Generalized equipartition theorem and confining walls
Rossend Rey

Citation: American Journal of Physics 83, 539 (2015); doi: 10.1119/1.4903763
View online: http://dx.doi.org/10.1119/1.4903763
View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/83/6?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Generalized coherent states
Am. J. Phys. 82, 742 (2014); 10.1119/1.4876963

The equipartition theorem revisited
Am. J. Phys. 78, 820 (2010); 10.1119/1.3386255

Confined one-dimensional harmonic oscillator as a two-mode system
Am. J. Phys. 74, 394 (2006); 10.1119/1.2173270

A second generalized equipartition theorem

Generalized classical equipartition theorem
Am. J. Phys. 44, 104 (1976); 10.1119/1.10541
Generalized equipartition theorem and confining walls

Rossend Reya
Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain

(Received 4 August 2014; accepted 26 November 2014)

It is shown that the generalized equipartition theorem as applied to the momentum may fail, even though the usual conditions of validity are met. This failure is linked to the nature of the confining walls, with ideal walls constituting a singular case. The corresponding analysis illustrates the use of proper sets of canonical coordinates, and the utility of canonical transformations other than point transformations. © 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4903763]

I. INTRODUCTION

The generalized equipartition theorem (GET) ranks among the basic results of classical statistical mechanics. Its corollaries are the theorem of equipartition (TE) for quadratic contributions to the Hamiltonian, and the statistical virial theorem. This fundamental role justifies its inclusion in several well-known statistical mechanics textbooks.1–3 Generally, though, its discussion is terse, with the aforementioned corollaries immediately capturing the spotlight. The literature on the GET4–7 and its applications8 is scarce as well.

This almost century-old9 theorem can be summarized by stating that for a given set of generalized coordinates \{qi, pi\} = \{xi\}, the following thermal average holds for any \(x_i \):

\[
\langle x_i \rangle = \frac{k_BT}{\partial H/\partial x_i},
\]

under the conditions9 that \(x_i \) becomes either zero or infinity at its two limits, and the energy becomes infinite if \(x_i \) does. (Here, \(H \) is the Hamiltonian, \(T \) is the absolute temperature, and \(k_B \) is Boltzmann’s constant.)

The GET is most easily illustrated for a free particle, with \(H = \sum p_i^2/2m \). For each Cartesian momentum the theorem yields \(\langle p_i^2/m \rangle = k_BT \), so that we get the usual equipartition of energy (specializing to the case of two-dimensions for simplicity)

\[
\langle H \rangle = \frac{1}{2} \sum_i \frac{p_i^2}{m} = \frac{1}{2} (k_BT + k_BT) = k_BT.
\]

Along with the limited attention that the GET has received in textbook accounts, it is not emphasized that care needs to be exercised even in cases as simple as this one. Indeed, an apparently inoffensive change of perspective can lead to conflicting results. The problem arises if the Hamiltonian is expressed in terms of the modulus of the total momentum

\[
H = \frac{p^2}{2m}.
\]

Now, we are entitled to consider \(p \) as one coordinate of a certain set of generalized coordinates—a coordinate that fulfills the conditions previously stated (its limits are zero and infinity, and the energy becomes infinite as \(p \to \infty \)). Carrying on the argument, according to the tenets of the theorem we should expect that \(\langle p \cdot \partial H/\partial p \rangle = k_BT \), and since in this case

\[
p \cdot \partial H/\partial p = 2H,
\]

we are confronted with the (incorrect) result

\[
\langle H \rangle = \frac{1}{2} \left(\langle p \cdot \partial H/\partial p \rangle \right) = k_BT.
\]

Alternatively, in the language of the TE, this means that we cannot take at face value the statement “each quadratic term in the Hamiltonian averages to \(k_BT/2 \),” because a quadratic term is what we have in Eq. (3).

