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Abstract

In this paper we explore the possibility of reusing
schedules to improve the scalability of numeri-
cal codes in shared–memory architectures with
non–uniform memory access. The main objec-
tive is to implicitly construct affinity links be-
tween threads and data accesses and reuse them
as much as possible along the execution of the
application. These links are created thorugh the
definition and reuse of iteration schedules stati-
cally defined by the user or dinamically created
at run time. The paper does not include a for-
mal proposal of OpenMP extensions but includes
some experiments showing the usefulness of con-
structing affinity links in some irregular codes.

1 Introduction

Scaling OpenMP programs on shared-memory
architectures with non-uniform memory access
latency is a challenging problem, partly because
the OpenMP programming paradigm is oblivious
of the placement of data in memory and partly
because extending OpenMP to run efficiently on
NUMA architectures may have undesirable im-
plications for the portability and the design phi-
losophy of the programming model [1, 5].

We have undertaken a project to investigate
whether scaling OpenMP on NUMA architec-
tures requires extensions to the existing OpenMP
API or not. More specifically, we investigated if
the OpenMP API should be extended with inter-
faces for explicit placement of threads and data in
the nodes of a NUMA system. Such an extension

would compromise the user-friendly, incremental
style of parallelization offered by OpenMP and
trade it for higher performance on architectures
where the placement of data in memory is critical
for localizing memory accesses.

Our project was quite successful in relaxing the
requirement of introducing data distribution di-
rectives in OpenMP, for a broad class of paral-
lel codes. We were able to show that in iterative
parallel codes with repeating memory access pat-
terns and statically scheduled parallel loops, the
memory accesses can be almost perfectly local-
ized using a runtime data distribution technique
based on dynamic page migration [4, 3]. The pre-
requisite for the effectiveness of this technique, is
the ability of the OpenMP runtime system to ob-
tain an accurate snapshot of the complete memory
access pattern of the program. If this snapshot is
available early at runtime, data can be relocated
timely enough to minimize the latency of remote
memory accesses of the program and sustain high
performance and good scaling.

Unfortunately, there remain some important
classes of parallel codes for which our runtime
data distribution engine is still unable to optimize
memory access locality, either because of the con-
straint that the memory access pattern is not itera-
tive, or because runtime data distribution alone is
insufficient if not combined with an application-
specific load distribution scheme. In this paper
we focus our interest in such applications. In par-
ticular, we concern ourselves with codes where
although the memory access pattern is not repeat-
able, it is possible to schedule the computation
so that each processor reuses the same data (or a
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subset of it per se) along the execution time of the
application. We are also concerned with iterative
irregular codes, for which explicit assignment of
data to threads is the only option for load balanc-
ing.

The key idea to improve the scalability of
OpenMP in these two classes of codes without
reverting to thread or data distribution, is the con-
struction of implicit affinity links between threads
and data, throughreusable loop schedules. As
a starting point, we use custom loop schedules
that strive for better load balancing. In cases in
which the same loops are executed repeatedly in
the program, we identify their custom schedules
as reusable, meaning that in subsequent invoca-
tions, the same processors execute the same or
a subset of the iterations that they executed dur-
ing the first invocation. Combined with a first-
touch page placement strategy, this simple tech-
nique sustains good memory access locality, even
if the memory access pattern of the program is
non-repeatable or irregular. In the rest of the pa-
per, we present motivating examples and the ra-
tionale behind reusable loop schedules and sup-
port our arguments with measurements in three
irregular kernels from a weather forecasting code
and a simple hand-crafted LU decomposition, all
written in unmodified OpenMP.

2 Reusable custom loop schedules

Consider the simple LU decomposition shown in
the upper part of Figure 1. The memory access
pattern of the code changes so that any appropri-
ate distribution of data in one iteration becomes
obsolete in the next iteration. Although the code
is iterative, the amount of computation performed
in each iteration is progressively reduced. If data
is distributed with a regular BLOCK or CYCLIC
distribution, each processor will be forced to ac-
cess remotely located data from the second iter-
ation of thek loop and beyond. Therefore, nei-
ther manual, nor runtime data distribution are ex-
pected to be effective. In order to achieve both
balanced load and good memory access locality
simultaneously, the code should be transformed
so that each iteration of thej loop is executed on

program LU
integer n
parameter (n=problemsize)
double precision a(n,n)
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

end do
!$OMP PARALLEL DO PRIVATE(i,j)

do j=k+1, n
do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)
enddo

enddo
enddo

program LU
integer n
parameter (n=problemsize)
double precision a(n,n)
integer numprocs
num procs = ompget max threads()
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

