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Introduction

1. Motivation

Many structural and mechanical systems are subject to external actions that
are random in time and nature, i.e. not only the moment of their ocurrence
in 2 macro-scale is uncertain but also their time variation in the micro-scale.
Earthquakes, wind loads, ocean waves etc., can be classified into this cathegory.
Since their time variation is usually fast they produce vibration in the struc-
ture and, therefore, one has to deal with random dynamic responses produced
by random time-variant actions. Furthermore, the uncertainty of the struc-
tural performance increases if account is taken of the randomness associated to
structural parameters such as mass, stiffness, strength, etc. It is clear that the
problem must be examined from a. probabilistic point of view by means of the
theories of stochastic processes and random vibration.

A general method that can be applied to any type of linear or nonlin-
ear structure for obtaining statistical measures of ils response is the Monte
Carlo simulation, which consists in the synthetic generation of a large num-
ber of realizations of the random process under study and the calculation of a
set of structural response histories with a deterministic algorithm. The large
computational effort required by this technique, which makes it well neigh an
unadmissible task in case of large nonlinear structures, explains why random
vibration theory is mainly concerned with analytical methods for assessing such
measures at a lower cost. Monte Carlo simulation is commonly employed only
for judging the accuracy of analytical methods on small structural systems.

The analysis of the structural random vibration caused by earthquakes using
analytical techniques is more involved than for other random loads, due to the
fact that they usually entail nonlinear structural response - let alone the diffi-
culties for a correct stochastic description of earthquake acceleration processes.
While methods for characterizing the vibration of linear structures in proba-
bilistic terms are well established, for nonlinear systems the available methods
are limited in their application. In fact, either they can be applied only to struc-
tures having weak nonlinear behaviour and otherwise they become inaccurate,
or they give good estimations only for certain cases of severe nonlinear response.
Moreover, the structural size that can be managed when using some of them is
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usually very limited for mathematical or computational reasons. Finally, some
of the above limitations are more serious for a class of nonlinear systems, namely
those exhibiting hysteretic behaviour, whose mathematical description makes
difficult or impossible the application of some established techniques.

2. Outline

This monograph deals with methods for analysing the random vibration
of deterministic or uncertain hysteretic structures under any type of external
random dynamic load. However, more attention is given to the modelling of
seismic random vibration of structures.

Chapter 1 is devoted to a cursory account of background concepts on ran-
dom processes and stochastic calculus. It is intended to be helpful to the general
reader for a better understanding of the subsequent developments. The topics
examined are the stationary and nonstationary processes, Markov processes,
basic and advanced stochastic calenlus and stochastic differential equations. In
chapter 2 the stochastic modelling of earthquake actions is dealt with. Both sta-
tionary and nonstationary models are examined, with a special emphasis placed
on the instantaneous spectrum, which is used in later applications of random
vibration methods to the analysis of base isolated buildings. The next chapter
summarizes the basic concepts of the method of stochastic equivalent lineariza-
tion as well as methods for assessing the distribution of response maxima and
the influence of model uncertainties.

Chapter 4 discusses the application of the method of stochastic linearization
to hysteretic structures using the hypothesis of joint (Gaussian behaviour of the
response variables which is frequently resorted to in random vibration analyses.
Tt is shown that the method is subject to errors that can be enormous in some
cases. In chapter b a non Gaussian method aimed at obtaining better estima-
tions is introduced. It is based on combinations of Dirac and Gauss densities
poised in accordance to the departure from the linear state of the system. Its
superiority over the conventional Gaussian approach is demonstrated through a
series of examples. The chapter ends with the derivation of the equations nec-
essary to compute the influence of model uncertainty according to the general
second-order method described in chapter 3.

In chapter 6 a method intended to extend the applicability of stochastic
linearization to large nonlinear structures using eigendecomposition that has
been proposed by several authors is discussed. It is shown that when used for
nonstationary analyses, the response estimations it gives are tightly dependent
on the time step used for the calculation, which is tantamount to saying that the
method is not suitable for practical application. An algorithm that overcomes
this drawback is introduced. It is shown that it is mathematically equivalent
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in the eigenspace to the direct method used in chapters 3 to 5 in the physical
space.

Chapter 7 begins with a discussion on methods for estimating the higher
order stochastic response of hysteretic structures. It follows with an analysis of
the numerical weaknesses of the method of maximum entropy, which emerges as
the best to that purpose from the previous examination. However, the method
is fraught with numerical pitfalls, the most important of which lies in the ill-
conditioning of a core matrix, whose entries are multidimensional integrals that
must be calculated at each time step. A procedure for calculating the integrals,
based on Fourier transforms, is then introduced. It is demonstrated that it
leads to a solution for the joint probability density while normal integration
techniques carry the solution to numerical collapse. In the last chapter the
method of stochastic equivalent linearization is applied to the study of the
seismic random vibration of two types of base isolation systems. Both are
found to be highly sensitive to some nonstationary details of the seismic action.
Other aspects, such as the influence of the structural nonlinear behaviour and
the uncertainty of device strength are examined.







Chapter 1

Random processes and stochastic
calculus

1.1 Introduction

By the expression random or stochastic process it is meant a scalar or vec-
tor random variable which evolves in time. This means that the value of the
function z(t) at any time is unpredictable and so it is a random variable X (f)
which can only be described in a probabilistic sense*. According to this defini-
tion, the relationship existing between the theory of random processes to that
of random variables is similar to that linking dynamics with statics in struc-
tural theory. Figure 1.1 shows a realization of a random process (an earthquake
accelerogram in this case). Unlike the common deterministic view of struc-
tural dynamics problems, which would take such accelerogram as the “true”
excitation, from an stochastic viewpoint it is only a matter of chance that just
this recorded acceleration history has ocurred and any other with the same
probabilistic structure could be claimed to be considered with equal rigth. The
structural responses to several random excitations, of course, would differ, espe-
cially if the system is nonlinear. Thus, both the input and output time histories
could be regarded as random processes.