Where did we go wrong? Certainly not in considering \(p \) a valid generalized coordinate. Rather, it will be shown below that this example constitutes an instance for which the theorem is not valid, despite all its usual conditions being fulfilled. In this particular case, these conditions are not sufficient, and a proper handling of the interaction with walls is required if one wishes to recover the validity of the GTE.

We will return to this example in Sec. III below. First, however, we use the harmonic oscillator as a convenient “playground.”

II. HARMONIC OSCILLATOR

As in the case of a free particle, it will suffice to work in two dimensions. We also assume an isotropic oscillator, so the Hamiltonian is

\[
H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{1}{2} m \omega^2 (x^2 + y^2)
\]

\[
= \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{1}{2} m \omega^2 r^2.
\]

A careless manipulation would seem to suggest that the same problem as described above exists here as well for the radial coordinate \(r \). If we substitute the Hamiltonian above into the relation \(\langle r \cdot \partial H/\partial r \rangle = k_BT \), we obtain for the average potential energy \(\langle m \omega^2 r^2 \rangle/2 = k_BT/2 \), i.e., only half of the correct average potential energy for this system. The trivial solution, in this case, is that we are mixing different sets of canonical coordinates. The Hamiltonian in Eq. (5) is expressed most straightforwardly in terms of the coordinates \(x, y, p_x, p_y \); if we wish to apply the theorem to the variable \(r = \sqrt{x^2 + y^2} \), we must express the Hamiltonian in terms of a consistent set of polar coordinates: \(H = H(r, \theta, p_r, p_\theta) \). Let us see how this standard transformation solves this initial puzzle.
A. Polar coordinates in configuration space

The starting point is the usual transformation from rectangular to polar coordinates in configuration space

\[
\begin{align*}
 r &\equiv \sqrt{x^2 + y^2}, \quad \text{with } r \in [0, \infty), \\
 \theta &\equiv \tan^{-1} \left(\frac{y}{x} \right), \quad \text{with } \theta \in [0, 2\pi].
\end{align*}
\]

(6)

We now need to determine the corresponding transformation of momentum coordinates \((p_r, p_\theta)\), so that the whole transformation is a canonical one (the GET concerns canonical sets of coordinates). The change of variables is most conveniently carried out starting from the Lagrangian, but we will instead use the generating function formalism,\(^{10}\) in preparation for the analysis of the free particle.

The generating function approach is based on noticing that the relation between the old \((q_i, p_i)\) canonical coordinates (with Hamiltonian \(H(q_i, p_i)\)) and the new ones \((Q_j, P_j)\) (with “Kamiltonian” \(K(Q_j, P_j)\)) has the form

\[
p_i \dot{q}_i - H = P_j \dot{Q}_j - K + \frac{\partial F}{\partial t},
\]

(7)

where \(F\) is a “generating” function that depends on a certain subset of both old and new coordinates. (A summation convention over repeated indexes is assumed here and below.)

The present case belongs to the important class of point transformations for which the new coordinates depend only on the old coordinates and time, i.e., \(Q_j = f_j(q, t)\) (where \(q\) is used as shorthand for \((q_1, q_2, \ldots)\)). As shown below, in this case the generating function that connects the two sets of coordinates is expressed as

\[
F = f_j(q; t)P_j - Q_jP_j,
\]

(8)

where the time dependence of \(F\) has been kept for generality but will be dropped in the following.

Substituting the time derivative of \(F\) into Eq. (7), we get

\[
p_i \dot{q}_i - H = -K + \frac{\partial f_j(q)}{\partial q_i} \dot{q}_i P_j + f_j(q) \dot{P}_j - Q_j P_j,
\]

(9)

and since the old and new coordinates are separately independent, this relation can hold only if the coefficients of \(\dot{q}_i\) and \(\dot{P}_j\) vanish,\(^{10}\) leaving

\[
\begin{align*}
 Q_i &= f_j(q), \\
 p_i &= \frac{\partial f_j(p)}{\partial q_i} P_j, \\
 H &= K.
\end{align*}
\]

(10–12)

We therefore recover the general relations between old and new canonical coordinates [Eq. (10)] and, more importantly, we obtain the transformation for the momenta [Eq. (11)]. Finally, Eq. (12) shows that the new Hamiltonian is obtained by simply changing variables in the old one.

