Gonzalez, M. [et al.]. Dual-level parallelism exploitation with OpenMP in coastal ocean circulation modeling.
"Lecture notes in computer science", Maig 2002, vol. 2327, p. 469-478.
The final authenticated version is available online at https://doi.org/10.1007/3-540-47847-7_43

Dual-L evel Parallelism Exploitation with OpenM P
in Coastal Ocean Circulation Modeling

Marc Gonzélez Eduad Ayguadé, Xavier Martordl®,
Jes® Labartaard Phu V. Luond

'Europea Center fo Paralldism of Barcelora (CEPBA)
Technic&University of Catalinya (UPC) BarcelonaSpain

University of Texas
Enginee Researt and Development Cemte
Major Sharel Resoure Center
Vicksburg, MS 39.80.

Abstract. Two alternatie duallevd paralld implementatios o the
Multiblock Grid Prircetan Ocean Mode(MGPOM) are comparechithis paper
The firs one combines th ug d two progranming paradigms messag
passng with the Messag Passig Interfade (MP) ard shard memoy with
OpenMP (versim calld MPIOpenMP) the seond use ony OpenMP
(versim called OpeaMP-Only). MGPQM is a mutiblock grid code that enalde
the exploitaton o two levebk o parallelism.

The MPFOpenMP implementation uses NIRo parallelze conputatiors by
assignirg eat grid block to a unique MPprocess Sirce nd all grid bloclks ae
of the sane size, tk workload betwee procese varies OpenM is use
within eat MPI proces b improve loal balance The alternatie OpenMP
Only implementatio use sone extensions propodeo OpenMP thd defines
thread group in order o efficiently exloit the availabé two levek o
paralldism. Theg extensins ae supportd by a regarch OpenM compile
namel NanosCompiler

Performane resuls d the two implementatns fran the MGPQM code on a
20-block grid for the Arabian GuF simulaion demastrae the dficacy of the
OpenMROnly versons ¢ the code. Tk simplicity d the OpenMP
implementsion as wellas the pasibiity of using and simpl defining policies
to dynamically charg the allocation of OpenRlthread © the two leveb o
paralldism is the man resul of this sty and suggesti consider the
alterndive for tre parallelizatio o future applicéions.
Keywords OpenMP ard MPI implementatbns multiple leves d pardlelism,
multiblock grid, coasteocean circulation nodel

1 Introduction

In recen years OpenMP [1] has emergd & a industrid library for parallé
programming i shareememory computersParallé performane is achieve withou
significartly sacrificing exection time when it is portel acres a range foshared
menory platforms Moreover its simpicity makes the mnversion of a sequentia

code to a parallel code for improving performance much easier and without major
code modifications.

One of the key features which is not currently exploited by most current
commercial and experimental systems is the use of OpenMP for multiple levels of
parallelism. In general, OpenMP can be used to exploit the multi-level paralelismin
most scientific and engineering numerical applications. This technique, however, has
not been fully applied to any of these applications because they achieve satisfactory
speed-ups when executed in mid-size parallel platforms or because most current
systems supporting OpenMP (compilers and associated thread--level layer)
sequentialize nested paradld constructs. This has originated the current practice of
exploiting multiple levels of paralelism through a combination of different
programming models and interfaces, MPI [2] coupled with OpenMP for example. In
such cases, MPI is usudly used for communication at the outer levels between
subdomains or between block grids (multiblock grid), while OpenMP is used to
paraldize the inner levels within each subdomain or block.

In addition to the possibility of nesting paralel constructs, OpenMP offers the
possibility of controlling the number of threads usable at each level of parallelism
(clause NUM_THREADS available in OpenMP v2.0). Some extensions have been
proposed to OpenMP in order to alow a cleaner and effective control over the work
distribution when dealing with multiple levels of parallelism through the definition of
thread groups [4]. This proposa is the one used to express the parallelism in the
MGPOM application and will be discussed in Section 2. Other proposals consist in
offering work queues and an interface for inserting application tasks before execution-
for example, the lllinois-Intel Multithreading library [5] or the WorkQueue
mechanism [6] proposed by KAI, in which work can be created dynamically, even
recursively, and put into queues. The proposal used in this paper is simpler and allows
finer control over the allocation of threads to the multiple levels of paralelism in the
application.

In this study, OpenMP is used for both outer as well asinner levels. Details of the
extensions to OpenMP are discussed in Section 2. Its application to the MGPOM on a
20-block grid of the Arabian Gulf smulation is presented in Section 3. Parallel
performance results are presented in Section 4. The conclusions of this study are in
Section 5.

