
Runtime Address Space Computation

for SDSM Systems

Jairo Balart, Marc Gonzàlez, Xavier Martorell, Eduard Ayguadé and Jesús Labarta

Barcelona Supercomputing Center (BSC),

Computer Architecture Department, Technical University of Catalunya (UPC),

Cr. Jordi Girona 1-3, Mòdul D6, 08034 – Barcelona, Spain
{jbalart,marc,xavim,eduard,jesus}@ac.upc.edu

Abstract. This paper explores the benefits and limitations of using a

inspector/executor approach for Software Distributed Shared Memory (SDSM)

systems. The role of the inspector is to obtain a description of the address space

accessed during the execution of parallel loops. The information collected by

the inspector will enable the runtime to optimize the movement of shared data

that will happen during the executor phase. This paper addresses the main

issues that have been considered to embed an inspector/executor model in a

SDSM system: amount of data collected by the inspector, the accurateness of

this data when the loop has data and/or control dependences, and the

computational overhead introduced. The paper also includes a description of the

SDSM system where the inspector/executor model has been embedded. The

proposal is evaluated with four applications from the NAS benchmark suite.

The evaluation shows that the accuracy of the inspection and the small

overheads introduced by the approach allow its use in a SDSM system.

1 Introduction

Software Distributed Shared Memory (SDSM) systems has been one of the

approaches proposed to provide a shared address space and overcome the

programming difficulties of programming models based on message passing. Co-

Array Fortran [19], Unified Parallel C (UPC) [3] or OpenMP [1] can simplify the

programming of SDSM systems if the appropriate support is provided by the compiler

and/or runtime system. In such systems both components are significantly stressed,

and become responsible for the memory consistency and the data sharing, being these

issues the most critical aspects in any SDSM system.

The inherent data movement overheads added to the overheads of this

compiler/runtime support need to be minimized in order to take benefit of the

potential performance of the parallel execution. On one hand, each memory access

has to be monitored in order to check if it corresponds to a shared data. This memory

monitoring can be performed in different ways. For instance, UPC implementations

are based on the injection of runtime calls to intercept any memory access to shared

data. In most SDSM implementations of OpenMP [6] [8] [10], the memory monitoring

is done through the handling of the page fault exceptions. On the other hand, data and

control communication are considered important sources of overhead. The impact of

Balart, J. [et al.]. Runtime address space computation for SDSM systems. "Lecture notes in computer science", 2007, vol. 4382, p.
330-344. The final authenticated version is available online at https://doi.org/10.1007/978-3-540-72521-3_24

of data communication overheads can be reduced by overlapping communication and

computation. Control communication is associated to the memory consistency

protocol, and no matter the basis of the SDSM system implementation, it is always

one of the main concerns for developers, and therefore the target of several

optimization techniques [4] [5] [6] [10].

The usual approach in most SDSM implementations is to perform both data and

control communication on-demand during the parallel execution of the computation.

At each page fault or memory access interception, the runtime is invoked in order to

serve memory access requests and interchange the necessary control messages.

Computation and communication alternate according the application requirements.

The chances of the runtime system to foresee near-future data and control

communication requirements are clearly limited by the amount of information

available. The inspector/executor approach might play an interesting role by

inspecting the set of memory addresses generated before the execution takes place

and building an accurate description of them. From this information, the runtime can

derive the strictly necessary data and control communication requirements and reduce

the overhead associated to the memory consistency implementation. This information

can be reused as long as the data access pattern has no significant changes.

This paper explores the possibility of using an inspector/executor approach in

SDSM systems. The main objective is to show that applications can afford the

overheads associated with building the data structures that record shared-memory

memory access and computing the data distribution from the information collected in

these data structures. The structure of this paper is as follows: section 2 outlines

related work on the use of runtime approaches to optimize the performance of SDSM

systems. Section 3 describes the main issues to consider while embedding the

inspector/executor model within a SDSM system. Section 4 describes our prototype

implementation that is evaluated in section 5. Finally, section 6 concludes the paper

and outlines future work.