The mentioned probabilistic structure of the random process is the subject
under study. That is, if the discrete states of the (in general, vector) random
variable X (t) are X, X,, X},... at times ¢, <t, <{£;,... the interest lies on
the determination of probabilistic measures common for all posible realizations
of that sequence. According to the information conveyed by the measures one
can order them into a hierachy. The most complete description of a stochastic

*  Throughout this work a distinction is made between deterministic and stochastic time

functions, which are denoted with lower- and upper-case letters, respectively. The realizations
of a stochastic process are also denoted with lower-case symbols.
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Figure 1.1 An earthquake motion record (units: s, cm/s”)
process would be the set of joint probability distribution functions of the type
F(z,,t) = PIX, (¢) < 2]
F(m,t15®,,1,) = P[X(t;) < 20 X, (E) < @y
Pt @ty @y b)) = PIX (1) <200 XL (1) S 2] (1.1)

if they can be found. The corresponding probability density functions are de-
fined as their partial derivatives with respect to all their arguments. For a scalar
process we have

3mF($ b oty 2 1)
FOPINY L T S N A 11%11 %910 ms b
f( 1 %1 PR iBm m) 39;133;2.”8337”

(1.2)

An important class of processes for which the overall probabilistic descrip-
tion (1.1) can be greatly simplified is constituted by the Markov diffusion pro-
cesses. As will be shown later in this chapter, these processes can be completely
specified in terms of second order, conditional probability densities of the type

Hwy ol 1) (1.3)
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which expresses the probability of finding the process in state @, at time 2,
given that it was in state &, at time ¢;. This notion has opened the way to the
development of the theory of stochastic differential equations.

In many cases, however, even the determination of such elementary condi-
tional probabilities is difficult, in which case the analysis of a vector process can
only achieve the estimation of some moments of the components of the vector,
ie.

b k kn,
g (X0 = [2'0,7 ol f(w,t)da (1.4)

where k is the multi-index of powers of the associated random variables
k=lk,ky...] (1.5)
and |k| is the sum of its elements:
|k =Fk +ky+... (1.6)

These moments represent, of course, a poorer probabilistic information about
the process than the density functions. The lowest position in this hierarchy cor-
respond to the case where only the moments of the first two orders (|k| = 1,2)
can be obtained. However, if the process is Gaussian (that is, the marginal and
joint probabilistic densities obey a normal law) such second order description
determines completely the whole probabilistic evolution of the Markov diffusion
process. If not, it can nevertheless be useful for the assessment of other impor-
tant measures of the process, such as first passage times, expected maximum
values, etc., as detailed in chapter 3.

The present work is concerned with methods for estimating second as well
as higher order stochastic response of hysteretic structures under different types
of Gaussian excitation. To facilitate the understanding of the implied methods,
concepts and results it is necessary to provide the reader with an exposition
on the theory of random processes and stochastic differential equations. Since
a detailed and rigorous treatment of such a wide subject will occupy several
volumes, this chapter is only purported to give a brief account of it. The
exposition is restricted to the concepts that will be needed in the subsequent
chapters. Moreover they will be treated in a somewhat cursory manner, i.e. only
few derivations will be perfomed and for most of them the reader is referred to
basic treatises, such as those by Gardiner (1985), Kloeden and Platen (1995),
Nigam (1983), Priestley (1981), Soong (1973), Soong and Grigoriu (1993), and
Tikhonov (1982) which have been used in the composition of this summary.
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1.2 Elements of stochastic calculus

The very fact that the realizations of a stochastic process are uncertain
implies that conventional notions of Riemann calculus, such as continuity, dif-
ferentiability and integrability need to be reformulated. That is, the uncertainty
about the path of all the realizations requires those concepts to be defined in
a probabilistic rather than in the usual deterministic sense. The following is a
brief summary of some milestones of stochastic calculus.

1. Norm of a random variable.
A random variable X is said to be of second order when its variance E[X?]
is finite. For such a variable the norm is defined as

91y L
X1 = (BlX*)?2 (1.7)
Tt can be shown that the above expectation satisfies inner product properties.

2. Distance between random variables.
The distance between variables X; and X, is defined as

d(X15X2) = ”X1 - XQH (1.8)

A space of random variables provided with the above inner product, norm and
distance is called a L,—space, which can be demonstrated to be complete a
Banach and Hilbert space. In particular, the important property that there
exists a unique limit for a sequence X, in a L,—space must be stressed, since
it is the basis for the following notions.

3. Convergence in mean square.

A sequence of random variables X is said to converge in mean square to a
random variable X if

Alm [ X, — X||=ms. lim X, =0 (1.9)
4. Continuity in mean square.

A second order stochastic process is continuous in mean square if the func-
tion

Ry(t,s) = E[X ()X (s)] (1.10)
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is continuous at s = ¢. This function is called auto-correlation function and
plays an important role in the theory of stochastic processes.

5. Differentiation in mean square.
The mean square derivative X (t) of a process X (¢} is defined as the mean
square limit

s, lim X(t+7)— X(2)

70 T

(1.11)

if it exists. The condition for the existence of the limit is that the second
generalized derivative of the auto-correlation function, namely,

) 1
T};ﬁg;[RX(t +7,84+0)— Ry(t+7,8) — Ry (t,s+0)+ Ry (t,8)] (1.12)

exists at (t,t) and is finite. An important result that will often be used in this
work is that if a stochastic process is N times m.s. differentiable then

Ix@e), 4
B[ g ]..@-E[X(t)] (1.13)
i
Also, if X ) (t) denotes the derivative éwd—}t(n@, then
N+
(nm) i@ om0 Ryt 8)
Rt s) =EBXT (X ()] = —mgm (1.14)

if the implied derivatives exist.

