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Abstract. Two alternative dual-level parallel implementations of the 
Multiblock Grid Princeton Ocean Model (MGPOM) are compared in this paper. 
The first one combines the use of two programming paradigms: message 
passing with the Message Passing Interface (MPI) and shared memory with 
OpenMP (version called MPI-OpenMP); the second uses only OpenMP 
(version called OpenMP-Only). MGPOM is a multiblock grid code that enables 
the exploitation of two levels of parallelism. 
The MPI-OpenMP implementation uses MPI to parallelize computations by 
assigning each grid block to a unique MPI process. Since not all grid blocks are 
of the same size, the workload between processes varies. OpenMP is used 
within each MPI process to improve load balance. The alternative OpenMP-
Only implementation uses some extensions proposed to OpenMP that defines 
thread groups in order to efficiently exploit the available two levels of 
parallelism. These extensions are supported by a research OpenMP compiler 
named NanosCompiler.    
Performance results of the two implementations from the MGPOM code on a 
20-block grid for the Arabian Gulf simulation demonstrate the efficacy of the 
OpenMP-Only versions of the code. The simplicity of the OpenMP 
implementation as well as the possibility of using and simply defining policies 
to dynamically change the allocation of OpenMP threads to the two levels of 
parallelism is the main result of this study and suggests to consider this 
alternative for the parallelization of future applications. 
Keywords: OpenMP and MPI implementations, multiple levels of parallelism, 
multiblock grid, coastal ocean circulation model.  

1 Introduction 

In recent years, OpenMP [1] has emerged as an industrial library for parallel 
programming in shared-memory computers. Parallel performance is achieved without 
significantly sacrificing execution time when it is ported across a range of shared-
memory platforms. Moreover, its simplicity makes the conversion of a sequential 
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code to a parallel code for improving performance much easier and without major 
code modifications. 

One of the key features which is not currently exploited by most current 
commercial and experimental systems is the use of OpenMP for multiple levels of 
parallelism. In general, OpenMP can be used to exploit the multi-level parallelism in 
most scientific and engineering numerical applications. This technique, however, has 
not been fully applied to any of these applications because they achieve satisfactory 
speed-ups when executed in mid-size parallel platforms or because most current 
systems supporting OpenMP (compilers and associated thread--level layer) 
sequentialize nested parallel constructs. This has originated the current practice of 
exploiting multiple levels of parallelism through a combination of different 
programming models and interfaces, MPI [2] coupled with OpenMP for example. In 
such cases, MPI is usually used for communication at the outer levels between 
subdomains or between block grids (multiblock grid), while OpenMP is used to 
parallelize the inner levels within each subdomain or block.  

In addition to the possibility of nesting parallel constructs, OpenMP offers the 
possibility of controlling the number of threads usable at each level of parallelism 
(clause NUM_THREADS available in OpenMP v2.0). Some extensions have been 
proposed to OpenMP in order to allow a cleaner and effective control over the work 
distribution when dealing with multiple levels of parallelism through the definition of 
thread groups [4]. This proposal is the one used to express the parallelism in the 
MGPOM application and will be discussed in Section 2. Other proposals consist in 
offering work queues and an interface for inserting application tasks before execution-
for example, the Illinois--Intel Multithreading library [5] or the WorkQueue 
mechanism [6] proposed by KAI, in which work can be created dynamically, even 
recursively, and put into queues. The proposal used in this paper is simpler and allows 
finer control over the allocation of threads to the multiple levels of parallelism in the 
application.  

In this study, OpenMP is used for both outer as well as inner levels. Details of the 
extensions to OpenMP are discussed in Section 2. Its application to the MGPOM on a 
20-block grid of the Arabian Gulf simulation is presented in Section 3. Parallel 
performance results are presented in Section 4. The conclusions of this study are in 
Section 5.  

2 NanosCompiler Extensions 

The NanosCompiler [3] and runtime library are serving as a research platform for 
proposing and evaluating extensions to the OpenMP language definition. One of these 
extensions consists of the dynamic creation of thread groups and the definition of the 
actual composition of groups at runtime. Groups can be created to exploit both loop- 
and task-level parallelism. 