2 NanosCompiler Extensions

The NanosCompiler [3] and runtime library are serving as a research platform for
proposing and evaluating extensions to the OpenM P language definition. One of these
extensions consists of the dynamic creation of thread groups and the definition of the
actua composition of groups at runtime. Groups can be created to exploit both loop-
and task-level paraleism.

In the fork/join execution model defined by OpenMP, a program begins execution
as a single process or thread. This thread executes sequentially until a PARALLEL
construct is found. At thistime, the thread creates ateam of threads and it becomes its
master thread. All threads execute the statements enclosed lexically within the paralle
constructs. Work-sharing constructs (DO, SECTIONS and SINGLE) are provided to
divide the execution of the enclosed code region among the members of a team. All

threads are independent and may synchronize at the end of each work-sharing
construct or at specific points (specified by the BARRIER directive). Exclusive
execution mode is a so possible through the definition of CRITICAL regions.

The SECTIONS directive is a non-iterative work-sharing construct which specifies
the enclosed sections of code (each one delimited by a SECTION directive) are
divided among threads in the team. Each section becomes a task which is executed
once by a thread in the team. The DO work-sharing construct is used to divide the
iterations of a loop into a set of independent tasks, each one executing a chunk of
consecutive iterations. Finally, the SINGLE work-sharing construct informs that only
onethread in the team is going to execute the work.

In this study, a group of threads is composed of a subset of the total number of
threads available in the team to run a parallel construct. The threads participating in a
parallel construct are identified following the active numeration inside the current
team (from O to omp_get_num_threads()-1). In a parald construct, the programmer
may define the number of groups and the composition of each group. When a thread
in the current team encounters a parallel construct defining groups, the thread creates
anew team and it becomes its master thread. The new team is composed of as many
threads as groups are defined; the rest of the threads are reserved to support the
execution of nested parallel constructs. In other words, the groups definition
establishes the threads that are involved in the execution of the parald construct and
the alocation strategy or scenario for the inner levels of parallelism that might be
spawned. When a member of this new team encounters another parallel construct
(nested to the one that caused the group definition), it creates a new team and deploys
its paralelism to the threads that compose its group.

The GROUPS clause allows the user to specify thread groups. It can only appear in
aPARALLEL construct or combined PARALLEL DO and PARALLEL SECTIONS
constructs.

C$OMP PARALLEL [DO|SECTIONS] [GROUPS (gspec)]

Different formats for the groups specifier gspec are alowed [4]. In this paper we
only comment on the two more relevant. For additional details concerning alternative
formats as well asimplementation issues, please refer to this publication.

GROUPS (ngroups, weight)

In this case, the user specifiesthe number of groups (ngroups) and an integer vector
(weight) indicating the relative amount of computation that each group has to
perform. Vector weight isallocated by the user in the application address space and
it has to be computed from information available within the application itself (for
instace iteration space, computational complexity or even information collected at
runtime). The runtime library determines, from this information, the composition of
the groups. The algorithm assigns all the available threads to the groups and ensures
that each group at least receives one thread. The main body of the agorithm is shown
in Figure 1 (using Fortran90 syntax).

howmany (1:ngroups) =1

do while (sum(howmany (l:ngroups)) .lt. nthreads)
pos = maxloc (weight (1l:ngroups)/

howmany (1 :ngroups))

howmany (pos (1)) = howmany(pos(l)) + 1

end do

masters(l) = 0

do i = 1, ngroups-1
masters (i+l) = masters (i) + howmany (i)

end do

Fig. 1. Skeleton of the algorithm used to compute the composition of groups.

The library generates two interna vectors (masters and howmany). In this
algorithm, nthreads is the number of threads that are available to spawn the
paraldism in the parale construct containing the group definition.

The most general format allows the specification of three parameters in the group
definition:

GROUPS (ngroups, masters, howmany)

The first argument (ngroups) specifies the number of groups to be defined and
consequently the number of threads in the team that is going to execute the paralléel
construct. The second argument (mastexrs) isan integer vector with the identifiers
(using the active numeration in the current team) of the threads that will compose the
new team. Findly, the third argument (howmany) is an integer vector whose
elements indicate the number of threads that will compose each group. The vectors
have to be alocated in the memory space of the gpplication, and their content and
correctness have to be guaranteed by the programmer. Notice that this format must be
used when the default mapping explained before does not provide the expected
performance.

