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ABSTRACT

This paper presents a computational method to solve a recently presented scheme to
annroximate oradiente of the nunner level ghiective function of a demand adingtment
approximate gradients of the upper level objective function of a demand adjustment
problem. The approximation scheme is not based on the proportions of utilization of
the O-D flows at the links, avoiding its problems. The computational method is based
on the use of the concept of partial linearization and in the simplicial decomposition

method with nonlinear columns generation.

1 Introduction

In the last years the OD matrix adjustment models from traffic counts have been formulated as
bilevel programming (BLP) problems and in the algorithmic field several methods have been
developed specifically that, although can be viewed as heuristics, adopt approaches common
to the general methods in optimization. The methods of Spiess in [12], Yang in [14], Chen
in [1], Codina and Barcel6 in [3] for the case of the deterministic user equilibrium are rep-
resentatives of this approach. These methods require the calculation of a descent direction at
each step and, optionally, a line search in order to complete an iteration. The calculation of
the descent direction can be carried out by means of the link use proportions (Spiess in [12]
and Chen in [1]) or using the sensibility analysis of Tobin et al. in [13] (Yang in [14]). They
all assumed explicitly or implicitly, differentiability at the point where the descent direction is
going to be evaluated. The method of evaluating the link use proportions by means of an addi-
tional equilibrium assignment is computationally efficient although does not guarantee that the
evaluated direction is of descent. Recently in [3], Codina and Barcel6 suggested an approach
for the BLP matrix adjustment problem based on a method for nondifferentiable optimization
and developed an approximation to the Clarke’s generalized gradient of the upper level function
based on a proximal point approach that requires the solution of a variable demand assignment
problem. In this paper a solution algorithm for the approximation of the steepest direction is
presented and evaluated, along with a test that detects whether a given direction is of descent
for the upper level function of the demand adjustment problem. The solution algorithm is based
on the simplicial decomposition with nonlinear column generation (SDN) of Larsson et al. and
on the partial linearization of Patriksson [11].

2 The steepest descent approximation approach

If the general asymmetric assignment map v*(¢g) presents uniqueness, then the BLP formulation
takes the form:

Min g0 F(g) = 21R:(v*(g)) + 22R2(9) ey
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function and z; > 0, z3 > 0. The upper level objective function R;(v*(g)) of a demand
adjustment problem (1) verifies the Lipschitz condition and, accordingly to Clarke [2], Propo-
sition 2.1.2, the generalized gradient of Clarke 0F(g) at a point g is well defined and is a non
empty, convex and compact set. In [3] Codina and Barcel6 show how a consistent approxima-
tion to an element of the generalized gradient of Clarke can be made to the upper level objective
function F'(g) = R;(v*(g)) at a specified point g, by approximating the following proximal

point problem:
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Min, Ry(v*(9)) + £ llg - gl @

If g* is the solution of problem (2), then for p high enough, an approximation of an element
of OF(g) is given by —p(g* — §).

For a non negative O-D matrix ¢ let V(g) the set of feasible link flows and let 2, denote
the cone of points (v, g) so that g > 0and v € V(g). Let G(v, g) denote the gap function
Min yey(g) ¢(v)" (v' — v) for a general inelastic demand traffic assignment problem. Problem
(2) can then be reformulated as:

T 3)

It must be noted that the function —G/(v, g) is always nonnegative on €2y and that G(v*(g), g)
0. Therefore partial penalization can be applied for the constraint (EQ) in problem (3) with a
penalty parameter 1/z, yielding the the following approximated problem (4):

. < o
Min wgea, $(v,9) = =G(v,g) +2R() + = |lg = gll,’ o

For the fixed demand additive and separable traffic assignment problem, the term —G/(v, g)
in (4) could be replaced by T'(v) — V(g), where V' (g) is the minimum value of the objective
function T'(v) = Y ,ca fo* ca(x)dx on V(g). For this case, in [3] Codina and Barcel6 give the
conditions under which problem (4) presents uniqueness of solutions.

