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The aim of this paper is to carry out a group of numerical experiments over the fluid
flow through the valve reed, using the CFD&HT code TermoFluids, a new
unstructured and parallel object-oriented CFD code for accurate and reliable solving
of industrial flows (1). In all studied cases a multi-dimensional explicit finite volume
fractional-step based algorithm has been used with symmetry preserving
discretization scheme. When turbulence modelling is needed, an extension of the
Yoshizawa non-equilibrium fixed-parameter subgrid-scale (2) model to non-
structured meshes is used. The pressure equation is solved by means of parallel
Fourier Schur decomposition solver which is an efficient direct solver for loosely
coupled PC clusters (3).

In fact, the fluid flow is analysed by two parallel phenomena (an entrance flow
through a channel and a free jet through a surface). In that sense, the present
paper is focused on the numerical simulation model of the fluid flow through the
valve reeds, considering a simplified geometry of an axial hole plus a radial diffuser.

The numerical results presented are based on a specific geometry - orifice diameter
d is 3 times valve reed diameter D -together with a wide range of boundary
conditions: different Reynolds number at the entrance and different valve
displacement s vs. orifice diameter d. The studied cases vary from laminar to
turbulent flow, almost to be considered incompressible and lower supersonic
conditions and/or chocked flow.

NOMENCLATURE

A Effective force area (m) P pressure (Pa)

@ Convective operator Py downstream pressure (Pa)
d Orifice diameter (m) Py upstream pressure (Pa)
D Valve reed diameter (m) s gap distance (m)

D Diffusive operator T stress tensor

e Valve plate thickness (m) u velocity vector (ms™)

G Gradient operator Y Compressibility factor
(KA), Effective flow area (m?) At time step (s)

2 Laplacian operator yel fluid density (kgm™)

M Divergence operator v viscosity (Pas)
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1 INTRODUCTION

One of the most important aspects of compressor design and efficiency
improvements is to fully understand the fluid flow phenomena through compressor
valve and consequently the parameters which define its behaviour

The methodology proposed by (4) is based on two parameters: i) effective flow
area (KA), that relates the actual mass flow rate with an ideal mass flow rate per
unit flow area (assuming isentropic contraction process) defined in equation (1);
and ii) the effective force area A; defined as ratio of the actual net force on the
valve and the force obtained assuming a constant pressure drop distribution,
defined in equation (2), the most usual method for valve analysis and compressor
design (5).
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Figure 1. Cross sectional valve diagram.

One of the first semi-analytical models for predicting these coefficients were
developed by (6) and (7). More accurate predictions need obviously the use of the
multidimensional simulation of the flow through the valve like (8) which analyzed in
detail the laminar flow through these valves comparing numerical and experimental
results. Later, (9) studied the turbulent flow in reed type valves using the well
known RNG k-g£ model. In the same way, and based on the same low Reynolds
number two-equation k-€ turbulence models for general purposes (10) a numerical
study of the turbulent fluid-flow through valves (11) was also carried out.

The present paper represents a new advance over the numerical results over Large
Eddy Simulation models presented in (12) assuming angular symmetry across
cylindrical domain instead of previous plane periodical conditions.

The numerical results presented are based on a specific geometry with a valve
diameter vs. orifice diameter ratio d/D =3, with a wide range of boundary

conditions: Reynolds number from 600 to 6000 and valve displacement vs. valve
diameter s/d from 0.1 to 0.9. The final objective of these series of numerical

studies are going to be a detailed parametrization of the mean valve parameters
(KA), and A, together with a general numerical correlation as a function of its

different conditions.

2 CFD&HT CODE (TERMOFLUIDS)

The radial outflow between two coaxial disks is technologically important for
different applications where valve reeds are one of them. In these cases the flow is
quite complex, the pressure gradient may be either positive or negative depending
on radial location. The velocity is coupled with pressure field and the conditions
under which the flow will be turbulent or laminar are not clearly established. Thus,
turbulence models are critical on the numerical resolution, while the numerical
results expected using the parallel, unstructured and object oriented code
TermoFluids described below are going to clarify it.
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Some papers from the scientific literature are focused on this problem,
experimentally (13)(14) under similar studied ranges allowing validate the
numerical results obtained, or numerically (15)(16) based in Direct Numerical
Simulations although far from the studied ranges. The numerical results presented
now are a first step to a complete study of a wide range of Re numbers and disk
geometries, with the final objective to describe the fluid flow phenomena and the
forces generated through compressor valves.

A general view of the most important details about Navier-Stokes equation
discretization and Large Eddy Simulation model used are here presented.