6. Integration in mean square

The concept of mean square Riemann or Riemann-Stieltjes integrals requires
some previous definitions. Consider a N-partition of the interval [t,,¢,] C T,
i.e. the points ¢,k =0,1,2,..., N such that ;, <¢, <, <...ty and define

An =max(t, —t,_,) (1.15)
Let X(t) be a stochastic process with finite second order moments defined on

[to;En)s and f(t,u) a deterministic function defined in the same interval and
integrable in the ordinary Riemann sense for every u € U. The variable

N
YN(“) = kz_:l f(Tka U’)X(Tk)(tk - tk_z) (1.16)
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in which 7, is an arbitrary point in the interval [t,_;.t,), will then be a random
variable of u defined for each of such partitions. If, for every u € U the limit

ws. Jim Yy =Y(u) (1.17)
AN—)U

exists for some sequence of subdivisons of [t;, ], it is called the mean square
Riemann integral of f(t,u) over the interval [ty,£,] and it is denoted by

Y (u) = f:*"’ Flt, w) X ()d (1.18)

The necessary and suficient condition for the existence of the m.s. Riemann
integral is that the ordinary double Riemann integral

[3 i
ftDN ftON ft,u)f (s, )Ry (t, s)db ds (1.19)

exists and is finite.
Mean square Riemann-Stieltjes integrals can be developed similarly. For
example, the integral

I= ft :N X(£)dF () (1.20)

in which X (t) is a stochastic process and F(¢) is a (deterministic or stochastic)
function not necessarily continuous, can be expressed as the mean square limit

I =m.s. 1\}1_1}%0 Iy (1.21)
where
N
Iy(u) = kZ X(r)F () — F(t,_,)] (1.22)
=1

A sufficient condition for the existence of the above limit is that F'(t) has a
bounded variation, 1. e.

N
kz_:l ]F(tk) - F(tmz)' <M (1-23)
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where M is a finite number. This condition is violated by stochastic func-
tions such as a the Wiener process. Since it is quite useful in the develop-
ment of stochastic differential equations, special mathematical tools are re-
quired for the evaluation of stochastic integrals involving it. These are the Ito
and Stratonovich integrals which are defined later.

1.3 Stationary processes

1.3.1 Definition

An important class of processes is constituted by those whose probabilistic
structure do not vary with time. More rigorously, a stationary process in strict
sense is such that its distributions do not change under an arbitrary translation
of the time axis, 7, i.e.,

F(z,, Ty Tpitstg, . ) = F(x,, @y @ b+ T by 7, by +7) (1.24)

m

By setting 7 = —t, it can be seen that the probability distributions will not
depend on the absolute position of the origin but only on the time lag.

For the specific case of the first order distribution (m = 1) there will be no
dependence on any time measure at all and hence the moments of the process
will be constant, i.e.

BIX (1)) = const, i=1,2,... (1.25)

Moreover, second order moments will depend only on the difference 7 =t, — 1,
and then

E[X (1) X (t,)] = BIX()X(t + 7)) = By (7) (1.26)

An important measure of stochastic process is the auto-covariance function,
defined as

Syl t,) = BUX (t,) — plt ) HX () — p(ty)}] (1.27)
where p(t;) is the mean of the process at time ¢,
Ju(ti) = E[X(tz)]a i=1,2 (1.28)

In the special case of a stationary process the auto-covariance function simplifies
to
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Uy (tsty) = By () — NQ (1.29)

for T =1, — 1.

The condition for having a strict-sense stationary process can be relaxed to
introduce a more practical class of processes called weakly stationary. They are
defined by the following conditions: (a) the moments of first and second orders
are constant and (b) the auto-correlation function only depends on the time
lag as in equation (1.26). No condition is imposed on third and higher orders
of expectations. Since these conditions are also satisfied by strictly stationary
processes it can be said that weak stationarity does not imply strict stationarity.
The only exemption is the Gaussian process, which is completely determined
by expectations of the first two orders.

1.3.2 Auto-Correlation and spectral density functions

An important weakly stationary process is that having independent or or-
thogonal increments. It can be defined on the basis of the analysis of the fol-
lowing process:

X(t) = Z,e1t 4 Z,el2? (1.30)

where Z, and Z, are zero-mean complex-valued random variables, i2 = 1 and
w;, Wy are constants. The mean of the process is, clearly,

E[X ()] =0 (1.31)

due to the harmonic nature of the complex-exponential. The auto-correlation
function is

E[X(t)XC (t 4+ 1')] = E[Zl Zlc]e_iwlT + E[Zl Z;j]ei[wlt_w2(t+’r)]+
E[Z, Zf]ei[wgt—wl (t+m)] 4 E[ZQZS]e_iwf (1.32)

For the process to be weakly stationary it is necessary that E[Z122C ] =

E{Z, Zf ] = 0 so that the auto-correlation function does not depend on ¢ (whence
the orthogonalaty labeling). Under such a restriction the auto-correlation be-
comes

ELX () XC(t + )] = BIZ,| e 17 + E[|Z, [ Je 727 (1.33)
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Generalizing, a stationary process with auto-correlation
I
R, (1) =BX()X“(t+7)= Y E[|Z, l Jle kT (1.34)
k=1

can be built by the sum of harmonics

n -
=Y Zpet (1.35)

under the condition E[Z;Z C] = 0,4 5 k. The continous version of this process
gives origin to the so—ca.lled spectral representation of stationary process. It is
given by the Fourier-Stieltjes stochastic integral

X(t) = f_ O; et 7 (w) (1.36)

in which Z(w) is a complex-valued stochastic process with independent incre-
ments, i.e.,

F{dZ (w,)dZ(w,)"] = 0,w, # w, (1.37)
and
E[|dZ(w)['] = do(w) (1.38)

where @(w) is some random function that needs not to be continuous. The dif-
ference between this representation and that of a conventional Fourier-Stieltjes
integral of ordinary calculus lies in the fact that function Z{w) is itself a random
process, which implies that it will be diferent for all the realizations of the pro-
cess X (£). Therefore, the differentials and integrals involved in these equations
are to be understood in stochastic (mean square) sense as was explained in the
preceding paragraph.