In the fork/join execution model defined by OpenMP, a program begins execution 
as a single process or thread. This thread executes sequentially until a PARALLEL 
construct is found. At this time, the thread creates a team of threads and it becomes its 
master thread. All threads execute the statements enclosed lexically within the parallel 
constructs. Work-sharing constructs (DO, SECTIONS and SINGLE) are provided to 
divide the execution of the enclosed code region among the members of a team. All 



threads are independent and may synchronize at the end of each work-sharing 
construct or at specific points (specified by the BARRIER directive). Exclusive 
execution mode is also possible through the definition of CRITICAL regions. 

The SECTIONS directive is a non-iterative work-sharing construct which specifies 
the enclosed sections of code (each one delimited by a SECTION directive) are 
divided among threads in the team. Each section becomes a task which is executed 
once by a thread in the team. The DO work-sharing construct is used to divide the 
iterations of a loop into a set of independent tasks, each one executing a chunk of 
consecutive iterations. Finally, the SINGLE work-sharing construct informs that only 
one thread in the team is going to execute the work. 

In this study, a group of threads is composed of a subset of the total number of 
threads available in the team to run a parallel construct. The threads participating in a 
parallel construct are identified following the active numeration inside the current 
team (from 0 to omp_get_num_threads()-1). In a parallel construct, the programmer 
may define the number of groups and the composition of each group. When a thread 
in the current team encounters a parallel construct defining groups, the thread creates 
a new team and it becomes its master thread. The new team is composed of as many 
threads as groups are defined; the rest of the threads are reserved to support the 
execution of nested parallel constructs. In other words, the groups definition 
establishes the threads that are involved in the execution of the parallel construct and 
the allocation strategy or scenario for the inner levels of parallelism that might be 
spawned. When a member of this new team encounters another parallel construct 
(nested to the one that caused the group definition), it creates a new team and deploys 
its parallelism to the threads that compose its group. 

The GROUPS clause allows the user to specify thread groups. It can only appear in 
a PARALLEL construct or combined PARALLEL DO and PARALLEL SECTIONS 
constructs. 

 
C$OMP PARALLEL [DO|SECTIONS] [GROUPS(gspec)] 
 

Different formats for the groups specifier gspec are allowed [4]. In this paper we 
only comment on the two more relevant. For additional details concerning alternative 
formats as well as implementation issues, please refer to this publication. 
 
GROUPS(ngroups,weight) 

 
In this case, the user specifies the number of groups (ngroups) and an integer vector 
(weight) indicating the relative amount of computation that each group has to 
perform. Vector weight is allocated by the user in the application address space and 
it has to be computed from information available within the application itself (for 
instace iteration space, computational complexity or even information collected at 
runtime). The runtime library determines, from this information, the composition of 
the groups. The algorithm assigns all the available threads to the groups and ensures 
that each group at least receives one thread. The main body of the algorithm is shown 
in Figure 1 (using Fortran90 syntax). 



 
 
   howmany(1:ngroups) = 1 
   do while (sum(howmany(1:ngroups)) .lt. nthreads) 
      pos = maxloc(weight(1:ngroups)/ 
                          howmany(1:ngroups)) 
      howmany(pos(1)) = howmany(pos(1)) + 1 
   end do 
   masters(1) = 0 
   do i = 1, ngroups-1 
      masters(i+1) = masters(i) + howmany(i) 
   end do 
 

Fig. 1. Skeleton of the algorithm used to compute the composition of groups. 

The library generates two internal vectors (masters and howmany). In this 
algorithm, nthreads is the number of threads that are available to spawn the 
parallelism in the parallel construct containing the group definition.  

The most general format allows the specification of three parameters in the group 
definition:  

 
GROUPS(ngroups, masters, howmany) 

 
The first argument (ngroups) specifies the number of groups to be defined and 
consequently the number of threads in the team that is going to execute the parallel 
construct. The second argument (masters) is an integer vector with the identifiers 
(using the active numeration in the current team) of the threads that will compose the 
new team. Finally, the third argument (howmany) is an integer vector whose 
elements indicate the number of threads that will compose each group. The vectors 
have to be allocated in the memory space of the application, and their content and 
correctness have to be guaranteed by the programmer. Notice that this format must be 
used when the default mapping explained before does not provide the expected 
performance. 