3 Application of NanosCompiler Extensionsto M GPOM

MGPOM is a standard Fortran77 multiblock grid code. A parallel version of MGPOM
uses MPI asynchronous sends and receives to exchange data between adjacent blocks
at the interfaces. OpenMP has been used as a second level of parallelization within
each MPI process to improve the load balance in the smulation of the Arabian Gulf
[7]. Thisareais extended from 48 East to 58 East in longitude and from 23.5 North to
30.5 North in latitude (l€eft part of Figure 2). The computational 20-block grid shown
on theright part of Figure 2 (also used in [7]) isused in this study.

OpenMP with NanosCompiler Extensions is used to pardlelize the seria version
of the MGPOM code at the outer levels (block to block) as well as at the inner levels
(within each block). The number of threads used to exploit the inner leve of

paralelism depends on the size of each grid block. Figure 3 shows the use of
OpenMP directives and GROUP S construct implemented into the main program and a
subroutine of the serid MGPOM code version. This figure shows a version in which
the runtime library, using the default algorithm described in Section 2, determines the
composition of the groups. The GROUPS clause has as input arguments the number
of blocks (maxb) and a vector with the number of grid pointsin each block (work).

58E,30.5N
K Ait \.L
N IRAN
NN

ﬂ”\gemian Gulf K_f_ . ~ :—""“\

iﬂ I Strait jn j‘ri IIIZ/F \\

22“‘1:,/1 = K\
FAUDI ARARIA ,___‘Tﬂ OMAN

48E,23.5N

Twenty-block Grid

Fig. 2. The Persian Gulf coastline (left). The 20-block grid with blocks of different size
(right).

Notice that the GROUPS clause is the only non-standard use of OpenMP. The
exploitation of multiple levels of paralelism is achieved through the nesting of
PARALLEL DO constructs.

PROGRAM main

C$SOVP PARALLEL DO PRI VATE(n) GROUPS(maxb, wor k)
DO 414 n = 1, maxb

IF (mode .ne. 2) THEN
CALL baropg (drhox, drhoy, drx2d, dry2d, n)
ENDIF
414 CONTINUE
END
SUBROUTINE baropg (drhox, drhoy, drx2d, dry2d, nb)

C30OWP PARALLEL DO PRI VATE (i,j,k)

DO 200 j =1, jm

DO 200 k = 1 kb
DO 200 I = 1, im
rho (i, j, k,nb) = rho(i, j,k,nb) - rmean(i, j, k,nb)

200 CONTINUE

RETURN

END

Fig. 3. Excer pt of the OpenM P implementation.

Table 1 shows the number of grid points in each block for the 20-block grid. This
is the composition of the work vector. The runtime library supporting the code
generated by the NanosCompiler would generate the allocation of threads to groups
shown in Tables 2 and 3 assuming 20 and 30 processors, respectively. Who and
Howmany are the two internal vectors generated by the library with the master of
each group (who) and the number of threads to be used in each group (howmany).
With 20 processors, the critical path is determined by the largest block (i.e. block
number 8), yields a theoretical speedup of 12.5. With 30 processors, the critical path
is determined by the block with the largest ratio size/howmany (i.e. block number
17), with atheoretical speed-up of 19.4.

Table 1. Number of grid pointsin each block for the twenty-block case.

Block 1 2 3 4 5 6 7
Size 1443 1710 1677 2150 700 989 2597
Block 8 9 10 11 12 13 14
Size 2862 2142 1836 1428 1881 1862 2058
Block 15 16 17 18 19 20 -
Size 1470 1280 1848 2318 999 2623 -

Table 2. Default allocation of threadsto groupswith 20 processors.

Block 1 2 3 4 5 6 7 8 9 10
Howmany 1 1 1 1 1 1 1 1 1 1
Who 0 1 2 3 4 5 6 7 8 9
Block 11 12 13 14 15 16 17 18 19 20
Howmany 1 1 1 1 1 1 1 1 1 1
Who 10 11 12 13 14 15 16 17 18 19
Table 3. Default allocation of threadsto groupswith 30 processors.
Block 1 2 3 4 5 6 7 8 9 10
Howmany 1 1 1 2 1 1 2 2 2 2
Who 0 1 2 3 5 6 7 9 11 13
Block 11 12 13 14 15 16 17 18 19 20
Howmany 1 2 2 2 1 1 1 2 1 2
Who 15 16 18 20 22 23 24 25 27 28

According to the alocation of threads to groups shown in Table 3, the average
work per thread has a large variance (from 1848 in block 17 to 700 in block 5). This
variance resultsin a noticeable load imbal ance. To reduce this load imbal ance, severa
blocks could be gathered into a cluster such that the work distribution is equally
divided among groups. To achieve this, the user can define its own composition of
groups, as shown in Figure 4.