enddo
!$OMP PARALLEL DO PRIVATE(i,j,myp,jlow)
!$OMP& SHARED(a,k)

do myp = 0, numprocs-1
jlow = ((k / num procs) * numprocs) + 1 + myp
if (myp .lt. mod(k, numprocs))

jlow = jlow + num procs
do j=jlow, n, numprocs

do i=k+1, n
a(i,j) = a(i,j) - a(i,k)*a(k,j)

enddo
enddo

enddo
enddo

Figure 1: A simple LU code implemented with
OpenMP (top) and transformed to exploit data
affinity with iteration schedule reuse (bottom).

the node where thej -th column ofa is stored.

An elegant solution for localizing memory ac-
cesses is to transform the code as shown in the
lower part of Figure 1. Each processor com-
putes locally its own set of iterations to execute.
Iterations are assigned to processors in a cyclic
manner and during thek -th iteration of the outer
loop, each processor executes a subset of the it-
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erations that the same processor executed during
the k-1-th iteration of the outer loop. For ex-
ample, assume that n=1024 and the program is
executed with 4 processors. Whenk=1, proces-
sor 0 executes iterations 2,6,10,14,. . . , processor
1 executes iterations 3,7,11,15,. . . and so on. In
the second iteration, processor 0 executes itera-
tions 6,10,14 . . . , processor 1 executes iterations
7,11,15, . . . etc.

The initial cyclic assignment of iterations to
processors is equivalent to a cyclic distribution
of the columns ofa, which is likely to improve
load balancing. However, the actual purpose of
the cyclic assignment of iterations is to have each
processor reuse the data that it touches during the
first iteration of the outermostk loop. If the pro-
gram is executed with a first-touch page place-
ment algorithm, such a transformation achieves
good localization of memory accesses.

A similar situation happens in a sequence of
parallel loops with slightly different lower and/or
upper bounds. In this case, the sameSTATIC
schedule applied to each loop may provoke a
different assignment of iterations to threads. In
this case it would be necessary to restructure the
loops in a similar way in order to ensure that each
thread reuses data accessed or computed in previ-
ous loops.

We believe that this kind of transformations
can be relatively easy to apply for a restructur-
ing compiler, without requiring a new OpenMP
directive. Even if this is not the case, the trans-
formation requires merely an extension to the
SCHEDULEclause of the OpenMPPARALLEL
DO directive. This extension would dictate the
compiler to compute the initial iteration sched-
ule (cyclic in this case), provide it with a name
and reuse it in subsequent invocations of the same
loop or different loops in a sequence.

Although the previous examples have some in-
teresting properties with respect to memory affin-
ity, they are still fairly simple parallel codes,
which can be handled by a regular distribution of
data combined with loop schedule reuse. How-
ever, this is not the case for irregular parallel
codes, where the notion of irregularity refers to
the data access pattern. The peculiar feature of
irregular parallel codes is that the physical prob-

lem they model has some form of structural irreg-
ularity, which makes certain regions of the mod-
eled data space more densely populated with data
points than others (modeling the earth towards the
poles and close to the equatorial is a simple exam-
ple of a irregular data space). Irregular codes ne-
cessitate the use of application-specific load bal-
ancers, which are hard to formalize for inclusion
in a flat shared-memory programming model like
OpenMP. At the same time, implementing irreg-
ular data distributions is undesirable for the sake
of the simplicity and the portability of OpenMP.

A viable solution for establishing thread-to-
data affinity relationships in irregular OpenMP
codes stems from allowing more flexibility in the
loop schedulers. More specifically, it is possible
to construct loop schedules such that the assign-
ment of iterations to processors implements im-
plicitly irregular data distributions, customized to
the semantics of the application. The idea is to
construct explicit maps of data to processors (re-
flecting the irregular data distributions) and have
the compiler schedule the iterations, so that each
processor touches first and then reuses the data
assigned to it by the map. What makes this tech-
nique effective, is an automatic first-touch data
placement algorithm, which places data (more
specifically the pages that cache the data) together
with the processor that touches it first during the
course of the program.