According to the above derivations, the auto-correlation function of this
process is given by

o0

Ry (1) = Lw E[|dZ(w)|2]e_i“’t = /—0:0 e W d(w) (1.39)

If function @(w) is absolutely continuous its differential can be represented as
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dP(w) = Sy (w)dw (1.40)

and then the auto-correlation function is given by the following Fourier trans-
form:

Ry (r)= /00 e WS (w)dw (1.41)

—00
Function S (w), which can be obtained by inverting the above expression

Sy (w) = 51;; /_ O:O IR (T)dr (1.42)

is called the power spectral density function of the process. These Fourier-type
relationships are called the Wiener-Khintchine formulas.

The spectral density is a real and nonnegative function that plays a similar
role as the Fourier transform does in the analysis of deterministic signals. In
fact, it provides a description of the distribution of the (expected) energy as-
sociated to the several frequencies which are present in the realizations of the
process. The link between both frequency functions is given by the definition
of the spectral density used in signal processing
B[l X ()]

] (1.43)

Iy (w) = 81}?010 2ms
Here X (w) stands for the Fourier transform of realizations of a stationary pro-
cess X (t) of duration s. Through a somewhat tedious derivation it can be shown
that this equation reduces to the above definition of the spectral density (1.42).
In signal processing practice, the density is estimated by the aproximation
|X (@)
N w
S, (w) =

(1.44)

which is called periodogram. The high variance inherent to this estimation is
reduced by means of the so-called spectral windows (Priestley 1981). Alterna-
tively, the power spectrum can be estimated by the spectral method based on
the principle of maximum entropy, which coincides with that resulting from
auto-regressive (AR) modelling (Kapur 1989; Papoulis 1991).

Finally, it must be noted that the use of the one-sided power spectral density

Gy(w) =2Sy(w), w>0 (1.45)
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is conventional in engineering applications due to the non-negativity of physical
frequencies.

1.8.3 White noise

An important stationary stochastic process is white noise, W (), which can
be defined as a process having a constant spectral density function over the
whole frequency axis, i.e.,

Sy (w) = const (1.46)

meaning that an equal amount of energy is associated to each frequency (whence
the term “white”). The autocorrelation function is obtained by Fourier-trans-
forming the above density,

Ry, (1) =278, 6(T) (1.47)

where §(-) is the Dirac delta function. The meaning of this equation is that
any value of the process is correlated only with itself. If, in addition, the noise
is Gaussian, it is completely independent of the next or previous ones. This
is, of course, a highly idealized situation which is impossible to find in the
physical world. Albeit a purely mathematical idealization, however, the white
noise process is very useful in theoretical derivations and practical analysis in
the field of random vibration. It can be simulated by means of the following
algorithm (Clough and Penzien 1993; Nigam and Narayanan 1994):

1. Generate a set of uniformly distributed random numbers {z,,%,,...2,} in
the range [0,1].

2. Make the transformation

y, =/ —21nz; cos2rx, |
Y = o/ —2Inz; sin2nz; (1.48)

3. Multiply all the numbers y; by the intensity of the process 275}, and assign
them to time values equally spaced at intervals h.

It can be shown that the resulting process tends to a a white noise as h -~ 0.

Figure 1.2 shows an approximation to a realization of a white noise process of

S = 1 obtained in this way. The importance of white noise in mechanics lies
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in the fact that many random loads (and, in general, natural phenomena) can
be modelled either as white noise or as the response of certain filters to white
excitation. This issue will be dealt with in the following chapter in the specific
case of earthquake excitation.

1000. 1500.

500.

0.

Figure 1.2 A white noise realization

1.3.4 Ergodicity

An important subject for the derivation of statistical parameters of a sta-
tionary stochastic process from its physical realizations is that of ergodicity, by
which it is meant the kind of relationship existing between averages obtained
in the sample space and those calculated from a single realization on the time
axis. Specifically, if z(t) is a certain realization of the stochastic process X(t),
the time average of a deterministic function of this realization, g{z(f)] is given
by

T

< gla()] >= Jim 0L (1.49)
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Accordingly, a stochastic process is said to be ergodic with respect to the space
of functions @G if, for every g[z(t)] € G the time average obtained on g[] equals
the ensemble average with probability one. That is,

< g[X(8)] >= Elg[X ()] (1.50)

In practice, the interest lies mainly on ergodicity with respect to common av-
erages such as mean, mean square and auto-correlation. The conditions for
existence of such types of ergodicity can be read in basic texts on random pro-
cesses.

1.4 Nonstationary processes

It was said before that a stationary random process admits a spectral rep-
resentation of the type

X(t) = f_ O:o Wt d Z(w) (1.51)

where Z(w) is a complex-valued random process with independent increments.
This equation means that any stationary process can be decomposed into a infi-
nite sum of harmonics of random amplitudes, which can be statistically related
to their respective frequency through a random function having a spectral na-
ture. This decomposition constitutes, in fact, the essentials of the simulation of
random processes, as it will be shown in chapter 2. When dealing with nonsta-
tionary processes, however, it is no longer possible to represent them as a sum
of sine and cosine functions because these are stationary. Since the spectral rep-
resentation has both a theoretical and practical appealing in that the spectrum
of the process is involved in its definition, some authors have proposed non-
stationary models of similar kind. The most spread is the theoretically sound
proposal due to Priestley (1981). Given that the Fourier transform of a sine or
cosine function is a Dirac pulse located at the respective frequency, while that
of a exponentially damped harmonic is a Gaussian function centered around
it, Priestley proposed to interpret the later as the Fourier transform of a wave
with evolutionary amplitude and, consequently, developped the theory of oscil-
latory functions and evolutionary spectrum. The theory generalizes the concept
of frequency and allows the preservation of the meaning of spectral density in
the case of nonstationary processes. In the present work, however, it is only

possible to summarize briefly the notion of evolutionary spectrum. This is given
by

Sy (,8) = [6(w, 8)[ Sy () (1.52)
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where S, (w) is the power spectral density of an associated process Y(t) and
£(w, t) is a (in general, complex) smooth oscillatory function which controls the
evolution of the process in both amplitude and frequency with time. This equa-
tion is based on the spectral representation of nonstationary processes proposed
by Priestley