3 Application of NanosCompiler Extensions to MGPOM 

MGPOM is a standard Fortran77 multiblock grid code. A parallel version of MGPOM 
uses MPI asynchronous sends and receives to exchange data between adjacent blocks 
at the interfaces. OpenMP has been used as a second level of parallelization within 
each MPI process to improve the load balance in the simulation of the Arabian Gulf 
[7]. This area is extended from 48 East to 58 East in longitude and from 23.5 North to 
30.5 North in latitude (left part of Figure 2). The computational 20-block grid shown 
on the right part of Figure 2 (also used in [7]) is used in this study.  

OpenMP with NanosCompiler Extensions is used to parallelize the serial version 
of the MGPOM code at the outer levels (block to block) as well as at the inner levels 
(within each block). The number of threads used to exploit the inner level of 



parallelism depends on the size of each grid block. Figure 3 shows the use of 
OpenMP directives and GROUPS construct implemented into the main program and a 
subroutine of the serial MGPOM code version. This figure shows a version in which 
the runtime library, using the default algorithm described in Section 2, determines the 
composition of the groups. The GROUPS clause has as input arguments the number 
of blocks (maxb) and a vector with the number of grid points in each block (work).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2. The Persian Gulf coastline (left). The 20-block grid with blocks of different size 
(right). 

 
Notice that the GROUPS clause is the only non-standard use of OpenMP. The 

exploitation of multiple levels of parallelism is achieved through the nesting of 
PARALLEL DO constructs. 

 
 
 
 



  
 PROGRAM main 
 ... 
C$OMP PARALLEL DO PRIVATE(n) GROUPS(maxb, work) 
 DO 414 n = 1, maxb 
   ... 
   IF (mode .ne. 2) THEN 
     CALL baropg (drhox, drhoy, drx2d, dry2d, n) 
     ... 
   ENDIF 
414   CONTINUE 
 ... 
 END 
 
 SUBROUTINE baropg (drhox, drhoy, drx2d, dry2d, nb) 
 ... 
C$OMP PARALLEL DO PRIVATE (i,j,k)  
 DO 200 j = 1, jm 
   DO 200 k = 1 kb 
     DO 200 I = 1, im 
       rho(i,j,k,nb) = rho(i,j,k,nb) – rmean(i,j,k,nb) 
200 CONTINUE 
 ... 
 RETURN 
 END  
 ... 

Fig. 3. Excerpt of the OpenMP implementation. 

Table 1 shows the number of grid points in each block for the 20-block grid. This 
is the composition of the work vector. The runtime library supporting the code 
generated by the NanosCompiler would generate the allocation of threads to groups 
shown in Tables 2 and 3 assuming 20 and 30 processors, respectively. Who and 
Howmany are the two internal vectors generated by the library with the master of 
each group (who) and the number of threads to be used in each group (howmany). 
With 20 processors, the critical path is determined by the largest block (i.e. block 
number 8), yields a theoretical speedup of 12.5. With 30 processors, the critical path 
is determined by the block with the largest ratio size/howmany (i.e. block number 
17), with a theoretical speed-up of  19.4.  

Table 1. Number of grid points in each block for the twenty-block case. 

    Block 1 2 3 4 5 6 7 
Size 1443 1710 1677 2150 700 989 2597 
Block 8 9 10 11 12 13 14 
Size 2862 2142 1836 1428 1881 1862 2058 
Block 15 16 17 18 19 20 - 
Size 1470 1280 1848 2318 999 2623 - 



Table 2. Default allocation of threads to groups with 20 processors. 

Block 1 2 3 4 5 6 7 8 9 10 
Howmany 1 1 1 1 1 1 1 1 1 1 
Who 0 1 2 3 4 5 6 7 8 9 

Block 11 12 13 14 15 16 17 18 19 20 

Howmany 1 1 1 1 1 1 1 1 1 1 
Who 10 11 12 13 14 15 16 17 18 19 

Table 3. Default allocation of threads to groups with 30 processors. 

