<td>.13</td>
<td>- .27</td>
<td>.29</td>
<td>- .23</td>
<td></td>
</tr>
<tr>
<td>tP/Ddm</td>
<td>.45*</td>
<td>- .14</td>
<td>.92*</td>
<td>.55*</td>
<td>.64*</td>
<td></td>
</tr>
<tr>
<td>har</td>
<td>- .30</td>
<td>- .38*</td>
<td>.27</td>
<td>- .56*</td>
<td>- .33*</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>- .12</td>
<td>- .09</td>
<td>.08</td>
<td>- .34*</td>
<td>- .37*</td>
<td>- .07</td>
<td>.62*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eh</td>
<td>.25</td>
<td>.40*</td>
<td>- .01</td>
<td>- .18</td>
<td>- .44*</td>
<td>- .19</td>
<td>.44*</td>
<td>.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>th</td>
<td>.21</td>
<td>.29</td>
<td>.11</td>
<td>- .24</td>
<td>- .42*</td>
<td>- .08</td>
<td>.55*</td>
<td>.72*</td>
<td>.94*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>is'</td>
<td>- .54*</td>
<td>- .50*</td>
<td>- .15</td>
<td>- .13</td>
<td>- .09</td>
<td>- .15</td>
<td>.43*</td>
<td>.35*</td>
<td>.16</td>
<td>.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>- .34*</td>
<td>- .41*</td>
<td>- .05</td>
<td>- .51*</td>
<td>.25</td>
<td>.07</td>
<td>.10</td>
<td>.06</td>
<td>.09</td>
<td>- .03</td>
<td>.48*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>- .24</td>
<td>.12</td>
<td>- .44*</td>
<td>- .49*</td>
<td>- .63*</td>
<td>- .61*</td>
<td>.05</td>
<td>.04</td>
<td>.11</td>
<td>.05</td>
<td>.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td>.10</td>
<td>.45*</td>
<td>- .35*</td>
<td>.30</td>
<td>- .62*</td>
<td>- .53*</td>
<td>- .21</td>
<td>- .14</td>
<td>.04</td>
<td>- .06</td>
<td>.26</td>
<td>- .50*</td>
<td>.79*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewc</td>
<td>.32</td>
<td>.15</td>
<td>- .01</td>
<td>.14</td>
<td>.84*</td>
<td>.30</td>
<td>- .65*</td>
<td>- .61*</td>
<td>- .54*</td>
<td>- .60*</td>
<td>- .35*</td>
<td>- .08</td>
<td>.22</td>
<td>.02</td>
<td></td>
</tr>
</tbody>
</table>
Figura 1. Correlations among estimators of stover nutritive quality.

Figura 2. Correlations between nutritive quality and yield.
heritability of the digestibility of the stover was estimated at 0.79 by Zimmer and Wermke (1986).

Considering the correlations between the estimators of the nutritive quality of the stover and the vegetative and production parameters (Table 3 and Figure 2), we point out that both the digestibility of the cell wall and stover are negatively related to what could be called "exotic traits". In effect, both are negatively correlated to days to pollen shedding, days to harvest, smut index (only with Dcwe), height of the ear, and total height. As significant correlations were not found between these traits and NDF, it must be supposed that exotic materials are associated with low Dcwe, and this is responsible for the decrease in Ddm.

As a conclusion from these preliminary results, selection for greater ear yield in high stover-producing materials should be combined with a selection against NDF and/or in favour of Dcwe. Both factors, influencing the digestibility of the stover (Figure 2), have advantages and disadvantages. NDF is negatively correlated to stover yield and positively to ear production (Figure 2). Therefore, attempts at decreasing the proportion of cell wall content would probably also lower the yield of grain. On the other hand, performing a selection in favor of high stover yield might induce a reduction in the proportion of the cell wall content with a consequent increase in digestibility.

Selection in favor of increased Dcwe does not appear to affect important production traits (Figure 2) making it an optimum parameter. However, the use of this trait is restricted by its difficult estimation, much more complex than the simple determination of NDF. Ease of determination becomes especially important when a great quantity of samples must be handled.