[w0]

mm:fg@@&%ﬂm (1.53)

-0

which is possible if some conditions imposed on £{w,t) are satisfied. A widely
used simplification of this model is the uniformly modulated process, in which
the modulating function is real and not dependent on frequency, i.e.,

Ew, t) = £(¢) (1.54)

so that it only controls the amplitude of the process. The evolutionary spectral
density simplifies to

Sy (w,) = £()" Sy () (1.55)

Another approach to the spectral description of nonstationary porcesses is
due to Bendat and Piersol (1971) who propose to describe the nonstationary
process by means of the local auto-correlation function

Ry(t,7) = E[X (t - %)X(t + %)] (1.56)

A time-dependent power spectral density can be derived as the Fourier trans-
form

o0}

%w@ﬂ%[emamﬂw (1.57)

It has been observed, however, that the nonnegativity of the power spectrum
can not always be preserved in the above model (Priestley 1981).
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1.5 Stochastic differential equations

1.5.1 Markov processes

As it was said at the beginning of the present chapter, a random process is
completely described by the joint probability density function of all the states
of the process. For a process observed at N— instants such density function

Fl@y, @yt Epsty) (1.58)

can be obtained as the derivative of the distribution function (see equation 1.2).
For a discrete-valued process this statement requires the so-called conditions of
consistency and symmetry to be satisfied (Soong and Grigoriu 1993). The first
implies that marginal distributions can be consistently obtained by integration
from those of higher dimension; the second imposes the condition that the dis-
tribution function remains invariant under any permutation of indexes 1,..., N,

In terms of these joint densities it is possible to define conditional probabil-
ities of the kind

LGOI T T N [ A &, 5t ) =

flm b2y, b &y, ty)
fle, by o2, _g,t, )

(1.59)

which express the probability of obtaining future states of the process given the
knowledge of its past, provided that

b <ty <t <ty
As has been said in section 1.1, the general probabilistic decription (Eq.
1.1) can be simplified for Markovian processes, i.e. those in which any state n is
completely determined (in probabilistic sense) by its most recent predecessor:

flz  t |zt ...z, .t )= flz,, tle, 1t 1) (1.61)

The joint density function corresponding to all states of a Markov process can
then be expressed in terms of elementary conditional probabilities relating the
passage from one state to the next, i. e.
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fle txy, ooy, ty) = [, ) F(@y, Ey] Ty, ty)

t 'f(wn’tnlmn—i?tngl) (]‘62)

On the basis of these equations it is possible to demonstrate that
o
Hg sz, t) = f (@3, sl 1) f g, £y |y, 1, )dary (1.63)
— 00

which is known as the Smoluchovski - Chapman - Kolmogorov equation. It
simply describes the flow of probability from one state to another through an
intermediate state. This explains the denomination of transition probability
densities given to the density functions involved in the equation. Another con-
sequence of the Markov property is that the probability at any state can be
obtained as

o]

[y, 1) = / H®y g 2y, ) s, ) day (1.64)

— 0

It must be observed that according to their definition Markov processes
are only physically realizable in the discrete case. In fact, an entity such as
a continuous Markov process is a mathematical idealization, because at the
infinitesimal scale it is difficult to accept the Markov assumption. However,
when turning back to the macroscopic scale it is undoubtful that many physical
process can be regarded as Markovian.

1.5.2 Brownian motion and Wiener Process

An important example of a Markov process is the Brownian motion, which
is the irregular trajectory of small particles in a fluid, investigated by Robert
Brown in the ninteenth century. The solution of this problem by Albert Ein-
stein in 1905 gave birth to the field of Statistical Mechanics, and the rigorous
probabilistic treatment of the subject by Norbert Wiener in 1923 explains why
the Brownian motion of physicists is known as Wiener process in mathematics.
In essence, the Brownian motion is the combined effect of viscous forces and
molecular collisions upon a small particle inside a fluid. From a probabilistic
point of view what matters is that if B(%) is the position of the particle in the
one dimensional space at time ¢ > 0, the probability distribution of the the in-
crement AB(t,,t,) = B(t,) — B(t,) is Gaussian with zero mean and a variance
given by
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E[{AB(L,, )} = 2Dlt, 1| (1.65)

provided that the particle is at rest at £ = 0 with probability one (Einstein
1956). In this equation D is called diffussion constant and is given by

kT
D= 1.66
6nna ( )

where k is Boltzmann’s constant, T is the absolute temperature, 5 the viscosity
of the fiuid and a the diameter of the particle. An important property of the
Wiener process is that the increments of the type AB(t, ,,t,) are mutually
independent and, being Gaussian, they are also uncorrelated, so that the in-
crements of the process are orthogonal (see section 1.3.2). Moreover, it can be
shown that the process has continuous samples with probability one. In fact,
since the Brownian increment is a Gaussian process,

lim P[|B(t+h) ~ B(t)] < ¢] = Ag)r%)[1 - 2@(—\/2‘5:];)] =1 (1.67)

in which ®(.) is the standard Gaussian distribution function. However,

|1 > ¢ = }E%[z@(—\/;—%h)] =1 (1.68)

which means that the Wiener realizations are not differentiable with probability
one. This renders mean square integration unapplicable to this process and, as
a consequence, a special mathematical formalism is required to its treatment.
Figure 1.3 illustrates three approximate realizations of a Wiener process. The
great variability of their paths is evident.