Block 1 2 3  4 5 6 7 8 9 10 
Howmany 1 1 1 2 1 1 2 2 2 2 
Who 0 1 2 3 5 6 7 9 11 13 

Block 11 12 13 14 15 16 17 18 19 20 

Howmany 1 2 2 2 1 1 1 2 1 2 
Who 15 16 18 20 22 23 24 25 27 28 

  
According to the allocation of threads to groups shown in Table 3, the average 

work per thread has a large variance (from 1848 in block 17 to 700 in block 5). This 
variance results in a noticeable load imbalance. To reduce this load imbalance, several 
blocks could be gathered into a cluster such that the work distribution is equally 
divided among groups. To achieve this, the user can define its own composition of 
groups, as shown in Figure 4. 

 
   
 PROGRAM main 
 ... 
 CALL compute_groups(work, maxb, who, howmany) 
 ...  
C$OMP PARALLEL DO PRIVATE(n) GROUPS(maxb, who, howmany) 
 DO 414 n = 1, maxb 
   ... 
   IF (mode .ne. 2) THEN 
     CALL baropg (drhox, drhoy, drx2d, dry2d, n) 
     ... 
   ENDIF 
414 CONTINUE 
 ... 
 END 
 

Fig. 4. Excerpt of the OpenMP  implementation with user-defined groups. 

 
User function compute_groups decides how many OpenMP threads are 

devoted to the execution of each block and which OpenMP thread is going to be the 
master in the exploitation of the inner level of parallelism inside each block. This 
function has as input arguments the number of blocks (maxb) and a vector with the 



number of grid points in the block (work). It returns two vectors with the master of 
each group (who) and the number of threads to be used in each group (howmany). 
This is the information that is later used in the GROUPS clause.  

Table 4 shows the allocation of the threads to groups as well as the identities of 
blocks in a cluster. A cluster of two blocks with 20 processors is shown in this case. 
In this case, the work imbalance is noticeably reduced. 

Table 4. Allocation of threads to groups with 20 processors after clustering. 

Cluster  1 2 3 4 5 
Blocks 1, 9 2, 13 3, 12 4, 11 5, 8 
Howmany 2 2 2 2 2 
Who 0 2 4 6 8 

Cluster 6 7 8 9 10 
Blocks 6, 20 7, 19 10, 17 14, 15 16, 18 
Howmany 2 2 2 2 2 
Who 10 12 14 16 18 

4 Performance Results 

In this section we evaluate the behaviour of two parallel versions of MGPOM. The 
MPI-OpenMP version exploits two levels of parallelism by combining the two 
programming paradigms: MPI to exploit the inter-block parallelism and OpenMP to 
exploit the intra-block parallelism. The OpenMP-Only version exploits the two-
levels of parallelism using OpenMP and the extensions offered by the NanosCompiler 
and supporting OpenMP runtime system.  For the compilation of the multilevel 
OpenMP version we use the NanosCompiler to translate from extended OpenMP 
Fortran77 to plain Fortran77 with calls to the supporting runtime library NthLib. We 
use the native f77 compiler to generate code for an SGI Origin2000 system [8]. The 
flags are set to –mips4 -64 –O2. The experiments have been performed on 
system with 64 R10k processors, running at 250 MHz with 4 Mb of secondary cache 
each. 

Table 5. Speed-up with respect to the sequential execution for the multi-level OpenMP 
and the mixed MPI/OpenMP versions. 

 OpenMP-Only MPI-OpenMP 
10 9.6  
20 15.3 14.7 
30 18.7  
40 23.9 22.2 
50 26.7  
60 27.8 23.0 

  



Table 5 shows the speed-up achieved by the two versions of the program. The 
MPI-OpenMP version uses the same number of threads per MPI process. For this 
reason performance numbers are avail able for only 20, 40 and 60 processors.  