2 Related Work

This section comments some recent contributions related with data and control

communication optimization in SDSM systems.

UPC implementations [2] [3] perform address space monitoring through a deep

coordination of the compiler and the runtime system. The compiler is in charge of

detecting any suspicious memory access that might refer to shared data. Runtime calls

are injected to intercept those memory accesses, and invoke the appropriate

communication actions. Coalescing communication is an important source of

optimization. Parallel loops are the target of the compiler, looking for statements

where the set of memory references can be grouped and then served with a single

communication action [4]. Beside that, the runtime tries to schedule the iterations in

order to overlap the computation and the communication.

In SDSM-based OpenMP implementations [6] [8] [10], the address space

monitoring is implemented through the pagination system. The page fault signal is

intercepted to embed the communication protocol responsible for the memory

consistency and data sharing. Each time a page fault takes place, the runtime system

checks if the accessed page corresponds to shared data, and if necessary, takes the

appropriate actions to maintain the memory consistency. Avoiding false sharing is

one of the main concerns. The compiler can force particular memory alignments by

inserting memory padding, which has been shown to be a reliable solution [5]. Some

runtime techniques have been also proposed to modify the default assignment of work

to threads in parallel loops. The runtime needs to be provided with the necessary

services and structures to relate page faults (data movement) to the iterations where

they occur [6]. With this information the runtime can redistribute the set of iterations

in order to avoid false sharing, to minimize as much as possible the number of page

movements, and to pre-send data and control messages in order to overlap

computation and communication.

Regarding the data distribution, there have been some proposals that place the

problem at the programming language level. For example, the ZPL [16] programming

model includes several constructs and operators to specify data movements. Based on

the gather/scatter operations, the language allows the programmer to control these

operations through the content of variables, which are used as array indexes to specify

the array elements to be selected within a gather/scatter operation.

The Co-Array Fortran [19] proposal follows the main guidelines of the traditional

message-passing paradigm, but introduces considerable improvements on the data

communication. Communication actions are hidden by a special treatment of the

array-reference operator. This operator is overloaded and allows the specification of

data distribution and remote memory accesses. Data distribution is accomplished by

declaring a distributed object with extra array dimensions. The programmer controls

the distribution by the shape the extra dimensions provide the object with. All

memory accesses to shared and distributed data need to be expanded with particular

values in the extra dimensions. The runtime derives the data location according to the

defined distribution.

The introduction of the inspector/executor model for DSM environments was

already proposed for HPF [18] [19]. Our main contributions with respect those

previous works are the parallel inspection process and the ability of recording the data

produced by the inspector for reusing it along the different instances of the parallel

code.

3 The Inspector/Executor model in SDSM systems

The aim of this section is to point out the main issues that have been considered to

embed the inspector/executor model within a SDSM system. One of the main

constraints of the inspector/executor model is its implicit computational overhead.

Although the overhead of determining how shared data is accessed during the parallel

execution may seem to be huge, we will show that for SDSM systems can be

affordable. This is based on the following observations:

• It is generally accepted that in SDSM systems, unnecessary communication

has much more incidence in performance than the overheads related to the

execution of the runtime code. This could be summarized with something

like “better execute than communicate”. The inspector/executor model

follows this line.

• Most of the accesses performed in parallel codes allow the injection of a

highly optimized inspector. For instance, loops represent the most common

source of parallelism, and their execution usually defines a data distribution

that is maintained along the whole application execution. Usually, shared

data is organized as vectors or matrices, and the access pattern to those

structures can be accurately described at compile time [7]. With reasonable

compiler technology, it is possible to avoid the inspection of all the memory

accesses at runtime, and still get an exact description of what data is

referenced.

• Parallel loops are usually executed several times, giving the chance of

reusing the information provided by the inspection mechanism. Therefore

the execution of the inspector phase can be avoided if the data access

patterns remain constant along the several instances of a parallelized loop.

We are going to see that this is the most common case.

• It is possible to perform the execution of the inspector code in parallel. This

is giving the runtime much space to perform the inspection without

interfering with unacceptable overheads.