PROGRAM main
CALL conput e_groups(work, maxb, who, howrany)

C$SOVP PARALLEL DO PRI VATE(n) GROUPS(maxb, who, hownany)
DO 414 n = 1, maxb

IF (mode .ne. 2) THEN
CALL baropg (drhox, drhoy, drx2d, dry2d, n)

ENDIF
414 CONTINUE

END

Fig. 4. Excer pt of the OpenM P implementation with user-defined groups.

User function compute_groups decides how many OpenMP threads are
devoted to the execution of each block and which OpenMP thread is going to be the
master in the exploitation of the inner level of paralelism insde each block. This
function has as input arguments the number of blocks (maxb) and a vector with the

number of grid points in the block (work). It returns two vectors with the master of
each group (who) and the number of threads to be used in each group (howmany).
Thisistheinformation that is later used inthe GROUP S clause.

Table 4 shows the alocation of the threads to groups as well as the identities of
blocksin acluster. A cluster of two blocks with 20 processors is shown in this case.
In this case, the work imbalance is noticeably reduced.

Table 4. Allocation of threadsto groups with 20 processor s after clustering.

Cluster 1 2 3 4 5
Blocks 1,9 2,13 3,12 4,11 5,8
Howmany 2 2 2 2 2
Who 0 2 4 6 8
Cluster 6 7 8 9 10
Blocks 6, 20 7,19 | 10,17 | 14,15 | 16,18
Howmany 2 2 2 2 2
Who 10 12 14 16 18

4 Perfor mance Results

In this section we evduate the behaviour of two pardlel versions of MGPOM. The
MPI-OpenMP version exploits two levels of paraldism by combining the two
programming paradigms. MPI to exploit the inter-block parallelism and OpenMP to
exploit the intrablock paralelism. The OpenMP-Only version exploits the two-
levels of parallelism using OpenM P and the extensions offered by the NanosCompiler
and supporting OpenMP runtime system. For the compilation of the multilevel
OpenMP version we use the NanosCompiler to trandate from extended OpenMP
Fortran77 to plain Fortran77 with calls to the supporting runtime library NthLib. We
use the native £77 compiler to generate code for an SGI Origin2000 system [8]. The
flags are set to -mips4 -64 -02. The experiments have been performed on
system with 64 R10k processors, running at 250 MHz with 4 Mb of secondary cache
each.

Table 5. Speed-up with respect to the sequential execution for the multi-level OpenMP
and the mixed MPI/OpenMP versions.

OpenM P-Only MPI-OpenMP
10 9.6
20 153 147
30 18.7
40 23.9 222
50 26.7
60 27.8 23.0

Table 5 shows the speed-up achieved by the two versions of the program. The
MPI-OpenMP version uses the same number of threads per MPI process For this
reason performance numbers are avail able for only 20, 40 and 60 processors.

In order to understand these results, we have instrumented the application with the
—P option of the NanosCompiler and generated a trace suitable for being analyzed
with Paraver [9]. Eadh iteration of the application time step loop can be divided in 5
different parts: P1, P2, P3, P4 and P5. Basicdly, parts P1 and P4 perform independent
computations over the blocks. However, parts P2, P3 and P5 are responsible for
updating the boundaries of the blocks; these parts require communication in the MPI
version and are the source of cache coherence overheads in the OpenMP version.
Table 6 shows the arerage speead-up d each of these individual parts for the
OpenMP-Only version.

Table 6. Speed-up (relative to the execution with 10 processors) of each part of the time
step loop for the QpenMP- Onl y version.

P1 P2 P3 P4 P5
10 1 1 1 1 1
20 18 12 13 18 12
30 22 16 18 23 14
40 32 17 19 35 15
50 4.1 2.0 2 45 17
60 4.9 21 2.1 53 18

Notice that parts P1 and P4 scale much better than the rest of the parts. The
paraldization of parts P2, P3 and P5 (upckte of the boundaries) perform accesses to
memory with no data locality with resped to the accespattern performed in parts P1
and P4. This causes a large number of secondary cache misss and cache
invalidations, which add overhead to the overall parallel exeaution time. In additionto
that, parts P2, P3 and P5 include alarge number of small loops whose paral eli zation
is not efficient, due to the size of the iteration space traversed and due to the barriers
that have to be performed to enforce the @rrect update of the boundary elements.