Selection for stover digestibility, determined for example by the cellulase method, is another option. Estimation of this parameter is somewhat more problematic than for NDF yet easier than for Dcwe. According to the correlations presented (Figure 2), such a selection should not influence the yield of either grain or stover.

RESUMEN

La introducción de material exótico de maíz cruzándolo con líneas puras adaptadas, permite la obtención de poblaciones semixócticas de ciclo muy largo. Estas poblaciones resultan un punto de partida adecuado para la obtención de maíces forrajeros de ciclo largo aptos para zonas de climatología benigna, ya que son muy productivas.

Se discuten, en base a resultados preliminares, los criterios a considerar para discriminar entre poblaciones semixócticas teniendo en cuenta que debe optimizarse la producción de materia seca digestible.

La maximización de la producción de mazorca, a tenor de los resultados, aparece como un aspecto fundamental a pesar de tratarse de materiales con destino forrajero. La selección a favor de la digestibilidad de la parte vegetativa de la planta y/o de la pared celular, y/o contra el contenido en pared celular (FND), serian aspectos complementar de la planta para mejorar la productividad de la misma.
by Zimmer and
ve quality of the
ure 2), we point
y related to what
ted to days to
ight of the ear,
tese traits and
low Dwc, and
ater ear yield in
on against NDF
ty of the stover
related to stover
sts at decreasing
ed of grain. On
might induce a
uent increase in
ffect important
ever, the use of
than the simple
portant when a
y the cellulase
omewhat more
the correlations
d of either grain
as puras adapta-
y largo. Estas
de maíces forra-
a que son muy
considerar para
debe optimizarse
sultados, aparece
destino forrajero,
la planta y/o de
serían aspectos
complementarios a tener en cuenta como estrategia para mejorar la calidad nutritiva
de la planta. Aunque se precisan ensayos adicionales, ninguno de estos criterios
parece incompatible con incrementos de producción y la elección de uno u otro
parámetro se ve fuertemente influenciada por el distinto grado de dificultad que
presenta la estimación de cada uno de ellos.

AKNOWLEDGEMENTS

We want to thank Dr. A. Ordás for his suggestions and remarks that have
improved the original manuscript.

This work has been done with a grant by CICYT, n. AGR89-0373.

REFERENCES

Aufrère, J. (1982). Etude de la prévision de la digestibilité des fourrages par un

Aufrère, J. and C. Demarquilly (1989). Predicting organic matter digestibility of
forage by two pepsin-cellulase methods. Proc. XVI International Grassland
Congress, Nice. 877-878.

Perspectives in the selection of a semi-exotic maize for forage use. Book of poster
abstracts 1. 15-1. XII Eucarpia Congress. Göttingen.

Casañas, F., A. M. Verdú, L. Bosch, A. Ferret, E. Albanell, J. Plaixats and F. Nuez
(1990). Digestibility and yield of some semi-exotic maizes. (A screening of semi-
exotic populations to obtain long cycled forage inbreds). Proc. XV Congress of
the Maize and Sorghum Section of Eucarpia. Baden Austria. 319-325.

Deinum, B. (1987). Genetic and environmental variation in digestibility of forage
maize. Proc. XIV Congress of the Maize and Sorghum Section of Eucarpia. Nitra
Checoslovaquia: 376-393.

In O. Dolstra and P. Medema editors. Breeding of Silage Maize. Pudoc
Wageningen p. 77-90.

digestibility of cell-wall constituents in the stalks and its relation to feeding value
and various stalk traits in maize (Zea mays L.). Proc. of the XIV Congress of the

improvement of cell-wall digestibility in forage maize. Proceedings of the XV
Congress of the Maize and Sorghum Section of Eucarpia. Baden (Austria): 258-
270.

Palabras clave

Moreno, N population. An
Pollizo de plum, in the Experimental d
of hardwood c by free polliniz
The variab propagation by
vegetative proj

El ciruelo
generalizado, murciana, sic
ativos en Esp:

* Trabajo reali
Programa Naci
Aragón)