• One of the main limitations of the inspector/executor approach is the

existence of control and data dependences that take part in the computation

of memory addresses. This is the case when control flow statements and/or

pointers appear within the body of a parallel loop. Typically, parallel loops

affected with such dependences can not be treated with an optimized

inspector. In the worst case, when dealing with parallel loops highly loaded

with data and/or control dependences, the inspector will provide with an as

much as possible accurate description of the address space used in each

parallel flow. Beyond the inspector limits, the native SDSM mechanisms

implementing the data sharing and memory consistency will apply.

Depending on how accurate the description is, the more chances for

optimizing the communications will appear, and hence, speeding up the

parallel code execution.

• Finally, another important issue that needs to be considered with more detail

is the amount of data that the inspector can produce, which may cause

unacceptable overheads within the data distribution. This relation exists

since the algorithm responsible for the data distribution totally depends on

the data produced by the inspector.

All the issues comented before have conditioned the implementation of the

inspector/executor approach that is going to be described in the next section.

4 Implementation

This section describes a specific SDSM system implementation where the

inspector/executor model has been embedded. The implementation has been guided

towards a main objective: evaluate the effectiveness of the inspector/executor model

for SDSM systems as a source for optimization. Consequently, it has been reasonable

to force the implementation to stress to the limit the inspector role, leading to a

system that totally relies on the information provided by the inspection mechanisms.

Therefore, the inspection process must provide the information from where to derive

all the communications. For the purposes of this paper, it must be noted that all the

code transformations and the generation of the inspector code have been done by

hand. However, the compilation technology required by them is reasonable and

should be available in any compiler.

In our implementation, computation and communication are decoupled. This

forces the implementation to guarantee that shared data is available to the parallel

flows prior to the execution of the parallel code. With that, we want to show that the

inspector can provide with very accurate descriptions of the working sets used in each

parallel flow. An immediate consequence of such approach is that three different

phases can be differentiated along the parallel execution: inspection phase,

communication phase and execution phase. No matter the phase, the current

implementation works under a master/slave scheme, and the memory consistency

protocol implements relaxed consistency.

During the inspection phase, the loop parameters (iteration space and scheduling)

are broadcasted to all the slaves. Each slave computes the chunk of iterations that

have been assigned to it, and the code inspection is executed. The result of the

inspection consists of a list of pages that are read and/or written by each execution

flow, and each slave sends this information to the master process. At this point, the

communication phase starts, and the master computes the necessary page movements

and which pages are written by two or more processes (conflicting pages). This

computation gets as input the data produced by the inspector, and according to that,

page queries are sent. Page distribution takes place, and then all processes start the

parallel loop execution (execution phase). After execution, conflicting pages are

treated with diff operations. The resulting differences are sent to the master thread.

Although computation and communication could be overlapped, our current prototype

implementation does not include this feature.

The current prototype is limited to loop-level parallelism. Parallel loops are

specified using the OpenMP PARALLEL DO construct. Only STATIC schedules are

supported with PRIVATE and SHARED data scoping clauses. REDUCTION

operations have been implemented through variable expansion of the variable holding

the reduction operation.

The following points describe the main aspects of the prototype implementation,

according to the main issues that have been enumerated in the previous section. The

code inspection process is the most critical part in the implementation so that we will

try to reduce the computational overhead of the inspection process and to face the

amount of data the inspection process is going to produce.

4.1 Basic inspector implementation

A simple but costly implementation can be easily achieved by intercepting any

memory access in the parallel loop. For each statement in the loop body, memory

#pragma omp parallel for
for (i=0; i<DIMX; i++) {
 for (j=0;j<DIMY;j++) {
 a[i][j] = a[i][j]*a[i][j];
 compute_row(a[i]);
 }
}

accesses can be replaced by a runtime call that will record the address in internal

runtime structures. It is obvious that only shared data must be monitored, so it is

needed that the compiler can identify which objects are private and which are shared.