In order to conclude this sdion, Table 7 shows the rel ative performance (w.r.t the
exeadtion with 20 processors of the OpenMP-only version in Table 5) for three
OpenMP versions of the gplication: “no_groups’ exploits two levels of parallelism
but does not define groups (similar to using the NUM_THREADS clause), “groups’
performs a homogeneous distribution of the available threads among the groups, and
“weighted” performs a weighted distribution d the available threads among the
groups. Notice that the performance of both “groups’ and “weighted” versions is
greater than “no_groups’. Also, the “weighted” performs better due to load
unbalance that exists among blocks. In summary, additional information is needed in
the NUM_THREADS clause to boost the performance of applications with multiple
levels of paralelism.

Table 7. Speed-up with respect to OpenM P-only with 20 processor s for three different

OpenMP versions.

no_groups groups weigthed
20 0.44 1 1
40 0.33 1.5 1.7
60 0.26 1.51 1.9

5 Conclusions

The main purpose of this paper has been to examine the performance achievable when
exploiting nested paralelism in two equivalent parald versions of a coastal ocean
circulation modeling application. One of the versions relies on mixing two
programming paradigms to exploit the paralelism: MPl and OpenMP. The other
version uses only OpenMP (using the possibility offered by the language definition of
nesting paralel constructs and some extensions offered by the research OpenMP
NanosCompiler).

The paper summarizes the extensions to OpenMP proposed to efficiently exploit
nested paralelism. The extensions are mainly based on the definition of thread
groups. The composition of the groups can be dynamically decided by the supporting
OpenMP runtime system (using a predefined allocation strategy based on the amount
of work to be performed by each group) or by the user using hisher own algorithm
for deciding the allocation. The paper presents results in which the default alocation
is overridden by the user in order to better baance the work distribution by
overlapping the execution of several grid blocks on the same group of threads.

Regarding the parallelization of MGPOM, the main conclusion from this study is
that OpenMP alone is able to achieve a similar (or even better) performance than the
one that could be achieved mixing two programming paradigms (such as MPI and
OpenMP). The use of a single programming paradigm makes the devel opment, tuning
and maintenance process of parallel applications simpler. Close analyses of the results
show that the scalability of the application is limited by parts of the application that
update the boundaries of the blocks. The parallelization with OpenMP performs a
static scheduling of loop iterations that degrade the locality of the memory hierarchy.
In addition to that, the paralelization with OpenMP forces a large number of
synchronizations that add extra overheads to the parallel execution time. We are
currently investigating aternative parallelization strategies for these parts that may
improve the efficiency of the parallel execution.

6 Acknowledgments

This work has been supported by the Spanish Ministry of Science and Technology
and the European Union FEDER program under contract T1C2001-0995-C02-01, and
by the European Center for Parallelism of Barcelona (CEPBA).

References

1. OpenMP Organization. OpenMP Fortran Application Interface, v. 2.0, www.openmp.org,
June 2000.

2. M. Snir, S. Otto, S. HussLederman, D. Walker and J. Dongarra. MPI — The Complete
Reference: Volume 1, the MPI Core. MIT Press, Cambridge, 1998.

3. E. Ayguadé, M. Gonzalez, J. Labarta, X. Martorell, N. Navarro, J. Oliver, NanasCompil er:
A Reseach Infrastructure for OpenMP Extensions. 1* European Workshop on OpenMP
(EWOMP' 99), Lund (Sweden). September/October 1990.

4. M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labarta and N. Navarro. OpenMP
Extensions for Thread Groups and Their Runtime Support. In Workshop on Languages and
Compilersfor Parallel Computing, August 2000.

5. M. Girkar, M. R. Haghighat, P. Grey, H. Saito, N. Stavrakos and C.D. Polychronopoul os.
Illinais-Intel Multithreading Library: Multithreading Support for Intel Architecture--based
Multiprocessor Systems. Intel Technology Journal, Q1 issue, February 1998.

6. S. Shah, G. Haa, P. Petersen and J. Throop. Flexible Control Structures for Parallelism in
OpenMP. In 1st European Workshop onOpenMP, Lund (Sweden), September 1999.

7. P. Luong, C.P. Bresheas and L.N. Ly, Application of Multiblock Grid and Dual-Level
Parallelism in Coastal Ocean Circulation Modeling. Journa of Applied Mathematicd
Modelling, submitted for publication.

8. Silicon Graphics Computer Systems SGI. Origin 200 and Origin 2000. Technical Report,
199%.

9. European Center for Parallelisnm of Barcelona. Paraver and Instrumentation Packages
Reference Manual. http://www.cepba.upc.es/paraver.