For nrr\]‘\]r—\m (A\ with ﬂ(av n\ euhgetituted ]’\v ’T’(av\ — ‘/(n\ it is nossible to app nlv the partial
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hneanzatlon scherne of Patrlkson [11]. Chen in [1] proves that the function V( ) is differ-
entiable and Codina in [4] proves that ¢(g), the OD travel times at equilibrium, are Lipschitz
continuous functions of the demand g, completing a result of Hall in [9]. Therefore it is possible
to state that V' (g) = t(g). If the partial linearization scheme of Patriksson in [11] is applied
on 1), at the term V' (g), then at iteration (-th the subproblem step at a point (v, g*), would

consist of solving:

Min N Ny s VAN LT (e 4 D)\ 1 @ TPl | e\
VLUt (v, g)ey Y \UY) — L\V) — 4§ U zR wv) 9 1Y = Yllg T 4> )

where t¢ = t(g\’) and K = gl T+ — V(g!¥) is a constant.
Variable demand structure of the subproblems. The subproblem (5) can be rewritten as:

Min (yg) ey = > / z)dr — /gw —2p(xr — gu))dz + K (6)
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This problem presents the structure of an elastic demand assignment problem. The link
cost functions s,(v,) are defined as s,(v,) = co(va) + 2ug(vy — 0,) if link @ € A and
Sq(va) = cq(v,) otherwise. The excess demand transformation of Gartner in [8], converts an
elastic demand assignment probiem into a fixed demand one by modifying the network structure
of the problem. Given an OD matrix g > ¢*, an artificial link is added from each origin node
to each destination node absorbing the excess demand f,, for the OD pair w € W, so that
Jw + fu = Gw- In the case of problem (4), the cost for the added link for OD pair w € W
would be t{{ + zp(f,, — fu). Combined with the SDN algorithm of Larsson ez al. in [10], this
device will be used in order to solve problem (5).

2.1 Application of the SDN Algorithm to solve the PL subproblem (6)

For high values of the parameter p, the solution ¢g* of problem (4) is very close to the current
point ¢ at which the steepest descent direction of F'(g) is going to be approximated. This
implies that very few quadratic approximations of ¢‘ will be required in order to solve (5) using
the SDN algorithm. Let § > ¢ be an excess demand. The excess demand transformation of
Gartner defines a polytope Qgr(g) on the path flows space (h, f) and another polytope Qv (g)
on the link flows space (v, f) of the transformed network. Clearly, if (v,5 — ¢g) € Qvr(g) and
A= Min{gw/gw| gw > 0, w € W}, then (Av,g — Ag) € Qvr(g).

Let now &(v, g; ©) a quadratic approximation to ¢* at a point (9, §) € Qv and 0(v, g; v¥)
a partial linearization of &(v, g; ©) with respect to v at v*. Also, let x(v, f; ¥) a quadratic
approximation to ¢‘(v, f) at (¢, f) € Qvr(7).

Then an algorithm to solve Min , g)cay £(v, g5 0) is:

e Initialization X, = {(0,7)}, Y, = {0\, g— M)}, Zo = XoU Yy k = 0
e At iteration k-th:
— Subproblem. Solve Min (, g e, 0(v,g; v*) — & = (0,9).

A= Mingew{ ?—w | §w > 0}; New column: §* = (Ad, § — A\g)
Guw
Yk-l—l - YkU {Z)k}, Zk+1 - Yk+1 UXO

— RMP. Solve Min (, fye pruu(z,) X0, f; 0) — (0FFL, fAH0).
Remove columns with null baricentric coordinate in Z 1, if they exist. or the column

with the smallest one if Z;,; has reached its maximum size. In this case replace
(%, f¥Y by (vF*L ALY in Z,, or add (0F L fEEDAF (0F fRY E Z4 0 R K+ 1
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3 A simpie test to evaluate a direction

It is assumed now that the assignment map v*(g) is a singleton and that defining a function of
the O-D matrix g. In [6], Dafermos and Nagurney present sufficient conditions under which
v*(g) is a Lipschitz continuous function of g. Now, if v*(-) is differentiable at g, let d, (g, d,)
be the direction followed by the equilibrium flows on the link flows space corresponding to the
direction d,, at the point g. This is, d, (g, d,) can be defined as:

dy(g,dy) = —— (7



.

tnat dv\y, g) = —v* (g) Let ¢ a direction that is buppuacu to
n approximation to the steepest descent direction of F'(g at g. Let d, =
dy(g,d,). An approximation to the prox1mal point problem objective functlon (1) is then given

by R(A; dg) = R1(v+ )\dv) + EX?| dgH2 .

Let \; be the step length minimizing R(\; cig) and let \; be the step length minimizing
RN, —g) = Ri((1 —MNv) + §A2||§||22. Then, if R(v*(g)) is differentiable at g, it can Pe
proved that for p taken high enough the vectors A — C' = —\jgand A — B = — (A9 + Aady)
are approximately orthogonal if d, is parallel to the steepest descent direction of R(v*(g)) at g.