This classification can be easily done by the compiler through the data scoping

clauses in OpenMP. This strategy represents the simplest inspector implementation

and the worst case in terms of overhead. Taking this basic approach as a baseline,

several optimizations can be applied. Consider the parallel code shown in Figure 1.

Figure 1: Simple parallel loop.

4.2 Amount of data produced by the inspector

A critical aspect to consider is the granularity level at which the inspector structures

work. Trying to record each of the memory addresses can generate an amount of data

impossible to deal with. So, it is better to work with a coarser memory unit. We

propose to make the inspection at page level, being a page a continuous portion of the

memory address space, similarly as in the pagination system. Even if the inspected

code follows a fully predictable access pattern, the inspection mechanisms work at

page level. Notice that nothing is forcing the implementation to define a uniform size

for all the variables the application deals with. It might be interesting to work with

smaller or bigger pages depending on the memory portion a page refers to. It is well

known that particular data alignment can cause false sharing, stressing the SDSM

implementation with a considerable source of control communication. Scalar

variables involved in reduction operations or structured data structures (vectors,

matrices) are well studied examples [5].

4.3 Parallelizing the inspector code

The inspector loop can be executed in parallel, scheduling the iterations with the same

scheduled that wil be used for the loop execution. Computing the inspection of a

chunk of iterations can be done applying the basic strategy described in section 4.1,

but just over a subset of the whole iteration space.

Figure 2 shows the code skeleton, responsible for the inspection process. This

code is executed by each parallel flow. The runtime call to dsm_begin_for_sampling

allocates a Loop Descriptor. This subroutine forces all the threads to wait for a control

message containing the loop parameters coming from the master process. The last

parameter of the runtime call informs the runtime about if the information produced

by the inspection can be reused in case the loop is executed several times (see section

4.6). For this example, nothing forbids to do so. The while statement makes the

 int a[DIMX][DIMY];
 int low,upper,step;
 int start,end;
 int i,j;
 dsm_begin_for_sampling(&low,&upper,&step,1);
 while (dsm_next_iters_sampling (&start,&end))
 {
 for (i=start;i<=end;i+=1)
 for (j=;j<=DIMY;j+=1)
 {
 stmt_sample(&a[i][j],1,& a[i][j]);
 insp_compute_row(a[i]);
 }
 }
 dsm_end_for_sampling ();

 int a[DIMX][DIMY];
 int low,upper,step;
 int start,end;
 int i,j;
 dsm_begin_for_sampling(low,upper,step,1);
 while (next_iters_sampling (&start,&end))
 {
 for (i=start;i<=end;i+=1)
 {
 sample_region(&a[i][0],DIMY,1,&a[i][0],DIMY);
 insp_compute_row(a[i]);
 }
 }
 dsm_end_for_sampling ();

executing thread to be continuously asking for iterations to the runtime system until

all the loop iterations have been executed. In the current implementation, only

STATIC scheduling is supported, thus the call to dsm_next_iters_sampling runtime

service updates the variables start and end only once, defining the chunk of iterations

to execute.

Figure 2: Inspection code for parallelized loop.

4.4 Predictable access patterns

Even if the code inspection is done in parallel, it is necessary to look for more chances

for optimization. Statements with invariant memory addresses can be omitted in the

inspection process for all iterations, and treated just once. Predictable memory

addresses, such as linear accesses to vectors or multidimensional matrices, can be

managed with a single runtime service, summarizing the memory portion accessed by

each execution flow. Figure 3 shows an optimized version of the inspecting code.

Notice that interprocedural analysis phase is required to detect that the call to

compute_row subroutine is invariant across the j-loop iterations. For similar cases

where the inspection process can be optimized, the data produced by the inspector is

organized at page level, as it has previously mentioned in section 4.2.

Figure 3: Optimized inspecting loop code.

4.5 Pointers and control dependences

Pointers and control dependences represent a considerable limitation to the

inspector/executor model. Current implementation does not include any specific

support for dealing with pointers. The case of index vectors is treated with the most

conservative approach, which forces the inspector to assume that the variable

accessed through an index vector will be totally referenced. In terms of

communication, this is going to be translated to a broadcast operation of the variable.