Returning to the harmonic oscillator case, by comparing Eq. (10) with Eq. (6), we first identify the set \(f_j(q)\)

\[
f_r(x, y) = \sqrt{x^2 + y^2},
\]

(13)

\[
f_\theta(x, y) = \tan^{-1} \left(\frac{y}{x} \right).
\]

(14)

Armed with these functions, we can then use Eq. (11) to relate the new \((p_r, p_\theta)\) to the old \((p_x, p_y)\)

\[
\begin{align*}
p_r &= \frac{\partial f_r}{\partial x} p_x + \frac{\partial f_\theta}{\partial x} p_y = \cos(\theta)p_x - \frac{\sin(\theta)}{r} p_\theta, \\
p_\theta &= \frac{\partial f_r}{\partial y} p_x + \frac{\partial f_\theta}{\partial y} p_y = \sin(\theta)p_x + \frac{\cos(\theta)}{r} p_\theta.
\end{align*}
\]

(15–16)

Substituting these expressions into Eq. (5), and considering the identity (12), we get for the Hamiltonian

\[
H = \frac{1}{2m} \left(p_r^2 + p_\theta^2 \right) + \frac{1}{2} m \omega^2 r^2,
\]

(17)

which is the same expression that one would find using the more familiar Lagrangian technique.

It is the term with an inverse dependence on \(r^2\) that saves the GET. First, we apply the GET to the \(p_\theta\) coordinate,

\[
k_B T = \left(p_\theta, \frac{\partial H(p_r, p_\theta, r, \theta)}{\partial p_\theta} \right) = \left\{ p_\theta \right\}_{\frac{m \omega^2}{r^2}},
\]

(18)

Next we do the same for the \(r\) variable,

\[
k_B T = \left(r, \frac{\partial H(p_r, p_\theta, r, \theta)}{\partial r} \right) = -\left\{ \frac{p_\theta^2}{m \omega^2} \right\} + (m \omega^2 r^2).
\]

(19)

Adding these two results and dividing by 2, we obtain

\[
\frac{1}{2} (m \omega^2 r^2) = k_B T,
\]

(20)

as expected (but at variance with the result \(k_B T/2\) obtained with a sloppy manipulation). The key was to use a consistent set of coordinates for the Hamiltonian.

B. Polar coordinates in momentum space

We now turn to the kinetic energy part of the harmonic oscillator Hamiltonian, which gave rise to a paradoxical situation in the free particle case (when expressed in terms of the momentum modulus, \(H = p_r^2/2m\)). Because we need to work with a canonical set of coordinates that includes \(p\), we define a transformation to polar coordinates in momentum space

\[
p \equiv \sqrt{p_r^2 + p_\theta^2}, \quad \text{with } p \in [0, \infty),
\]

\[
\Theta \equiv \tan^{-1} \left(\frac{p_\theta}{p_r} \right), \quad \text{with } \Theta \in [0, 2\pi].
\]

(21)

As before, we need to determine the corresponding transformation of the spatial coordinates \((x, y)\). Following the generating function methodology, we note that taking \(F = q_i p_i - g_i(p)Q_j\), we get the relations

\[
\begin{align*}
P_j &= g_j(p), \\
q_i &= \frac{\partial g_i(p)}{\partial p_i} Q_j.
\end{align*}
\]