Wiener process is very useful in the development of stochastic differential
equations due to its formal relationship with Gaussian white noise. In fact, the

auto-correlation function of the Wiener process can be shown to be (Ibrahim
1985)

lim P

{[B(t + h) — B(t)
h—0 h

R,(t,s) = 2Dmin(t, s) (1.69)

while its mean is zero. Its derivative, then, would also have zero mean as is that
of its derivative. Further, despite the Wiener process is not m.s. differentiable,
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Figure 1.3 Realizations of a Wiener process

the auto-covariance function of the derivative process B(t) can be readily ob-
tained. In fact, considering equation (1.14) and taking into account that the
process has zero mean, its autocovariance is given by

2
0 Ry(l,3)
according to (1.29). Thus, from (1.69)
2
o0 min(t,s)  __OH(t-s)
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where H(-) and (') are respectively the Heaviside unit step and Dirac delta
functions, Since the Gaussian property is preserved under the operations of
integration and derivation, it is concluded that the derivative of the Wiener
process, if it were, would have the probabilistic structure of GGaussian white
noise. Then it is possible to write, formally,

dB(t)

Wit) = === (1.72)

1.5.3 Diffussion processes

A Markov process X (t) with transition density f(y,t|z, s) is called diffusion
process if the following limits exists for all € > 0:

1
dy =10 1.
fm o= [ Stk ) (1.73)
im = [ (y—a)f(tle,s)dy = 0(z,5) (1.74)
t—st — 8 Jly—z|<e T ’
1 2 2
B [ ) f e )y =4 (@,9) (1.75)

The first limit expresses the prevention of sudden jumps and hence it can also
be interpreted in the sense that process X (t) has continunous samples with prob-
ability one. On the other hand, functions #(z, s) and 1,b2 (z, 8) correspond to the
local mean and spread of the process, as can be seen from the analogy of their
definition to that of conventional moments. For this reason they are called,
respectively, drift and diffusion functions. In stochastic differential equations
play the role of convection and diffusion terms in the theory of fluid flow. For a
short interval ¢ — s the above equations imply that the evolution of the process
inside it is characterized by a systematic component

E[X(t) — X(s)|X(s) = z] = 8z, s)(t — 5) + ot — 5) (1.76)

and a scattering component

E[{X(t)— X(s)}2|X(s) == g = 1,02(3;, s)(t—s8)+olt —s) (1.77)

The evolution from s to t can be formulated as
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X(t) — X(s) = 0z, 8)(t ~ s)+(z,8)Z (1.78)

where function Z must be such that the above expectations are satisfied. In
fact, if Z is such that it has zero mean and variance t — s, the application of
the expectation operator to the first two moments of the above equation will
give the same values previously obtained if terms of order o{t - s) are neglected.
This means that a suitable function Z is the increment of a Wiener process

Z = AB = B(t) — B(s) (1.79)
of unit strenght 2D = 1 (standard Wiener process). Squeezing all increments

in (1.78) to the infinitesimal level yields the standard formulation of stochastic
differential equations

dX (1) = 6(X (t),t)dt + (X (), £)dB(t) (1.80)
in which B(t) is the standard Wiener process with stationary increments d B(t)
that obeys a Gaussian distribution with zero mean and variance dt (see equation

1.65). For vector processes one can form a system of N—stochastic differential
equations

dX(t) = 6(X (1), t)dt +¥(X (t),1)dB(t) (1.81)
where @ is a N-—dimensional vector of drift functions, ¥ is a N x R diffusion
matrix and B(t) is a vector of unit-strength, uncorrelated Wiener processes,
that is,

E[dB(t)] =0
E[dB(t)dBT(t)] = Idt (1.82)

where I is the identity matrix. If the strength of the vector Wiener process
B(t) is different from the identity matrix, ie.,

E[dB(H)dBT(1)] = I'(1)dt (1.83)

L

then matrix ¥(X (t),t) can be modified to W(X (2),£)I"* (t) so as to produce a
1

standard Wiener process as input. Here I'” (¢) is defined by
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1 1

e wr =re) (1.84)

1.5.4 Ito and Stratonovitch integrals

The difference between ordinary and stochastic differential equations lies
in the presence of the Wiener term, whose particular mathematical features
recuire special analytical and numerical techniques for achieving a solution. In
fact, consider the formal solution of equation (1.80)

t 3
X(t) = X(t,) + /t 8(X (s), )ds + ft (X (s),s)dB(s)  (1.85)

The first integral can be treated as a conventional m.s. Riemann integral for
every realization of X(t), because the process has continuous samples with
probability one, as it has already been shown. On the other hand, the second
integral cannot be treated as m.s. Riemann-Sticltjes integral because of the
unbounded variation of the Wiener process in any finite interval. It can in
fact be demonstrated (Kloeden and Platten 1992) that, for any partition of the
Wiener process of N points such that ¢{; <, <1{,... <{, =1,

> |B(t,) — B, )| = o0 (1.86)

It is also not difficult to demonstrate the Lévy oscillation property, namely, that
(2]

ms. Jim S[B(t,) - B, )] =t—t, (1.87)

2V e

where Ap, = max(t, —t, ;). This equation justifies the conventional use of the
equivalence

2
[dB@)] = dt (1.88)
Let us define intermediate points 7, inside each interval [f,_,,¢,) as it was

previously done in the derivation of m.s. Riemann-Stieltjes integrals. The
stochastic integral of a function of time g(t), given by

= L o(s)dB(s) (1.89)
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is defined as the m.s. limit of the partial sums

I, =3 9(r)[B(t,) — B(t,_,)] (1.90)

It is not difficult to see that the value of the integral will depend on the choice
of points 7,. If, for instance, g(t) = B(t), the naive application of ordinary
calculus leads to

[ Bs)aB(s) = 218" 1)~ Bt (1.91)

0

On the other hand, the calculation of the m.s. limit of the partial sums gives
the result

B0 - B ) - 5 (1.92
if the intermediate points are selected as
T, =t 4 (1.93)
and the same result of ordinary calculus (1.91) if
T, = b ¥t +2t’°“1 (1.94)

The first choice corresponds to the Ito integral while the second to the Stra-
tonovitch integral. They lead to different mathematical results concerning in-
tegration, averages and stochastic differential equations. These developments,
as well as those concerning the relationship between their respective Ito and
Stratonovitch versions lie beyond the scope of this sketch, In what follows men-
tion will be done only of some standard results of stochastic calculus, which are
of importance for future developments.