2.1 Discrete Navier-Stokes equations
The Navier-Stokes and continuity equations can be written as

pf;—,:+ C(u)u +Du + Gp = 0 (3)

Mu =0 (4)

where u € R™ and p € R7 are the velocity vector and pressure, respectively. The
matrices C(u), D € R™ are the convective and diffusive operators, respectively.
Note the u-dependence of the convective operator (non-linear operator). Finally, G
€ R™ represents the gradient operator, and the matrix M € R?*™ is the divergence
operator.

For the temporal discretization of the momentum equation (3), a second order
backward difference scheme for the time derivative term, a fully explicit second-
order one-leg scheme (17) for the right-hand-side terms of the momentum

equation except the pressure gradient (R(uc) = Q'l—C(uC)uch(uc}), and a first-
order backward Euler scheme for the pressure gradient are used. Incompressibility
constraint is treated implicit,

Mu™! =0 (5)

[

(B+1/2)ul™ -2pu? +(f-1/2)ul™?
At

=R((1+B)uf - puz™) -G pot (6)

where the parameter gis computed each time-step to adapt the linear stability
domain of the time-integration scheme to the instantaneous flow conditions in order
to use the maximum At possible.

Our unstructured spatial discretization schemes are conservative, i.e., they preserve
the kinetic energy equation, which allow good stability properties even at high
Reynolds numbers and with coarse meshes. These conservation properties are held
if and only if the discrete convective operator is skew-symmetric
(Cc(uc)z—C;(uC)), if the negative conjugate transpose of the discrete gradient
operator is exactly equal to the divergence operator ({QCGC)‘:MC). If the
convective and gradient operators are properly chosen, the global kinetic energy
equation reduces to:

d M .
E”ucﬂz = U, (Dc o Dc)uc (7)
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Since the diffusive terms must be strictly dissipative operator (u (D, +D;)u, > 0) is
symmetric and positive-definite.

To solve the velocity-pressure coupling, a classical fractional step projection method
(17) is used,
u? = ul* + G.p, (8)

where the pseudo-pressure is p. = p2! At/(ﬁ +1/2) and wuf is the predicted
velocity. The discrete Poisson equation for p. is obtained by taking the divergence
of equation (9) and after applying the incompressibility condition,

Lepe = Mouf (9

where the discrete Laplacian operator L. € R79 is, by construction, a symmetric
positive definite matrix (LC = MCQ"MZ). Once the solution is obtained, w2 results
from the correction: w2 = u2 -G p, .

2.2 Large Eddy Simulation model

We restrict ourselves to the non-equilibrium fixed-parameter SGS model from
Yoshizawa (18). In the quest for a correct modelling of Navier Stokes equations,
they can be filtered spatially like in Large Eddy Simulation (LES). Doing so, the
filtered non-linear convective term must be modelled,

_OTU

5 o _ _ U —
Poa_tc +C(@.)a, + D, +Gp, = Ca,)a, - Clugu, = (10)

OXJ

where the filtered velocity is denoted by @, and the SGS stress () is defined as,

~2vs5, + ¥7;6; . Now, we only need to define a suitable expression for the SGS
viscosity. Smagorinsky has proposed de following model (19),

ve = (cal 25,f) (1)

Unfortunately this model is not appropriate in the close vicinity of a solid wall
subject to dominant molecular-viscosity effects. To overcame these limitations
Yoshsizawa has derived non-equilibrium fixed-parameter SGS model,

vs = C,sA |0 - ﬁc|][1 - exp[—(cw @ - 5C||/§A}2D (12)

- _ — opi/2 )
Where u. is the doubly filtered velocity and 3 =(2|S,.j2|) . In this model the

equilibrium of SGS fluctuation is not assumed, no use is made of wall-unit distance
based on the friction velocity and the near-wall asymptotic behaviour of the SGS
viscosity is fulfilled. None of these properties are included in the standard
Smagorinsky model. In fact, in his original paper, Yoshizawa’s final conclusion is
that this model possesses the features similar to the dynamic SGS modelling
without the classical instability of the dynamical models.
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3 COMPUTATIONAL DOMAIN, MESH AND BOUNDARY CONDITIONS

The geometry of compressor valve reed has been modelled as an axial feeding plus
a perpendicular diffuser followed by a discharge zone. The following geometrical
values have been considered: /,=2/,, e=d and D=3d. Figure 2 shows the whole
computational domain and a half zoom of the valve seat, together with valve reed
and fluid gap, respectively. The numerical results presented have been obtained
with a mesh of 250000 CVs over 32 planes.

v
Ie
di2 =

Figure 2. Valve mesh and domain. General view (left);
plane section (middle) and zoom view (right).

