
Dual-Level Parallelism Exploitation with OpenMP
in Coastal Ocean Circulation Modeling

Marc González1, Eduard Ayguadé1, Xavier Martorell 1,
Jesús Labarta1 and Phu V. Luong2

1 European Center for Parallelism of Barcelona (CEPBA)
Technical University of Catalunya (UPC), Barcelona, Spain

2 University of Texas
Engineer Research and Development Center

Major Shared Resource Center
Vicksburg, MS 39180.

Abstract. Two alternative dual-level parallel implementations of the
Multiblock Grid Princeton Ocean Model (MGPOM) are compared in this paper.
The first one combines the use of two programming paradigms: message
passing with the Message Passing Interface (MPI) and shared memory with
OpenMP (version called MPI-OpenMP); the second uses only OpenMP
(version called OpenMP-Only). MGPOM is a multiblock grid code that enables
the exploitation of two levels of parallelism.
The MPI-OpenMP implementation uses MPI to parallelize computations by
assigning each grid block to a unique MPI process. Since not all grid blocks are
of the same size, the workload between processes varies. OpenMP is used
within each MPI process to improve load balance. The alternative OpenMP-
Only implementation uses some extensions proposed to OpenMP that defines
thread groups in order to efficiently exploit the available two levels of
parallelism. These extensions are supported by a research OpenMP compiler
named NanosCompiler.
Performance results of the two implementations from the MGPOM code on a
20-block grid for the Arabian Gulf simulation demonstrate the efficacy of the
OpenMP-Only versions of the code. The simplicity of the OpenMP
implementation as well as the possibility of using and simply defining policies
to dynamically change the allocation of OpenMP threads to the two levels of
parallelism is the main result of this study and suggests to consider this
alternative for the parallelization of future applications.
Keywords: OpenMP and MPI implementations, multiple levels of parallelism,
multiblock grid, coastal ocean circulation model.

1 Introduction

In recent years, OpenMP [1] has emerged as an industrial library for parallel
programming in shared-memory computers. Parallel performance is achieved without
significantly sacrificing execution time when it is ported across a range of shared-
memory platforms. Moreover, its simplicity makes the conversion of a sequential

González, M. [et al.]. Dual-level parallelism exploitation with OpenMP in coastal ocean circulation modeling.
"Lecture notes in computer science", Maig 2002, vol. 2327, p. 469-478.
The final authenticated version is available online at https://doi.org/10.1007/3-540-47847-7_43

code to a parallel code for improving performance much easier and without major
code modifications.

One of the key features which is not currently exploited by most current
commercial and experimental systems is the use of OpenMP for multiple levels of
parallelism. In general, OpenMP can be used to exploit the multi-level parallelism in
most scientific and engineering numerical applications. This technique, however, has
not been fully applied to any of these applications because they achieve satisfactory
speed-ups when executed in mid-size parallel platforms or because most current
systems supporting OpenMP (compilers and associated thread--level layer)
sequentialize nested parallel constructs. This has originated the current practice of
exploiting multiple levels of parallelism through a combination of different
programming models and interfaces, MPI [2] coupled with OpenMP for example. In
such cases, MPI is usually used for communication at the outer levels between
subdomains or between block grids (multiblock grid), while OpenMP is used to
parallelize the inner levels within each subdomain or block.

In addition to the possibility of nesting parallel constructs, OpenMP offers the
possibility of controlling the number of threads usable at each level of parallelism
(clause NUM_THREADS available in OpenMP v2.0). Some extensions have been
proposed to OpenMP in order to allow a cleaner and effective control over the work
distribution when dealing with multiple levels of parallelism through the definition of
thread groups [4]. This proposal is the one used to express the parallelism in the
MGPOM application and will be discussed in Section 2. Other proposals consist in
offering work queues and an interface for inserting application tasks before execution-
for example, the Illinois--Intel Multithreading library [5] or the WorkQueue
mechanism [6] proposed by KAI, in which work can be created dynamically, even
recursively, and put into queues. The proposal used in this paper is simpler and allows
finer control over the allocation of threads to the multiple levels of parallelism in the
application.

In this study, OpenMP is used for both outer as well as inner levels. Details of the
extensions to OpenMP are discussed in Section 2. Its application to the MGPOM on a
20-block grid of the Arabian Gulf simulation is presented in Section 3. Parallel
performance results are presented in Section 4. The conclusions of this study are in
Section 5.