1.5.5 The Ito formula

Let us assume that in equation (1.89) the second integral is interpreted in
the Ito sense. Then, a unique solution of the stochastic differential equation can
be obtained if the drift and diffusion functions satisfy the following conditions:

1. Lipschitz’s condition:

16(z, 5) — 0y, )| + [ (2, 5) — (. )| < klz -y (1.95)
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for any states z,y of the process, {, < s <t and k is a constant.
2. Growth condition:

0(z, )| + (@, ) < K1+l (1.96)

It can be shown that the solution of the Ito differential equation will be a Markov
process (Gardiner 1985). An important tool for its solution is the Ito formula.
For a differentiable function h(X (¢),t) it states that (arguments omitted)

oh 0k 1 20%h

ok
dh = [5—5 O+ 5¥ Q]dt +1p-dB (1.97)

which can be derived by expanding function h(-) in Taylor series up to second
order terms, substituting the result into equation (1.80) and using the symbolic
notation dB” = dt introduced previously. Notice that the result differs from

1

the one of ordinary calculus in the term dB, which is ~ dt2 and hence cannot
be neglected. In the general case of a function h(X,t} of a N— dimensional
vector stochastic process X (¢} we have

oh ¥ o 1 & X Oh
dh == [E + Z: @%(33, t)(‘?—m + ;q; 2_: gjﬂ(w’t)!pjr(m’t) 8181,823 ]dt+
i=1 Lig=1 g
R N oh
2, 2. Yir(®, )5 ~dBr (1.98)
r=1i=1 i

If, for example, function h{.} is sequentially set equal to some given powers of
process X (t) (or of the elements of X (£)), a system of stochastic differential
equations can be obtained after replacement of these functions into the Ito
formula. This system can then be converted to a system of ordinary differential
equations of moments by applying the expectation operator to the result and
taking into account that E[dBy] = 0 as said in the foregoing. This will be done
in chapters 4 to 7 in the context of the structural dynamics problems which are
the subject of the present work.

1.5.6 The Fokker-Planck and Kolmogorov equations

A final development in the theory of stochastic calculus that is necessary to
mention in this chapter is that concerning two ordinary partial differential (the
Fokker-Planck and Kolmogorow) equations, which describe the evolution of the
conditional probability density f(x,t|x,,1,) of a Markov process starting from
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initial conditions {z,,t,). They can be derived from the general Tto stochastic
differential equation (Soong 1973). Let us particularize for a one dimensional
system and consider an arbitrary function of the response h(X(1)). Apply-
ing the expectation operator to the corresponding lto formula and ommitting
arguments we have

282
d A a] (1.99)

=" 13" o

in which it has been taken into account that dB has zero mean and that h(:) is
not an explicit function of time. This equation is equivalent to

%f:; hiz) f(z,t|z,,t,)dz —f {Hg—g

1 28%h

2V o2

; | (@, tlzg, ty)dae (1.100)

where f(z,t|z,,t,) is the conditional density of the state X(f) given that
X(t,) = z,. Integrating by parts and considering the boundary conditions

f(m»ﬂmoato) =0

6.]0(33’“53(}1750)

e =0 (1.101)

as £ — too we obtain

00 2
[ @ Zan= [ [~ Lo 001+ 3 25 w00 x

hz)de (1.102)
Since h(:) is arbitrary, the final result is

of o 15%h

g5 = " 3a0@ NS+ 5ol (@,0)f] (1.103)

which is called the Fokker-Planck equation. It expresses the variation of the
conditional probability density f(-) in terms of the current state and time (see
figure 1.4). In the general multidimensional case it has the form
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1) A

Figure 1.4 Evolution of the probability density function

of _ oo,
at N 322%

This equation satisfies the initial condition

flz, tplzg, ty) = d(z — zy)

of N oh
—_— = Oz, t,) 77—
8t0 1;_ 1( 4] )83503

LR N 82 f(x,t)
2 Z Z Wzr(mo=to)lpﬂ"(m°’t°)m

26

(1.104)

(1.105)

which expresses the certainty about the initial state of the system ® = =z,
at ¢ = t,. In the Kolmogorov eguation, which can be derived similarly, the
derivatives are referred to the initial conditions, i.e.

(1.106)
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which explains its alternative name of backward equation in contrast to that of
forward equation associated to the previous one. Note that while the repeated
application of the Ito formula leads to a system of differential equations of
moments, these equations lead directly to the joint probability density function
at any time instant. Its solution, however, is only possible in some restricted,
low dimensional cases (Risken 1989; Soize 1993).




Chapter 2

Stochastic models of the seismic
excitation

2.1 Introduction

Earthquakes are random in double sense. In fact, not only their ocurrence
is stochastic in time but also the trajectory of the spatial ground motion it-
self exhibits an erratic pattern. This explains why, besides other structural
actions, such as wind forces and ocean waves, they have been examined from
the stochastic point of view in structural engineering along the last decades.

This chapter deals with the modelling of the seismic action in stochastic
terms. Three aspects of the subject will be covered, namely, the stationary
and nonstationary models as such, the estimation of their parameters from real
records and the digital simulation of earthquake accelerograms for structural
dynamics analyses. The later constitute a prerequisite for Monte Carlo simula-
tion, which will be intensively used in the following chapters as a reference for
judging the accuracy of several analytical methods which will be discussed.

2.2 Stationary models

The first proposals of stochastic models of the seismic action considered that
for structural analysis it would be sufficient to analyse the effect of the most
important part of a record corresponding to the shear waves, which normally
are larger in amplitude than the compressive and surface ones. Accordingly
this portion was described as a stationary process (Newmark and Rosenblueth
1971). This consideration was largely based on records such as the Imperial
Valley (E1 Centro, 1940) (figure 2.1} in which it can be observed an initial
ascending part, a subsequent short interval of high amplitude waves and finally
a large zone of waves of decreasing amplitude. The periodogram of this signal
is shown in figure 2.2. It can seen that in its most important sector there is
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Figure 2.1 Record of E! Centro earthquake (units: s, em/s)

an oscillation about 100cm? /33, which suggests that a roughly adequate model
of the earthquake is a band limited Gaussian white noise (Bycroft 1960). In
subsequent years more sophisticated stationary models of the strong motion
phase were proposed. Among them attention will be given mainly in the present
work to filter models due to the fact that they can be easily integrated into the
equations of structural dynamics - a desirable feature that is absent in other
spectral models, which are mainly oriented to purely seismological applications.
The filter models will be described in more detail in what follows.