In case pointers appear to be invariant along the parallel loop execution, the inspector

still can be executed with no limitation. Under any other circumstance, the inspection

is inhibited.

Control dependences also limit the inspection process. When a control flow

statement breaks the sequential execution, the inspector cannot always know which

branch will be executed. If private data determines the branch, the inspector can

include all the necessary operations to evaluate the control dependence. If not, a

conservative approach is taken and the inspector inspects all the possible branches.

Although the current support to overcome the limitations related with pointers

and control dependences is very small, this is not going to have a significant impact

on the inspector functionality. It is quite common that parallel loops show a particular

ratio between the amount of data and operations related to memory addresses

computation and the total loop computation. Usually, parallel loops present a small

percentage of data and operations related to memory addresses computations. Under

such situation, the inspector code can still be applied, and the most conservative

solutions that have been described are not going to suppose a significant loose of

accurateness or an unacceptable increment of overhead.

4.6 Reuse of the inspector data

It is clear that having the possibility of reusing the inspector data becomes an

important source of optimization. Detecting if this data can be reused along the

different instances of a parallelized loop is not a simple task and the necessary

compiler and runtime support to automate such issue is not available in the prototype.

So, the current implementation is based on information provided by the programmer

to specify if the inspector data can be reused. We have analyzed each parallelized

loop and determined for each one, if data reuse was possible to be applied. In the

evaluation section, the number of loops with reused inspector is discussed, as well as

the impact of the reuse in performance.

5 Evaluation

The aim of this section is to describe and measure the limits on the inspector/executor

model in SDSM systems. Hence, not the whole SDSM implementation is evaluated,

just the effects of the inspection and data distribution mechanisms. Speedup and

execution time numbers are the initial metrics for the evaluation process, but then

broken down in different parts: communication associated to application itself,

Non optimized EP CLASS A

0

50

100

150

200

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Runtime

Application

Control Comm.

Data Comm.

communication required by the runtime, computation time of the application code and

computation time inside the runtime. The effects of the inspection process are mostly

noticeable within two implementation mechanisms: the inspection execution and the

algorithm responsible for deriving the data communication. Therefore, these two

aspects are specifically measured. No comparison of the current prototype with other

systems has been included. The main reason for that, is that the evaluation is centered

around the effects of the inspection process and the accurateness of the data produced.

In that direction, for all the tested applications, two versions of the inspector code

have been considered: a non optimized and an optimized version. For each case, the

optimizations are described.

The evaluation has been done using four applications from the NAS parallel

benchmark suite: EP, IS, FT and CG, all of them in their C version [9] [10]. The

experiments have been performed in the Marenostrum [15] platform available at the

Barcelona Supercomputing Center (BSC). The machine is composed by 2406 dual

nodes based on PowerPC970FX, 2.2 GHz and Myrinet with a total amount of 9.6 TB

of memory. A subset of 8 nodes was used for the evaluation.

5.1 EP

The Embarrassingly Parallel benchmark computes pairs of Gaussian random

deviates, according to a specific scheme. The benchmark works mainly with private

data and performs a reduction operation over two global variables. The whole

computation is organized as a single loop executed just once. This benchmark allows

for measuring the impact of the inspection process, conditioned by three issues. First,

no reuse can be applied, as the computation takes place only once. Second, the

inspection process has to deal with a considerable amount of private computation,

needed to point out what private data has to be accessed in the reduction operations.

Two versions of the inspection process can be studied, one including the private

computations, the other not. Finally, negligible data communication is about to

happen, since shared data is only composed by two objects, the global variables where

the output of the reduction operations are stored.

Figure 4: Non optimized EP CLASS A

Figure 4 shows the performance obtained in the execution of the EP (class A)

benchmark, with 2, 4 and 8 threads and non optimized inspection. The numbers on

0.80

1,60
3,21

top of the columns correspond to the speedup obtained in each experiment. The Y axis

shows the execution time, which is broken down (top to bottom) in Runtime and

Application code execution, and Data and Control communication. The serial time is

119,39 seconds and corresponds to the unmodified benchmark executed sequentially.