Proper collocation of threads and data in an
OpenMP parallel loop can be implemented trans-
parently in the runtime system with the follow-
ing procedure. The compiler identifies the data
accessed during the loop and injectsmprotect()
calls to invalidate the ranges of the virtual address
space that contain this data [4]. This invalidation
is required to discard the –possibly inopportune—
placement of data before the first execution of
the loop. During the first execution of the loop,
data is placed in processor memories in the or-
der they are accessed by processors, according to
the first-touch algorithm. Having this observation
in mind, the programmer can assign an arbitrarily
sized and structured block of data to a processor,
simply by assigning the loop iterations that access
this block to the same processor in the OpenMP
PARALLEL loop.
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!HPF$ PROCESSORS PROCS(NPROC),
!HPF$& PROCSAB(NRPOCA,NPROCB)
!HPF$ DISTRIBUTE(GENBLOCK(MAPGLA),
!HPF$& INDIRECT(MAPFLD0)) ONTO PROCSAB::ZGL
REAL ZGL(NRPOMAG,NGT0)
!HPF$ INDEPENDENT,NEW(JFLD),
!HPF$& ONHOME(ZGL(INDL(J),:)), REUSE(LREUSE)
DO J=1,NGPTOTG

DO JFLD=1,NGT0
ZGL(INDL(J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(a)

DO J=1,NGPTOTG
RINDL(INDL(J))=J

ENDDO

(b)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
MYITER(IAM,J)=RINDL(J)

ENDDO
ENDDO

(c)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
ZGL(MYITER(IAM,J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(d)
Figure 2: Implementing a generalized block distribution implicitly, by proper assignment of loop itera-
tions to processors.

Figure 2 illustrates an example of how proper
assignment of loop iterations to processors im-
plements implicit irregular data distributions, us-
ing the first-touch page placement algorithm. The
example shows an excerpt from the data trans-
position in the LG kernel, taken from the Inte-
grated Forecasts System of the European Center
for Medium Range Weather Forecasting [6]. The
HPF implementation of the kernel distributes ar-
ray ZGL using a generalized block distribution
along its first dimension (Figure 2(a)). General-
ized block distributions are used for load balanc-
ing in irregular grids. They assign variable-sized
blocks to processors, to cope with structural ir-
regularities that make certain regions of the grids
more densely populated than other regions of the
grids. The size of the block assigned to each pro-
cessor in a generalized block distribution is de-
fined by the elements of an array (MAPGLA in
our example).MAPGLA(i) contains the size of
the block assigned to processori.

In order to implement the generalized block
distribution by assigning iterations to processors,
we identify the iterations that access the ele-

ments of the block assigned to each processor by
the GEN BLOCK distribution, as shown in Fig-
ure 2(b). The array element RINDL(J) stores the
iteration of the loop that accesses the elements
of row INDL(J) of ZGL. These elements must
be mapped to the processor thatowns INDL(J)
according to theONHOME clause. This is
implemented by constructing a map of itera-
tions to processors, which is defined as a two-
dimensional arrayMYITER(i,j) , I=1, . . . P, J=1,
. . . max(MAPGLA(i)). The elements of this ar-
ray are set with the code fragment shown in Fig-
ure 2(c). Intuitively, if an elementi1 is assigned
to processorp, we first find the iterationj1 that
accessesi1, by finding the valuej1 that satisfiesINDL(j1) = i1. We then setRINDL(i1) = j1
and assign iterationj1 to processorp by settingMY ITER(p; k) = j1 for somek; 1 � k �MAPGLA(p). Finally, the original loop is trans-
formed so that each processor executes its as-
signed set of iterations, as shown in Figure 2(d).

This procedure can be easily automated in
an extension of theSCHEDULE clause of the
OpenMP DO directive. In analogy to data-
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parallel directives implemented in variants of
HPF, the SCHEDULE clause may include a
GEN BLOCK(MAP(1 : P )) parameter or an
INDIRECT(MAP(1 : N )) parameter. In the first
case, elementi of the MAP array contains the
size of a contiguous chunk of iterations assigned
to processori. In the second case, elementi of
the MAP array contains the mapping of an ele-
ment of a shared array to a processor, along the
dimension of the array indexed by the index of the
parallelized loop. The OpenMP compiler should
interpret this as a mapping of the iteration that up-
dates this element to the same processor.

3 Results

We present some results to demonstrate the poten-
tial of loop schedule reuse for exploiting memory
affinity and substituting irregular data distribu-
tions. The results are taken from experiments on
a 64-processor SGI Origin2000. The system on
which we experimented has MIPS R10000 pro-
cessors running at 250 MHz, with 32 Kilobytes
of split L1 cache and 4 Megabytes of unified L2
cache per processor, and 12 Gigabytes of DRAM
memory. The operating system is IRIX version
6.5.5. The page size for data pages is 16 Kilo-
bytes. All experiments were conducted on a ded-
icated, idle system.