In order to understand these results, we have instrumented the application with the 
–P option of the NanosCompiler and generated a trace suitable for being analyzed 
with Paraver [9]. Each iteration of the application time step loop can be divided in 5 
different parts: P1, P2, P3, P4 and P5. Basically, parts P1 and P4 perform independent 
computations over the blocks. However, parts P2, P3 and P5 are responsible for 
updating the boundaries of the blocks; these parts require communication in the MPI 
version and are the source of cache coherence overheads in the OpenMP version. 
Table 6 shows the average speed-up of each of these individual parts for the 
OpenMP-Only version. 

 

Table 6. Speed-up (relative to the execution with 10 processors) of each part of the time 
step loop for the OpenMP-Only version. 

 P1 P2 P3 P4 P5 
10 1 1 1 1 1 
20 1.8 1.2 1.3 1.8 1.2 
30 2.2 1.6 1.8 2.3 1.4 
40 3.2 1.7 1.9 3.5 1.5 
50 4.1 2.0 2 4.5 1.7 
60 4.9 2.1 2.1 5.3 1.8 

  
Notice that parts P1 and P4 scale much better than the rest of the parts. The 

parallelization of parts P2, P3 and P5 (update of the boundaries) perform accesses to 
memory with no data locality with respect to the access pattern performed in parts P1 
and P4. This causes a large number of secondary cache misses and cache 
invalidations, which add overhead to the overall parallel execution time. In addition to 
that, parts P2, P3 and P5 include a large number of small loops whose parallelization 
is not eff icient, due to the size of the iteration space traversed and due to the barriers 
that have to be performed to enforce the correct update of the boundary elements. 

In order to conclude this section, Table 7 shows the relative performance (w.r.t the 
execution with 20 processors of the OpenMP-only version in Table 5) for three 
OpenMP versions of the application: “no_groups” exploits two levels of parallelism 
but does not define groups (similar to using the NUM_THREADS clause), “groups” 
performs a homogeneous distribution of the available threads among the groups, and 
“weighted” performs a weighted distribution of the available threads among the 
groups. Notice that the performance of both “groups” and “weighted” versions is 
greater than “no_groups” .  Also, the “weighted” performs better due to load 
unbalance that exists among blocks. In summary, additional information is needed in 
the NUM_THREADS clause to boost the performance of applications with multiple 
levels of parallelism.  



Table 7. Speed-up with respect to OpenMP-only with 20 processors for three different 
OpenMP versions. 

 no_groups groups weigthed 
20 0.44 1 1 
40 0.33 1.5 1.7 
60 0.26 1.51 1.9 

5 Conclusions 

The main purpose of this paper has been to examine the performance achievable when 
exploiting nested parallelism in two equivalent parallel versions of a coastal ocean 
circulation modeling application. One of the versions relies on mixing two 
programming paradigms to exploit the parallelism: MPI and OpenMP. The other 
version uses only OpenMP (using the possibility offered by the language definition of 
nesting parallel constructs and some extensions offered by the research OpenMP 
NanosCompiler). 

The paper summarizes the extensions to OpenMP proposed to efficiently exploit 
nested parallelism. The extensions are mainly based on the definition of thread 
groups. The composition of the groups can be dynamically decided by the supporting 
OpenMP runtime system (using a predefined allocation strategy based on the amount 
of work to be performed by each group) or by the user using his/her own algorithm 
for deciding the allocation. The paper presents results in which the default allocation 
is overridden by the user in order to better balance the work distribution by 
overlapping the execution of several grid blocks on the same group of threads. 

Regarding the parallelization of MGPOM, the main conclusion from this study is 
that OpenMP alone is able to achieve a similar (or even better) performance than the 
one that could be achieved mixing two programming paradigms (such as MPI and 
OpenMP). The use of a single programming paradigm makes the development, tuning 
and maintenance process of parallel applications simpler. Close analyses of the results 
show that the scalability of the application is limited by parts of the application that 
update the boundaries of the blocks. The parallelization with OpenMP performs a 
static scheduling of loop iterations that degrade the locality of the memory hierarchy. 
In addition to that, the parallelization with OpenMP forces a large number of 
synchronizations that add extra overheads to the parallel execution time. We are 
currently investigating alternative parallelization strategies for these parts that may 
improve the efficiency of the parallel execution. 
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