2 NanosCompiler Extensions

The NanosCompiler [3] and runtime library are serving as a research platform for
proposing and evaluating extensions to the OpenMP language definition. One of these
extensions consists of the dynamic creation of thread groups and the definition of the
actual composition of groups at runtime. Groups can be created to exploit both loop-
and task-level parallelism.

In the fork/join execution model defined by OpenMP, a program begins execution
as a single process or thread. This thread executes sequentially until a PARALLEL
construct is found. At this time, the thread creates a team of threads and it becomes its
master thread. All threads execute the statements enclosed lexically within the parallel
constructs. Work-sharing constructs (DO, SECTIONS and SINGLE) are provided to
divide the execution of the enclosed code region among the members of a team. All

threads are independent and may synchronize at the end of each work-sharing
construct or at specific points (specified by the BARRIER directive). Exclusive
execution mode is also possible through the definition of CRITICAL regions.

The SECTIONS directive is a non-iterative work-sharing construct which specifies
the enclosed sections of code (each one delimited by a SECTION directive) are
divided among threads in the team. Each section becomes a task which is executed
once by a thread in the team. The DO work-sharing construct is used to divide the
iterations of a loop into a set of independent tasks, each one executing a chunk of
consecutive iterations. Finally, the SINGLE work-sharing construct informs that only
one thread in the team is going to execute the work.

In this study, a group of threads is composed of a subset of the total number of
threads available in the team to run a parallel construct. The threads participating in a
parallel construct are identified following the active numeration inside the current
team (from 0 to omp_get_num_threads()-1). In a parallel construct, the programmer
may define the number of groups and the composition of each group. When a thread
in the current team encounters a parallel construct defining groups, the thread creates
a new team and it becomes its master thread. The new team is composed of as many
threads as groups are defined; the rest of the threads are reserved to support the
execution of nested parallel constructs. In other words, the groups definition
establishes the threads that are involved in the execution of the parallel construct and
the allocation strategy or scenario for the inner levels of parallelism that might be
spawned. When a member of this new team encounters another parallel construct
(nested to the one that caused the group definition), it creates a new team and deploys
its parallelism to the threads that compose its group.

The GROUPS clause allows the user to specify thread groups. It can only appear in
a PARALLEL construct or combined PARALLEL DO and PARALLEL SECTIONS
constructs.

C$OMP PARALLEL [DO|SECTIONS] [GROUPS(gspec)]

Different formats for the groups specifier gspec are allowed [4]. In this paper we
only comment on the two more relevant. For additional details concerning alternative
formats as well as implementation issues, please refer to this publication.

GROUPS(ngroups,weight)

In this case, the user specifies the number of groups (ngroups) and an integer vector
(weight) indicating the relative amount of computation that each group has to
perform. Vector weight is allocated by the user in the application address space and
it has to be computed from information available within the application itself (for
instace iteration space, computational complexity or even information collected at
runtime). The runtime library determines, from this information, the composition of
the groups. The algorithm assigns all the available threads to the groups and ensures
that each group at least receives one thread. The main body of the algorithm is shown
in Figure 1 (using Fortran90 syntax).

 howmany(1:ngroups) = 1
 do while (sum(howmany(1:ngroups)) .lt. nthreads)
 pos = maxloc(weight(1:ngroups)/
 howmany(1:ngroups))
 howmany(pos(1)) = howmany(pos(1)) + 1
 end do
 masters(1) = 0
 do i = 1, ngroups-1
 masters(i+1) = masters(i) + howmany(i)
 end do

Fig. 1. Skeleton of the algorithm used to compute the composition of groups.

The library generates two internal vectors (masters and howmany). In this
algorithm, nthreads is the number of threads that are available to spawn the
parallelism in the parallel construct containing the group definition.

The most general format allows the specification of three parameters in the group
definition:

GROUPS(ngroups, masters, howmany)

The first argument (ngroups) specifies the number of groups to be defined and
consequently the number of threads in the team that is going to execute the parallel
construct. The second argument (masters) is an integer vector with the identifiers
(using the active numeration in the current team) of the threads that will compose the
new team. Finally, the third argument (howmany) is an integer vector whose
elements indicate the number of threads that will compose each group. The vectors
have to be allocated in the memory space of the application, and their content and
correctness have to be guaranteed by the programmer. Notice that this format must be
used when the default mapping explained before does not provide the expected
performance.