Figure 2 depicts the whole mesh domain, two of the 32 planes on angular division
and a zoom view near valve plate and valve reed. The mesh is composed by 4
horizontal zones from bottom to top: i) inlet orifice zone of 50 nodes; ii) down valve
zone of 40 nodes; iii) parallel zone around the valve of 12 nodes and iv) up valve
zone of 30 nodes. The same mesh domain is divided by 3 vertical zones from left to
right: i) valve plate orifice under valve reed of 30 nodes and over valve reed of 5
nodes; ii) between valve plate orifice and right orifice under valve plate of 80 nodes
and over valve plate of 20 nodes; and iii) right valve part of 30 nodes. In addition
to this, exponential concentration mesh closer to reed valve is considered at each
zone.

The boundary conditions for the simulated cases are: i) Bottom inlet orifice:
constant velocity for Re numbers from 600 to 6000; ii) Bottom part and valve reed:
non-slip boundary conditions on solid wall; iii) Lateral domain: Neumann boundary

conditions, and iv) Top outlet fluid exit: p, = Du¥s (pbvg)/z. The turbulence model

used is non-equilibrium fixed-parameter SGS model. For the solution of the
pressure equation a Direct Fourier Schur Decomposition (20) solver is used. Twenty
four hours of computation time are necessary in order to achieve the statistically
stationary motion using 2 CPUs.

4 NUMERICAL RESULTS

Figure 3 depicts non-dimensional fluid pressure maps p* = 2B /(pv?) for Re number
of 600, 3000 and 6000 from top to bottom, and gap ratios of 0.1, 0.2, 0.3, 0.6 and
0.9 form left to right.

The numerical results of Figure 3 shows that: i) pressure distribution for gap ratios
lower than 0.2 is high, uniform along valve plate orifice and equal on valve reed for
radius between 0 and d/2, while for the rest of the valve reed pressure is very low;
ii) pressure distribution for gap ratios between 0.2 and 0.6 presents different
gradients from inlet orifice to downer part of reed valve and different pressure
profile along the downer part of valve reed for radius between 0 and d/2 than
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radius between d/2 and D/2; and iii) for gap ratios higher than 0.6 circulating
effects are added at the exit of the valve reed through the gap. The same
phenomenon takes place for all studied Re numbers.

Figure 3. General view of mean pressure maps.

Figure 4 depicts non-dimensional pressure values p*=2p/(pv]) for gap ratios of
0.1, 0.2, 0.3, 0.6 at the different Re numbers of 600, 3000 and 6000, respectively.
The numerical values of Figure 4 are in fact the pressure profile under the valve of
Figure 3.
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Figure 4. Numerical results of non-dimensional pressure under valve reed.

The numerical results of Figure 4 shows how under small gaps negative forces act
over the reed valve closing it to the valve plate. This effect is drastically reduced for
s/d ratios higher than 0.2, although it appears under all studied Re numbers.

Numerical values that allow knowing the forces caused by the turbulent radial
outflow are the pressure distribution under the valve disk. In that sense the
numerical results of effective force and flow area are based on Figure 4 results.

Figure 5 depicts non-dimensional fluid velocity profile v* =¥ /v, for Re number of
600, 3000 and 6000 from top to bottom, and gap ratios of 0.1, 0.2, 0.3, 0.6 and
0.9 form left to right.
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The numerical results of Figure 5 shows how: i) at low Re numbers like 600, the
fluid flows quasi developed across the gap through all section at low gap ratios or
close to the downer reed valve at high gap ratios; ii) for higher Re numbers of 3000
or 6000, the flow presents an impact on valve reed near the corner developing
circulation flows at the end of the gap and occupying all gap section at low gap
ratios or flowing close to the downer reed valve at high gap ratios.

Figure 5. General view of instantaneous plane velocity field.

Based on the numerical results presented above, a global values of non-dimensional
force F* = F /(pv;d®), effective force Af = A, /d*and flow areas (KA), = (KA), /d?
(1)(2) are shown in an non-dimensional way. Figure 6 shows both non-dimensional
effective force and flow areas considering the Reynolds numbers of 600, 3000 and
6000, together with the s/d ratios of 0.1, 0.3, 0.6 and 0.9.
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Figure 6. Numerical results of non-dimensional force and effective force
and flow areas.

Although the numerical results obtained are not points enough to show the global
values tendency, the points obtained presents a reasonable agreement with (4)(9)
results available on research literature.

Based on the numerical results obtained for s/d ratios between 0.2 and 0.6 it is
possible to conclude that: i) Effective force and flow areas increase when s/d ratio
increases; and ii) Effective force and flow area presents different slopes increasing
when Re number increases.
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CONCLUSIONS

A numerical study of the turbulence fluid flow through valve reed has been
presented based on a CFD&HT code considering 3D axial symmetric coordinates
under Large Eddy Simulation turbulence models. First preliminary results are
depicted in order to show pressure maps evolution and velocity maps profile with
the aim to determine the forces under the valve and their non-dimensional effective
force and flow area parameters.
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