The Runtime and Application code take near 93% of the execution time. The cost of

the inspection process is included in the Runtime measurements and represents about

51% of total execution time. This behavior is maintained with 2, 4 and 8 threads, and

suggests there is much space for optimization. The inspection process is too heavy

and represents about having to execute twice the benchmark computation. The reason

of such overhead is that all computations related to private data are inspected.

Notwithstanding, some speedup is observed (3.21 with 8 threads).

Figure 5: Optimized EP CLASS A.

Figure 5 shows the performance for the optimized inspection process. In this

case, private computations have been taken out from the inspection code. This process

could be easily done by means of the PRIVATE clause in the parallelism

specification. Clearly, the benchmark performance is now improved, obtaining

speedups of 1.96, 3.91, and 7.73. The Runtime execution time ranges from 0.17% (2

threads) to 1.16% (8 threads). The inspection process and the computation of the data

distribution represent about 1.72% and 1.22% over the total execution time.

These results show that with a simple compiler optimization (avoiding the

inspection of private data), the process can be implemented without noticeable

overhead. In addition, the accuracy of the data produced by the inspector is enough to

totally determine the data distribution in this simple benchmark.

5.2 IS

The Integer Sort benchmark works with a shared vector, uniformly distributed among

all parallel processes. The computation is organized in a single parallel loop, executed

several times. After each loop instance, a reduction operation is performed. That

forces the parallel flows to flush some data back to the master process. The output of

the inspection process can be reused along the benchmark execution, so it is only

computed once. Two versions of the inspection process can be implemented: a non

optimized inspection, which goes along the iteration space and records all memory

Optimized EP CLASS A

0

10

20

30

40

50

60

70

2 4 8

Number of threads

E
x
e
c
ti

o
n

 T
im

e
 (

s
e
c
)

Runtime

Application

Control Comm.

Data Comm.
7,73

3,91

1,96

Non optimized inspection IS CLASS B

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e

Runtime

Application

Control Comm.

Data Comm.

Optimized IS CLASS B

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e
(s

e
c
)

Runtime

Application

Control Comm.

Data Comm.

accesses; and, an optimized version, where the inspection is done through a single

runtime call, summarizing the access pattern to the shared vector.

Figure 6 shows the performance for the IS (class B) execution, with 2, 4 and 8

threads, and non optimized inspection. The serial time is 46.0 seconds. For the non

optimized version each memory reference to a shared variable is intercepted. The

execution of the application code scales with the number of threads, but not the

execution of the runtime system. Data communication also increases with the number

of threads. This is caused by an all-to-one communication pattern related to the

reduction operation, previously mentioned. Notice that Control communication

represents a very small percentage (0.01%, 0.02% and 0.03 with 2, 4, and 8 threads)

of all the communication. This is caused because the inspector provides the runtime

system with all the necessary information regarding the memory consistency

(conflicting pages, written by more than one thread).

Figure 6: Non optimized IS CLASS B.

For the optimized version, predictable access patterns are assumed to be detected

by the compiler. Linear memory accesses to shared vectors have been inspected

through a single runtime call describing the access to the vector. The results in Figure

7 show the reduction of the execution time spent in the runtime system.

Figure 7: Optimized IS CLASS B.

5.3 FT

The Fourier Transformation benchmark computes a Fourier transformation over a

three dimensional matrix. The computation is organized in four subroutines: evolve,

3,17
2,73

1,63

1,86

3,27

4,71

Non optimized inspection FT CLASS B

0

100

200

300

400

500

600

700

800

900

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e

Runtime

Application

Control Comm.

Data Comm.

Optimized FT CLASS B

0

50

100

150

200

250

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Runtime

Application

Control Comm.