3 Application of NanosCompiler Extensions to MGPOM

MGPOM is a standard Fortran77 multiblock grid code. A parallel version of MGPOM
uses MPI asynchronous sends and receives to exchange data between adjacent blocks
at the interfaces. OpenMP has been used as a second level of parallelization within
each MPI process to improve the load balance in the simulation of the Arabian Gulf
[7]. This area is extended from 48 East to 58 East in longitude and from 23.5 North to
30.5 North in latitude (left part of Figure 2). The computational 20-block grid shown
on the right part of Figure 2 (also used in [7]) is used in this study.

OpenMP with NanosCompiler Extensions is used to parallelize the serial version
of the MGPOM code at the outer levels (block to block) as well as at the inner levels
(within each block). The number of threads used to exploit the inner level of

parallelism depends on the size of each grid block. Figure 3 shows the use of
OpenMP directives and GROUPS construct implemented into the main program and a
subroutine of the serial MGPOM code version. This figure shows a version in which
the runtime library, using the default algorithm described in Section 2, determines the
composition of the groups. The GROUPS clause has as input arguments the number
of blocks (maxb) and a vector with the number of grid points in each block (work).

Fig. 2. The Persian Gulf coastline (left). The 20-block grid with blocks of different size
(right).

Notice that the GROUPS clause is the only non-standard use of OpenMP. The

exploitation of multiple levels of parallelism is achieved through the nesting of
PARALLEL DO constructs.

 PROGRAM main
 ...
C$OMP PARALLEL DO PRIVATE(n) GROUPS(maxb, work)
 DO 414 n = 1, maxb
 ...
 IF (mode .ne. 2) THEN
 CALL baropg (drhox, drhoy, drx2d, dry2d, n)
 ...
 ENDIF
414 CONTINUE
 ...
 END

 SUBROUTINE baropg (drhox, drhoy, drx2d, dry2d, nb)
 ...
C$OMP PARALLEL DO PRIVATE (i,j,k)
 DO 200 j = 1, jm
 DO 200 k = 1 kb
 DO 200 I = 1, im
 rho(i,j,k,nb) = rho(i,j,k,nb) – rmean(i,j,k,nb)
200 CONTINUE
 ...
 RETURN
 END
 ...

Fig. 3. Excerpt of the OpenMP implementation.

Table 1 shows the number of grid points in each block for the 20-block grid. This
is the composition of the work vector. The runtime library supporting the code
generated by the NanosCompiler would generate the allocation of threads to groups
shown in Tables 2 and 3 assuming 20 and 30 processors, respectively. Who and
Howmany are the two internal vectors generated by the library with the master of
each group (who) and the number of threads to be used in each group (howmany).
With 20 processors, the critical path is determined by the largest block (i.e. block
number 8), yields a theoretical speedup of 12.5. With 30 processors, the critical path
is determined by the block with the largest ratio size/howmany (i.e. block number
17), with a theoretical speed-up of 19.4.

Table 1. Number of grid points in each block for the twenty-block case.

 Block 1 2 3 4 5 6 7
Size 1443 1710 1677 2150 700 989 2597
Block 8 9 10 11 12 13 14
Size 2862 2142 1836 1428 1881 1862 2058
Block 15 16 17 18 19 20 -
Size 1470 1280 1848 2318 999 2623 -

Table 2. Default allocation of threads to groups with 20 processors.

Block 1 2 3 4 5 6 7 8 9 10
Howmany 1 1 1 1 1 1 1 1 1 1
Who 0 1 2 3 4 5 6 7 8 9

Block 11 12 13 14 15 16 17 18 19 20

Howmany 1 1 1 1 1 1 1 1 1 1
Who 10 11 12 13 14 15 16 17 18 19

Table 3. Default allocation of threads to groups with 30 processors.

Block 1 2 3 4 5 6 7 8 9 10
Howmany 1 1 1 2 1 1 2 2 2 2
Who 0 1 2 3 5 6 7 9 11 13

Block 11 12 13 14 15 16 17 18 19 20

Howmany 1 2 2 2 1 1 1 2 1 2
Who 15 16 18 20 22 23 24 25 27 28

According to the allocation of threads to groups shown in Table 3, the average

work per thread has a large variance (from 1848 in block 17 to 700 in block 5). This
variance results in a noticeable load imbalance. To reduce this load imbalance, several
blocks could be gathered into a cluster such that the work distribution is equally
divided among groups. To achieve this, the user can define its own composition of
groups, as shown in Figure 4.