(22–23)
From Eq. (21) we identify the functions \(g(p_i) \) that define the new “momenta” \((p, \Theta)\) in terms of the old ones \((p_i, \phi_i)\)
\[
g_p(p_x, p_y) = \sqrt{p_x^2 + p_y^2},
\]
\[
g_\phi(p_x, p_y) = \tan^{-1}\left(\frac{p_y}{p_x}\right).
\]
The new \((Q_p, Q_\phi)\) and old \((x, y)\) “position” coordinates are related using Eq. (23)
\[
x = \frac{\partial Q_p}{\partial p_x} Q_x + \frac{\partial Q_p}{\partial p_y} Q_y = \cos(\Theta) Q_p - \frac{\sin(\Theta)}{p} Q_\phi,
\]
\[
y = \frac{\partial Q_p}{\partial p_y} Q_x + \frac{\partial Q_p}{\partial p_y} Q_y = \sin(\Theta) Q_p + \frac{\cos(\Theta)}{p} Q_\phi,
\]
with inverse relations
\[
Q_p = \cos(\Theta) x + \sin(\Theta) y,
\]
\[
Q_\phi = -p \sin(\Theta) x + p \cos(\Theta) y.
\]
Substituting Eq. (26) into the harmonic oscillator Hamiltonian, we obtain
\[
H = \frac{p^2}{2m} + \frac{1}{2} m \omega^2 \left(Q_p^2 + \frac{Q_\phi^2}{p^2} \right),
\]
which in retrospect was to be expected by simple symmetry arguments, when compared with Eq. (17).

It is the term inversely proportional to \(p^2\) that allows the GET to be valid for \(p\) in this case. Starting from
\[
\left\langle p \frac{\partial H(p, \Theta, Q_p, Q_\phi)}{\partial p} \right\rangle = k_BT,
\]
and considering the symmetry between Hamiltonians Eqs. (28) and (17), an argument that parallels that of Eqs. (18) and (19) leads to the expected result
\[
\left\langle \frac{p^2}{2m} \right\rangle = k_BT,
\]
or \(k_BT/2\) for each Cartesian component.

To summarize, in the case of the harmonic oscillator the GET is perfectly valid for the modulus of the momentum \(p\). However, for our argument it was essential that a (harmonic) confining potential was present in the Hamiltonian.

III. BREAKDOWN FOR A FREE PARTICLE

It is now time to return to the result obtained in the Introduction for a free particle [see Eq. (4)], which stands in strong contrast with Eq. (30). A literal interpretation of the GET cannot possibly be valid for \(p\) in the free particle case, even though all the usual requirements are fulfilled.

It should be clear by now that for the free Hamiltonian,
\[
H = \frac{p^2}{2m},
\]
no canonical change of coordinates can bring up a term similar to the one with an inverse dependence on \(p^2\) that we just obtained for the harmonic oscillator, so that we might recover Eq. (30).

The origin of the problem lies in the somewhat loose statement of the conditions required for the validity of the GET, specifically with regard to the interaction with the confining walls. Let us review the usual derivation of the GET in the canonical ensemble. We write the integral over all phase space variables as \(\int d\omega\), and, as in Eq. (1), denote the variable of interest as \(x_i\). We also define \(\omega(i)\) as the set of all phase space variables except \(x_i\). Isolating the \(x_i\) integral and then performing an integration by parts (with the change of variables \(u = x_i\), \(dv = e^{-\beta H(x_i)}\)), we obtain
\[
\left\langle x_i \frac{\partial H}{\partial x_i} \right\rangle = \frac{1}{Z} \int do(i) \left\{ \frac{\partial H}{\partial x_i} e^{-\beta H(x)} \right\} = \frac{k_BT}{Z} \int do(i) \left\{ -x_i e^{-\beta H(x)} \right\} + \left\{ e^{-\beta H(x)} \right\},
\]
where \(\beta = 1/(k_BT)\) and \(x_{i1}\) and \(x_{i2}\) denote the extreme values of coordinate \(x_i\). For the validity of the theorem, it is necessary that the boundary term \(-x_i e^{-\beta H}\) cancels out when evaluated at its two limits \((x_{i2}\) and \(x_{i1}\)). From this condition, we easily recover the conditions initially stated regarding the acceptable limiting behavior: \(x_i\) becomes either zero or infinity at its two limits, and the energy becomes infinite if \(x_i\) does.