Data Comm.

cffts1, cffts2 and cffts3. All execute one after the other and update the content of the

main structure, the three dimensional matrix. This is repeated several times,

depending on the input benchmark. Each subroutine implements the computation with

three nested loops, one per dimension on the working set. While evolve, cffts1 and

cffts2 distribute the data cross the same dimension, the computation in cffts3

completely changes the data distribution. This causes this benchmark to be highly

loaded with Data communication overhead. The output of the inspection process in

each subroutine can be reused except for evolve, cffts1 and cffts3, so for these

subroutines, the code inspection is performed each time they are executed. Again, two

versions of the inspection process have been tested.

Figure 8: Non optimized FT CLASS B.

Figure 8 shows the performance of the non optimized version. The serial time is

232.33 seconds. Clearly, the unacceptable overhead produced by the inspection is

preventing any chance for speeding up the execution. Although Data communication

represents 7.64%, 17.09% and 33.72% of overhead, the weight for the inspection

process (76.32%, 63.79% and 45.41%) is the main factor that degrades the

performance. The inspection overhead comes out because of the structure of the

inspected code: the nest of three loops. Running over the whole iteration space sinks

any possibility of taking profit of the information gathered during the inspection

process.

Figure 9: Optimized FT CLASS B.

Figure 9 shows the results for the optimized case. Although this version obtains

very poor speedup, just 1.17, 1.26 and 1.22 for 2, 4 and 8 threads, now the time spent

under the runtime execution is about 11.79, 18.33 and 21.82. If those percentages are

0,28

0,47
0,68

1,21 1,26 1,17

Non optimized inspection CG CLASS B

0

100

200

300

400

500

600

700

800

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e

Runtime

Application

Control Comm.

Data Comm.

broken down, we see that the inspection process is about 1.08%, 0.6% and 0.3% of

the overall execution time. Therefore, the influence of the inspection process is not

the point. Those overheads are related to diff operations needed for the memory

consistency protocol. Anyway, Data communication becomes critical as it represents

32.26%, 49.22% and 63.20% of total execution time.

Notice that the data movement is totally determined by the application. The

overhead contributions coming from the inspection process and the data distribution

algorithm are negligible in front of Data communication times.

5.4 CG

The CG NAS parallel benchmark computes an approximation to the smallest

eigenvalue of a large, sparse, symmetric, positive definite matrix using a conjugate

gradient method. As in previous codes, two versions of the application have been

evaluated. In the non-optimized version (in which each memory access to shared data

is intercepted), the overheads related to the inspection process and the computation of

the data distribution can be afforded by the application when running up to 4 threads

(speedups of 1.87 and 2.89). With 8 threads the grain size assigned to each process

becomes too small to be worth for parallel execution, compared to the amount of data

that needs to be communicated. Figure 10 shows the results for this version.

Figure 10: Non optimized CG CLASS B

For the optimized version, similar speedups are obtained. The overheads related

to the inspection are reduced when running with 2 and 4 threads, but not with 8

threads. This is not translated to an increase of speedup because the accuracy in the

data produced by the inspector is not very high. The performed optimizations are

based on broadcast operations of shared data referenced through index vectors. The

inspector assumes the whole data structure is used by all the threads. This causes an

increment of the overhead related to the computation of the data distribution, as this

mechanism depends on the output of the inspection process, in terms of the number of

pages involved in the data distribution. Figure 11 shows the results for the optimized

version.

1,21 2,89

1,87

Optimized CG CLASS B

0

100

200

300

400

500

600

700

800

2 4 8

Number of threads

E
x
e
c
u

ti
o

n
 T

im
e

Runtime

Application

Control Comm.

Data Comm.

Figure 11: Optimized CG CLASS B

6 Conclusions

This paper shows benefits and limitations of the inspector/executor model within a

SDSM system. The role of the inspector is to provide an accurate (as mush as

possible) description of the references to shared data in each processor during the

parallel execution. It has been proved that delivering this information to the runtime

system creates many chances for optimizing the communication. The limits of the

model are defined by the overheads, implicit to the basis model, but can be overcome

by several optimization techniques, smoothing the impact of the inspection process on

the overall execution time.

Our experiments with four benchmarks of the NAS parallel benchmark suite have

demonstrated that it is possible to generate very accurate inspectors. It is possible to

build on top of the inspector/executor model a SDMS implementation, and execute

the parallel code performing the strictly necessary communication.