 PROGRAM main
 ...
 CALL compute_groups(work, maxb, who, howmany)
 ...
C$OMP PARALLEL DO PRIVATE(n) GROUPS(maxb, who, howmany)
 DO 414 n = 1, maxb
 ...
 IF (mode .ne. 2) THEN
 CALL baropg (drhox, drhoy, drx2d, dry2d, n)
 ...
 ENDIF
414 CONTINUE
 ...
 END

Fig. 4. Excerpt of the OpenMP implementation with user-defined groups.

User function compute_groups decides how many OpenMP threads are

devoted to the execution of each block and which OpenMP thread is going to be the
master in the exploitation of the inner level of parallelism inside each block. This
function has as input arguments the number of blocks (maxb) and a vector with the

number of grid points in the block (work). It returns two vectors with the master of
each group (who) and the number of threads to be used in each group (howmany).
This is the information that is later used in the GROUPS clause.

Table 4 shows the allocation of the threads to groups as well as the identities of
blocks in a cluster. A cluster of two blocks with 20 processors is shown in this case.
In this case, the work imbalance is noticeably reduced.

Table 4. Allocation of threads to groups with 20 processors after clustering.

Cluster 1 2 3 4 5
Blocks 1, 9 2, 13 3, 12 4, 11 5, 8
Howmany 2 2 2 2 2
Who 0 2 4 6 8

Cluster 6 7 8 9 10
Blocks 6, 20 7, 19 10, 17 14, 15 16, 18
Howmany 2 2 2 2 2
Who 10 12 14 16 18

4 Performance Results

In this section we evaluate the behaviour of two parallel versions of MGPOM. The
MPI-OpenMP version exploits two levels of parallelism by combining the two
programming paradigms: MPI to exploit the inter-block parallelism and OpenMP to
exploit the intra-block parallelism. The OpenMP-Only version exploits the two-
levels of parallelism using OpenMP and the extensions offered by the NanosCompiler
and supporting OpenMP runtime system. For the compilation of the multilevel
OpenMP version we use the NanosCompiler to translate from extended OpenMP
Fortran77 to plain Fortran77 with calls to the supporting runtime library NthLib. We
use the native f77 compiler to generate code for an SGI Origin2000 system [8]. The
flags are set to –mips4 -64 –O2. The experiments have been performed on
system with 64 R10k processors, running at 250 MHz with 4 Mb of secondary cache
each.

Table 5. Speed-up with respect to the sequential execution for the multi-level OpenMP
and the mixed MPI/OpenMP versions.

 OpenMP-Only MPI-OpenMP
10 9.6
20 15.3 14.7
30 18.7
40 23.9 22.2
50 26.7
60 27.8 23.0

Table 5 shows the speed-up achieved by the two versions of the program. The
MPI-OpenMP version uses the same number of threads per MPI process. For this
reason performance numbers are avail able for only 20, 40 and 60 processors.

In order to understand these results, we have instrumented the application with the
–P option of the NanosCompiler and generated a trace suitable for being analyzed
with Paraver [9]. Each iteration of the application time step loop can be divided in 5
different parts: P1, P2, P3, P4 and P5. Basically, parts P1 and P4 perform independent
computations over the blocks. However, parts P2, P3 and P5 are responsible for
updating the boundaries of the blocks; these parts require communication in the MPI
version and are the source of cache coherence overheads in the OpenMP version.
Table 6 shows the average speed-up of each of these individual parts for the
OpenMP-Only version.

Table 6. Speed-up (relative to the execution with 10 processors) of each part of the time
step loop for the OpenMP-Only version.

 P1 P2 P3 P4 P5
10 1 1 1 1 1
20 1.8 1.2 1.3 1.8 1.2
30 2.2 1.6 1.8 2.3 1.4
40 3.2 1.7 1.9 3.5 1.5
50 4.1 2.0 2 4.5 1.7
60 4.9 2.1 2.1 5.3 1.8

Notice that parts P1 and P4 scale much better than the rest of the parts. The

parallelization of parts P2, P3 and P5 (update of the boundaries) perform accesses to
memory with no data locality with respect to the access pattern performed in parts P1
and P4. This causes a large number of secondary cache misses and cache
invalidations, which add overhead to the overall parallel execution time. In addition to
that, parts P2, P3 and P5 include a large number of small loops whose parallelization
is not eff icient, due to the size of the iteration space traversed and due to the barriers
that have to be performed to enforce the correct update of the boundary elements.