What is usually not stated is that, in addition, it is assumed that the limits for the rest of the coordinates are independent of \(x_i\). If such a dependence exists we cannot isolate the integration over the variable \(x_i\) as we have done above—before proceeding with the integration over \(x_i\), one must integrate out the variables whose limits depend on it.

Let us now see in detail that this is actually the explanation in the present case, and that when using a set of generalized coordinates for which \(p\) is one of the members, we actually obtain the correct answer (in the particular case of a free particle in a two-dimensional box)
\[
\left\langle p \frac{\partial H}{\partial p} \right\rangle = 2k_BT,
\]
where the factor of 2 stands in strong contrast with the GET. Incidentally, there is a simple proof of the correctness of this result using the chain rule
\[
p \frac{\partial H}{\partial p} = \sum_i p \frac{\partial H}{\partial p_i} = \sum_i p \frac{\partial H}{\partial p_i} p_i = \sum_i \frac{p_i^2}{m},
\]
so that
\[
\left\langle p \frac{\partial H}{\partial p} \right\rangle = \left\langle \sum_i \frac{p_i^2}{m} \right\rangle = 2k_BT,
\]
since we know the Cartesian momenta \((\rho_i)\) satisfy equipartition. This procedure, though, might seem to suggest that we
need to go through more “legitimate” canonical coordinates (Cartesian momenta in this case). One would like to show that such a roundabout approach is not required, and that one can stick to the \(\{Q_p, Q_\Theta, p, \Theta\} \) coordinates.

As a preamble, let us calculate the partition function of a free particle in a two-dimensional square box of width \(L \), as shown in Fig. 1(a). Using Cartesian coordinates, we have

\[
Z = \frac{1}{h^2} \int_0^L dx \int_0^L dy \int_{-\infty}^{\infty} dp_x e^{-\frac{p_x^2}{m L^2}} \int_{-\infty}^{\infty} dp_y e^{-\frac{p_y^2}{m L^2}} = \frac{L^2}{\lambda^2},
\]

(36)

where \(\lambda = h/\sqrt{2\pi m k_B T} \) denotes the thermal wavelength. As stated in the introduction, the GTE is perfectly valid for the Cartesian components of the momentum in the free case; for instance,

\[
\left< p_x \frac{\partial H}{\partial p_x} \right> = \frac{1}{Z h^2} \int_0^L dx \int_0^L dy \int_{-\infty}^{\infty} dp_x e^{-\frac{p_x^2}{m L^2}} \int_{-\infty}^{\infty} dp_y e^{-\frac{p_y^2}{m L^2}} \quad \times \int_{-\infty}^{\infty} dp_p e^{-\frac{p_p^2}{2m}} = k_B T.
\]

(37)

Let us now see what is obtained with the set of generalized coordinates \(\{Q_p, Q_\Theta, p, \Theta\} \), defined in Sec. II. Again, we start from the computation of the partition function. We already know the limits of integration for \((p, \Theta) \) [see Eq. (21)], so our only remaining task is to determine the domain of integration for the variables \((Q_p, Q_\Theta) \). A sketch is displayed in Fig. 1(b).

We will illustrate the procedure for the transformation of the boundary that in \(xy \)-space is defined by the lowest horizontal line (i.e., \(y = 0, x \in [0, L] \)), and leave the rest of the calculation for the Appendix. Using Eq. (27), we have \(Q_p = x \cos(\Theta) \) and \(Q_\Theta = -x p \sin(\Theta) \), from which we see that the new boundary is also described by a straight line: \(Q_\Theta = -p \tan(\Theta) Q_p \). In this way, the original square is distorted, as shown in Fig. 1(b). The new shape is a parallelogram, whose total area is (see the Appendix)

\[
\int dQ_p \int dQ_\Theta = L^2 p.
\]

(38)

We now see how the dependence on \(p \) of the boundary conditions for \((Q_p, Q_\Theta) \) forbids any direct integration by parts of this variable, prior to the integration in the \((Q_p, Q_\Theta) \) domain. No such issue arose with the Cartesian components.