Figures 3 and 4 illustrate the execution times
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Figure 3: Execution times of LU.

of our simple LU decomposition (performed on
a 1400�1400) and the three irregular kernels
from the Integrated Forecasts System (IFS) of
the European Center for Medium Range Fore-
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Figure 4: Execution times of the irregular kernels.
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casting (ECMWF) [6], respectively. The irreg-
ular kernels perform data transpositions between
the main computations phases of the IFS code.
LG transforms data from the physical grid space
to the Fourier grid space, TS transforms data
from the Fourier space to the spectral space and
vice versa, while SL computes trajectories of grid
points according to the encountered winds. LG
and SL use quasi-regular grids that model the at-
mosphere, using more points towards the equato-
rial and less points towards the poles. TS uses a
triangular grid, which is produced from applying
Legendre transforms to the Fourier space grid.

Execution times are plotted on processor scales
ranging from 1 to 64 processors in even pow-
ers of two. The OpenMP implementation of
LU with loop schedule reuse is compared against
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Figure 5: Histograms of memory accesses in LU.

the unmodified OpenMP implementation and an
implementation that encompasses explicit data
distribution directives, provided as extensions to
OpenMP by the SGI compiler [2]. The OpenMP
implementation of the irregular kernels that uses
iteration maps and schedule reuse is compared
against the unmodified OpenMP implementation
and a well-tuned MPI implementation of the same
programs. The MPI implementation implements
irregular data distributions, including generalized
block distributions (and indirect distributions (i.e.
distributions based on an indirection map be-
tween array indices and processors).

The message from the presented results is that
it is possible to obtain the full benefit of thread-
to-memory affinity without introducing data dis-
tribution extensions to OpenMP. This is ac-
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Figure 6: Histograms of memory accesses in LG.
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Figure 7: Histograms of memory accesses in SL.

complished by providing additional flexibility in
scheduling the work-sharing constructs. Our
transformations improve the scalability of the
unmodified OpenMP implementations approxi-
mately by a factor of 2, while the performance
of the irregular OpenMP kernels is competitive to
that of MPI. The latter result is of particular inter-
est, first because it is among the first to contradict
the existing experimental evidence that position
OpenMP behind MPI in terms of performance
and scalability, and second because the program-
ming effort required to reach this level of perfor-
mance with OpenMP is one order of magnitude
less than the programming effort required to reach
the same level with MPI.

Figures 5 through 8 show histograms of mem-
ory accesses, taken from the execution of the
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Figure 8: Histograms of memory accesses in TS.

benchmarks on 64 processors. The processors on
the Origin2000 are attached to nodes with two
processors per node. The processors in a node
shared the memory modules of the node. The his-
tograms show the accumulated memory accesses
per node, divided into local accesses (i.e. accesses
from the processors on the node, gray part of the
bars) and remote accesses (i.e. accesses from pro-
cessors outside the node, black part of the bars).
The histograms demonstrate the impact of using
loop schedule reuse on memory access locality.
Aside from reducing radically memory latency
by reducing the number of remote memory ac-
cesses per node, the schedule reuse transforma-
tion helps in alleviating contention at memory
modules. Contention is alleviated by balancing
the remote memory accesses across the nodes of
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the system. Balancing remote memory accesses
is crucial for distributing evenly the traffic of mes-
sages in the interconnection network. Memory
access balancing is almost excellent in LU and
LG when iteration schedule reuse is applied. TS
has somewhat more unbalanced memory access
pattern, but the overall number of remote mem-
ory accesses is reduced drastically. The only pro-
gram in which schedule reuse has limited effec-
tiveness in reducing and balancing remote mem-
ory accesses is SL. We suspect that false shar-
ing is the reason for this behaviour, but more ex-
periments are needed to track the problem to its
source.

4 Conclusion

In this paper we have presented loop schedule
reuse, a simple methodology for improving mem-
ory access locality in OpenMP programs. We
have also shown that it is possible to use cus-
tomizable loop schedules in OpenMP, to imple-
ment arbitrary data distributions using the first-
touch page placement algorithm. The results of
this work corroborate the belief that OpenMP
can scale well on tightly-coupled NUMA archi-
tectures without requiring extensions or modifi-
cations to the programming model. Further re-
search is required to investigate if OpenMP can
scale well on loosely-coupled NUMA architec-
tures such as clusters and constellations, using au-
tomatic data placement algorithms and appropri-
ate program transformations . This is the primary
target of our future work.
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