In order to conclude this section, Table 7 shows the relative performance (w.r.t the
execution with 20 processors of the OpenMP-only version in Table 5) for three
OpenMP versions of the application: “no_groups” exploits two levels of parallelism
but does not define groups (similar to using the NUM_THREADS clause), “groups”
performs a homogeneous distribution of the available threads among the groups, and
“weighted” performs a weighted distribution of the available threads among the
groups. Notice that the performance of both “groups” and “weighted” versions is
greater than “no_groups” . Also, the “weighted” performs better due to load
unbalance that exists among blocks. In summary, additional information is needed in
the NUM_THREADS clause to boost the performance of applications with multiple
levels of parallelism.

Table 7. Speed-up with respect to OpenMP-only with 20 processors for three different
OpenMP versions.

 no_groups groups weigthed
20 0.44 1 1
40 0.33 1.5 1.7
60 0.26 1.51 1.9

5 Conclusions

The main purpose of this paper has been to examine the performance achievable when
exploiting nested parallelism in two equivalent parallel versions of a coastal ocean
circulation modeling application. One of the versions relies on mixing two
programming paradigms to exploit the parallelism: MPI and OpenMP. The other
version uses only OpenMP (using the possibility offered by the language definition of
nesting parallel constructs and some extensions offered by the research OpenMP
NanosCompiler).

The paper summarizes the extensions to OpenMP proposed to efficiently exploit
nested parallelism. The extensions are mainly based on the definition of thread
groups. The composition of the groups can be dynamically decided by the supporting
OpenMP runtime system (using a predefined allocation strategy based on the amount
of work to be performed by each group) or by the user using his/her own algorithm
for deciding the allocation. The paper presents results in which the default allocation
is overridden by the user in order to better balance the work distribution by
overlapping the execution of several grid blocks on the same group of threads.

Regarding the parallelization of MGPOM, the main conclusion from this study is
that OpenMP alone is able to achieve a similar (or even better) performance than the
one that could be achieved mixing two programming paradigms (such as MPI and
OpenMP). The use of a single programming paradigm makes the development, tuning
and maintenance process of parallel applications simpler. Close analyses of the results
show that the scalability of the application is limited by parts of the application that
update the boundaries of the blocks. The parallelization with OpenMP performs a
static scheduling of loop iterations that degrade the locality of the memory hierarchy.
In addition to that, the parallelization with OpenMP forces a large number of
synchronizations that add extra overheads to the parallel execution time. We are
currently investigating alternative parallelization strategies for these parts that may
improve the efficiency of the parallel execution.

6 Acknowledgments

This work has been supported by the Spanish Ministry of Science and Technology
and the European Union FEDER program under contract TIC2001-0995-C02-01, and
by the European Center for Parallelism of Barcelona (CEPBA).

References

1. OpenMP Organization. OpenMP Fortran Application Interface, v. 2.0, www.openmp.org,
June 2000.

2. M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra. MPI – The Complete
Reference: Volume 1, the MPI Core. MIT Press, Cambridge, 1998.

3. E. Ayguadé, M. Gonzalez, J. Labarta, X. Martorell, N. Navarro, J. Oliver, NanosCompiler:
A Research Infrastructure for OpenMP Extensions. 1st European Workshop on OpenMP
(EWOMP’99), Lund (Sweden). September/October 1999.

4. M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labarta and N. Navarro. OpenMP
Extensions for Thread Groups and Their Runtime Support. In Workshop on Languages and
Compilers for Parallel Computing, August 2000.

5. M. Girkar, M. R. Haghighat, P. Grey, H. Saito, N. Stavrakos and C.D. Polychronopoulos.
Ill inois-Intel Multithreading Library: Multi threading Support for Intel Architecture--based
Multiprocessor Systems. Intel Technology Journal, Q1 issue, February 1998.

6. S. Shah, G. Haab, P. Petersen and J. Throop. Flexible Control Structures for Parallelism in
OpenMP. In 1st European Workshop on OpenMP, Lund (Sweden), September 1999.

7. P. Luong, C.P. Breshears and L.N. Ly, Application of Multiblock Grid and Dual-Level
Parallelism in Coastal Ocean Circulation Modeling. Journal of Applied Mathematical
Modell ing, submitted for publication.

8. Sili con Graphics Computer Systems SGI. Origin 200 and Origin 2000. Technical Report,
1996.

9. European Center for Parallelism of Barcelona. Paraver and Instrumentation Packages
Reference Manual. http://www.cepba.upc.es/paraver.