Using Eq. (38), we can now evaluate the partition function in our polar coordinate system

\[
Z = \frac{1}{h^2} \int_0^L dp \int_0^{2\pi} d\Theta \int dQ_p \int dQ_\Theta e^{-\frac{p_p^2}{2m}} = L^2 \int_0^{2\pi} \frac{d\Theta}{\lambda^2} = \frac{2\pi L^2}{\lambda^2} \int_0^\infty dp \frac{p^2}{2m} e^{-\frac{p^2}{2m}} = \frac{L^2}{\lambda^2},
\]

(39)

in agreement with Eq. (36). (This procedure surely qualifies as one of the most convoluted possible derivations of the simplest multidimensional partition function!)

It is now straightforward to compute \(\left< p \frac{\partial H}{\partial p} \right> \) in \(\{Q_p, Q_\Theta, p, \Theta\} \) space

\[
\left< p \frac{\partial H}{\partial p} \right> = \left< \frac{p^2}{m} \right> = \int_0^\infty dp \frac{p^2}{m} e^{-\frac{p^2}{2m}} = 2k_B T,
\]

(40)

where the integrals over \(Q_p, Q_\Theta, \) and \(\Theta \) are not shown because they cancel between the numerator and denominator. This is the result we wanted to prove. In short, although the conditions usually assumed for the canonical coordinate are met, the GET does not hold due to the dependence of the integration limits of other coordinates on the coordinate of interest \((p) \).

IV. BOUNDARY CONDITIONS VERSUS CONFINING POTENTIALS

From a physical standpoint, the origin of the problem has to do with the nature of the confining walls. The two simple examples we have been working with (harmonic oscillator and free particle) illustrate this. On one hand, the isotropic harmonic potential is an example of a soft confining potential, and we have seen that it poses no problem for the GET. On the other hand, a free particle with walls defined by boundary conditions corresponds to an idealized hard
This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
147.83.95.23 On: Mon, 08 Jun 2015 14:05:20

We now follow the same route as in Eq. (34), with the difference that we also need to consider the potential energy derivatives with respect to \(p \), for which we need to recall relations (26)

\[
\frac{\partial H}{\partial p} = p \left(\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} \right) + p \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y}.
\]

If we now average this formula (considering that averages over positions \(x, y \) and momenta \(\Theta \) are independent), we obtain the desired validity of the GET for the momentum modulus

\[
\left\langle p \cdot \frac{\partial H}{\partial p} \right\rangle = \left\langle \frac{p_x^2}{m} \right\rangle + \left\langle \frac{p_y^2}{m} \right\rangle - \left(\left\langle \frac{\partial U}{\partial x} \right\rangle + \left\langle \frac{\partial U}{\partial y} \right\rangle \right) (\sin^2(\Theta))
\]

\[
= 2k_B T - (2k_B T) \cdot \frac{1}{2} = k_B T,
\]

where we have assumed only that \(U(x, y) \) is sufficiently well behaved, so that we can apply the GET to positional coordinates

\[
\left\langle \frac{\partial U}{\partial x} \right\rangle = \left\langle \frac{\partial U}{\partial y} \right\rangle = k_B T.
\]

V. CONCLUDING REMARKS

It has been well-known, since its initial formulation, that the inclusion of the interaction with confining walls guarantees that the GET is satisfied for spatial coordinates. This was made more explicit in subsequent textbook expositions, and discussed in detail in Ref. 7. What it is shown here is that for the theorem to be valid for the momentum modulus, and in contrast with what one might expect, special care must be taken as well with the handling of confining walls. Basically, the GET in its usual formulation fails for ideal hard confining walls (defined as those represented by boundary conditions). The theorem recovers its validity, though, if the confining walls are described instead by a smooth potential. A similar statement could be made for the more specific theorem of equipartition (TE) for quadratic contributions to the Hamiltonian.