There follows that, if ¢ is the angle between A — C' and A — B, then cosp ~ 0 and a good
measure of the descent properties of a direction d, must be given by:
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cosp = sign(Ay) 3)

This expression can be used advantageously to evaluate a direction Jg at a given point ¢
calculated by means of the link use proportions as in the methods of Spiess in [12] or Yang in
[14] detecting if it will be an acceptable approximation to the steepest descent or provides an

accent direction (aq for examnle in a tect network chown hv Codina and Rarceld in 31 Tt muat
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be noticed that it does not depend explicitly on d,. The approximation d, (g, ug) ~ PTd can be

made in order to approximately evaluate \;. A better choice is to use d, ~ v*(g+ady) —v*(g),
for some little «, taking advantage of the paths and proportions used for v*(g).

4 Some numerical results

In order to evaluate the descent approximation method and test described in the previous sec-
tions a test network has been used LUllblbtlllg of nine nodes \ 1to 7) and two O-D paii‘S \1 — 2)
with demand ¢; and (3 — 4) with demand g,. Network parameters are shown on table 1. The

volume delay function is c(v) = (1 + 10(%)4).

Link No. | (¢,7) to y 0 = v*(400, 400)
T [ (L5 1] 200 400
2 (3,8) 1| 200 400
3 (506 2] 100 188.26
4 (5,8) .71 100 0
5 15,9 5] 100 431.36
6 (6,7) 1.0 | 100 368.64
T (7,2 1] 200 400
8 (7,9 1] 100 180.38
9 18,5 | 1.0] 100 219.62
10 (8,6) 1.0 | 100 180.38
11 (9,4) .08 | 200 400
12 (9,7 7] 100 911.74

Table 1. Parameters for the test network.

The following figure 1 shows two upper level objective functions R (v*(g)) using as count
set the links (4, 8) and (8, 12) respectively. Using these test functions the SDN algorithm has
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direction of steepest descent. A set of ten points ¢ in the demand space has been selected to
evaluate this method. It must be noticed that in all cases after the first iteration of the SDN
algorithm, a descent direction d, has been obtained. This direction has been compared to an
approximation of the steepest descent one calculated by finite differences at g. The angle (3
between cig and VR and the results of the test provided by cos ¢ are shown in table 2. Notice

that cos ¢ is not reliable (*) when ¢ and cig are almost parallel.
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Figure 1: The upper level test functions R(v) = %(%(04 — )2 + (vs — T8)?) (left) and R(v) =
2(3(vs — 05)? + (v12 — D12)?) (right)

g1 | g0 dg, dy., cos f3 cos @

664 | 477 | —0.017346 | 0.017675 | 0.9452 —-0.0731
800 | 800 0.005472 | —0.005712 | 0.8280 0.5384
800 | 100 | —0.002158 | —0.000352 | 0.8551 * = 1.00
100 | 800 0.006739 | —0.006741 | 0.7095 0.6972
100 | 100 | —1.535680 1.703043 | 0.8145 0.4483
500 | 100 | —0.005024 | —0.000920 | 0.8869 | * — 0.9296
100 | 500 0.008502 | —0.008526 | 0.7142 0.6933
600 | 300 | —0.162064 | 0.170001 | 0.9162 —0.2401
500 | 500 0.005565 | —0.005842 | 0.8250 0.5353
500 | 550 0.006913 | —0.007206 | 0.8197 0.5528
664 | 477 | 0.000685 | —0.001817 | 0.0857 0.9987
800 | 800 0.004627 | —0.005930 | 0.4542 0.8273
800 | 100 | —0.008720 | 0.009169 | 0.9797 0.2707
100 | 800 0.019543 | —0.014161 | 0.7998 0.4923
100 | 100 | —1.299988 1.876096 | 0.4781 0.7045
500 | 100 | —0.001308 | 0.001311 | 0.9818 0.1999
100 | 500 0.049666 | —0.030341 | 0.8951 —0.0203
600 | 300 | —0.111881 0.117776 | 0.9042 0.3020
500 | 500 0.004781 | —0.006075 | 0.4520 0.8318
500 | 550 0.006899 | —0.008233 | 0.5813 0.7862

Table 2. Application of the SDN algorithm with 1 iteration.
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The use of a combination of the SDN algorithm and of the partial linearization scheme shall be

shown to solve an elastic demand assienment nrnhlpm that arises in usino a consistent method
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for the approximation of the steepest descent direction of a demand adjustment problem re-
cently shown by Codina and Barcel6 in [3] at a point ¢g. This method requires slightly more
computational effort than the ones of Spiess in [12] or Yang in [14] based on the link use pro-
portions. Also, a simple test is shown in order to evaluate a direction as a valid descent direction
which in general provides good results.
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