Acknowledgements

This work has been supported by the Ministry of Education of Spain under contract

CICYT-TIN2004-07739-C02-01, and the Barcelona Supercomputing Center.

References

[1] OpenMP Application Program Interface, Version 2.5, May 2005, www.openmp.org.

[2] T. El-Ghazawi and F. Cantonet. “UPC Performance and Potential: a NPB experimental Study”.

Proceedings of the 2002 ACM/IEEE International Conference on Supercomputing (ICS). 2002.

[3] T. El-Ghazawi, W. Carlson and J. Drapper. “UPC Language Specifications V1.1.1”. Oct 2003.

[4] W. Yu Chen, C. Iancu and K. Yelick. “Communication Optimizations for Fine-grained UPC

Applications”, Proceedings of the 14th International Conference on Parallel Architectures and

Compilation Techniques, (PACT2005)

[5] H. Lu, A. L. Cox, S. D. R. Rajamony and W. Zwaenepoel. “Compiler and Software Distributed

Shared Memory Support for Irregular Applications”. Proceedings of the Sixth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), 1997.

1,84

3,09 2,94

[6] J.J Costa, T. Cortés, X. Martorell, E. Ayguadé and J. Labarta. “Running OpenMP applications

efficiently on an everything-shared SDSM”. Proceedings of the 18th International Parallel and

Distributed Processing Symposium (IPDPS). Santa Fe, New Mexico, USA. 2004.

[7] A. Basumallik, R. Eigemann. “Towards Automatic Translation of OpenMP to MPI”. Proceedings of

the 19th Annual International Conference on Supercomputing (ICS). Cambridge, Massachusetts,

USA. 2005.

[8] Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy Zwaenepoel. “OpenMP for Networks of SMPs”.

Journal of Parallel and Distributed Computing, vol. 60 (12), pp. 1512-1530, December 2000.

[9] M. Sato, S. Satoh, K. Kusano and Y. Tanaka. “Design of OpenMP Compiler for SMP Cluster”.

Proceedings of the 1st European Workshop on OpenMP (EWOMP). 1999.

[10] M. Sato, H. Harada and Y. Ishikawa. “OpenMP Compiler for a Software Distributed Shared Memory

System SCASH”. Proceedings of the 1st Workshop on OpenMP Applications and Tools (WOMPAT).

2000.

[11] NanosMercurium Compiler Infrastructure, www.cepba.upc.es/mercurium.

[12] S. D. Sharma, R. Ponnusamy B. Moon, Y. Hwang, R. Dasand J. Saltz. “Runtime and compile-time

support for adaptive irregular problems”. Proceedings of Supercomputing’94, 1994.

[13] H. Jin M. Frumkin, and J. Yan. “The OpenMP Implementation of the NAS Parallel Benchmarks and

its Performance”. Technical Report NAS-99-011, NASA Ames Research Center, October 1999.

[14] C. Koelbel and P. Mehrotra. “Compiling Global Name-Space Parallel Loops for Distributed

Execution”. IEEE Transactions on Parallel and Distributed Systems, vol. 2(4), pp. 440–451, October

1991.

[15] Barcelona Supercomputing Center, www.bsc.es.

[16] S. J. Deitz, B. L. Chamberlain, S-Eun Choi, and L. Snyder. "The Design and Implementation of a

Parallel Array Operator for the Arbitrary Remapping of Data",.Proceedings of the ACM SIGPLAN

symposium on principles and practice of parallel programming (PPoPP 2003)

[17] C. Koelbel and P. Mehrotra. “Supporting shared data structures on distributed memory architectures”.

Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP). 1990.

[18] R.V. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. “Compiler analysis for irregular

problems in Fortran-D”. Proceedings of the 5th Workshop on Languages and Compilers for Parallel

Computing (LCPC), 1992.

[19] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey. “A Multiplatform CoArray Fortran Compiler”.

Proceedings of the 13th International Conference on Parallel Architecture and Compilation

Techniques (PACT), 2004.