From a more practical point of view, one should be cautious with the use of a Hamiltonian that does not include an explicit interaction with walls (in addition to any interparticle interactions). While some quantities, such as momentum Cartesian components, pose no problems (and these are the ones usually manipulated in textbooks), others require the consideration of more physically reasonable walls (or a different form of the GTE, like Eq. (35), which does not seem advisable). Finally, although we have focused

\[
H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + U(x, y).
\]
on free particles, similar considerations would be applicable to the center-of-mass momentum modulus for a system of interacting particles.

ACKNOWLEDGMENTS

This work was supported by DGR (2009-SGR-1003) and MICINN (FIS2012-394-C02-01).

APPENDIX: INTEGRATION OF CONJUGATE COORDINATES

Here, it is shown how the square displayed in Fig. 1(a) is transformed into the parallelogram in Fig. 1(b), under the effect of the canonical transformation to polar coordinates in momentum space, Eqs. (21) and (27). The set of segments (1, 2, 3, 4) is transformed into (1', 2', 3', 4'), which will be addressed in turn.

- Segment 1: Somewhat expanding on the succinct explanation given in Sec. III, in this case we have $y = 0$, which if substituted into Eq. (27), results in the relations $Q_y = x \cos(\Theta)$ and $Q_\Theta = -xp \sin(\Theta)$. Taken together, the boundary (1') in (Q_p, Q_Θ) space is now defined by the linear relation $Q_\Theta = -p \tan(\Theta)Q_p$. The initial and final points in (x, y) space, namely, $(0, 0)$ and $(L, 0)$ [point A in Fig. 1(a)], are now, respectively, transformed into $(0, 0)$ and $(L \cos(\Theta), -Lp \sin(\Theta))$ (point A' in Fig. 1(b)).

- Segment 2: Now we have $x = L$, which results in the relations $Q_p = L \cos(\Theta) + y \sin(\Theta)$, $Q_\Theta = yp \cos(\Theta) - Lp \sin(\Theta)$. When these are combined, we have again a linear relation: $Q_\Theta = pQ_p/\tan(\Theta) - pL/\sin(\Theta)$. This straight line (2') has end points at $(L \cos(\Theta), -Lp \sin(\Theta))$ and $(L \cos(\Theta) + L \sin(\Theta), Lp \cos(\Theta) - Lp \sin(\Theta))$.

- Segment 3: The constraint $y = L$ now results in $Q_y = x \cos(\Theta) + L \sin(\Theta)$ and $Q_\Theta = Lp \cos(\Theta) - xp \sin(\Theta)$. The linear relation is now $Q_\Theta = -p \tan(\Theta)Q_p + Lp/\cos(\Theta)$, so that segment 3' has the same slope as segment 1'. The end points are $(L \cos(\Theta) + L \sin(\Theta), L \cos(\Theta) - Lp \sin(\Theta))$ and $(L \sin(\Theta), Lp \cos(\Theta))$ (B' in Fig. 1(b)).

- Segment 4: Now $x = 0$ results in $Q_p = y \sin(\Theta)$ and $Q_\Theta = yp \sin(\Theta)$, so we get $Q_\Theta = pQ_p/\tan(\Theta)$. Segment 4' has the same slope as segment 2', with end points $(L \sin(\Theta), Lp \cos(\Theta))$ and $(0, 0)$, and therefore the resulting figure is a parallelogram.

The surface area of the parallelogram can be computed as the modulus of the determinant constructed from the vectors that are directed from the origin to points A' and B', respectively.

$$
\int dQ_p \int dQ_\Theta = \begin{vmatrix}
L \cos(\Theta) & L \sin(\Theta) \\
-Lp \sin(\Theta) & Lp \cos(\Theta)
\end{vmatrix} = L^2 p. \quad (A1)
$$

*Electronic mail: rosendo.rey@upc.edu

R. C. Tolman, Statistical Mechanics With Applications to Physics and Chemistry (Chemical Catalog Company, New York, 1927).