2.2.1 The Kanai-Tajimi model

The Kanai-Tajimi model of seismic horizontal acceleration, M, is defined
as

KT : 2
M =2vw U +w U (2.1)

where U, is the response of a second order filter to a white noise W(t):

. . 9
Ug +2vw, U +w U, = —W(t) (2.2)
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Figure 2.2 Power spectrum of El Centro earthquake (units: rad/s, cm?/s%)

The model is determined by the power spectral density of the noise GG, as well as
by parameters v, and w,. Even though they are commonly associated to local
soil conditions, they are also influenced by other factors, such as earthquake
magnitude, hypocentral distance and others. (Lai 1982; Kameda and Nojima
1988; Sawada et al. 1992).

Applying the Laplace transform to both sides of the above equation it can

. KT ,
be shown that the transfer function of the compound movement M~ is

2 0
w, + VW w

H{iw) = w: — +12v,w,w (3)
and then its power spectral density is given by
4 2 2 2
Gy (w = iH(iw)iZGW = 2wg Z_iyg wgﬁ: 7z Gw (2.4)
(wg —w) +dv e w

The variance of the process, given by the integral of the power spectral
density over the whole frequency axis, is
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Figure 2.3 Filter models of seismic power spectrum (units: rad/s, cm? /53)

In figure 2.3 the power spectrum of a Kanai-Tajimi type is plotted together
with that corresponding to the Clough-Penzien model which is introduced in
the following paragraph. The filter parameters are w, = 19 rad/s and v, = 0.65.
They give the spectrum a similar overall shape to that of the power spectrum

of the El Centro record {(figure 2.2).

2.2.2 The Clough-Penzien model

The main drawback of the Kanai - Tajimi model lies in its assigning a non
zero spectral value to the zero frequency, which is not in agreement with the
observed null energy at that point (see figure 2.2). While this feature does not
represent a serious error in the analysis of systems of low to high frequency, it
can lead to large errors for the analysis of nonlinear structures. In such cases
the use of the Clough-Penzien filter added to the above model is more adequate.
This filter drastically reduces the ordinates of the K-T spectrum at very low
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frequencies, while preserving the values at larger ones. (Clough and Penzien
1993). The dynamics of the additional filter is governed by the conventional
linear equation

ltff +2 Vfwf[}’f + w:Uf — M (2.6)

where the parameters v, and w, must be selected for the purpose at hand. The
model is defined as the acceleration response of the filter, i.e.,

M = Uf = -2 yft.ufUE — w:Uf — ZnggUg — w:Ug (2.7)

and hence its power spectral density is given by

4 w4 -+ 4y2w2w2
cp w
G (W) :(2 2)2+4222X(2g2)2_f4g222GW (2.8)
wl —w Ve Wy W W, —w v, W, w
Finally, the variance of the process is
2 Aw)
o = ﬂ?B(w) Gy (2.9)

where
4 2 2 3 3
A(w) = w, (Vew; + V) + 4, w [0, + 1w, + v rw,w (Ve + vw,)]

and

2 2.2 2 2,2 2 2 2
B(w) = Zygyf[(wg —w, ) + dw, w, (ug +v, )+ 4Vgufwgwf(wg +w, )] (2.10)

In figure 2.3 the Clough-Penzien model has been plotted using w, = 2rad/s
and v, = 0.6. The whole set of four parameters have been derived by Yeh
(1989) from the El Centro record (figure 2.1).
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2.2.3 Seismological models

The research performed by Boore and coworkers along the last two decades
constitute an important step for providing engineering models of the seismic mo-
tion well rooted in the modern theory of seismology {Boore and Joyner 1982;
Boore 1986; Boore and Atkinson 1987). In fact, the aim of these proposals is
to estimate the Fourier amplitude spectrum, M{w), on the basis of physical pa-
rameters of the earthquake corresponding to the energy radiation at the source
and atenuation with distance. The power spectral density can then be esti-
mated as a periodogram using the strong motion phase duration (see equation
1.44).

Tipically, a seismological model of the Fourier transform M (w) is made up
with the hypothesized source, attenuation and amplification spectra in addition
to a scaling constant related to source parameters. Among the several formu-
lations of them existing in the literature we have chosen a version addressed to
structural dynamics applications (Faravelli 1988a):

M(w) = CMs(w) Me(w) M (w) Ma(w) (2.11)

Here C is a scaling factor given by

o = TtV (2.12)

dmpf° R
where iy, is the radiation patiern, which expresses the spatial directivity of
the energy radiation at the source; F' is the amplification due to free surface
(tipically F' = 2); V is a factor that accounts for the partition of energy into
two orthogonal directions for calculation purposes { so that it is usually taken
as 1/ \/§), p is the density of the medium, 8 the shear wave velocity and R
the hypocentral distance. The several spectra contained in equation (2.11)
correspond to the following factors:

1. The energy at the source:

2
~ M,w

My(w) = s, (2.13)
T+(3)
in which M, is the seismic moment and w, the angular corner frequency. A

correcting factor suggested to apply to this spectrum to European earthquakes
is (Faravelli 1988b)
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Me(w) = ———— (2.14)
1+ (350)

where o and f_ are empirical parameters.

2. The amplification of the waves when entering into the soil domain:

~ 2
1+ (72)
in which w_, is a reference frequency.
3. The attenuation with distance:
Ma(w) = C, /1 + (wi)2 (2.16)

&

where w, is a cut-off frequency and C, an attenuation factor which is an expo-
nential funection of frequency and hypocentral distance.

2.3 Nonstationary models

It has for long being recognized that earthquake records are highly nonsta-
tionary. This is due to the differences in frequency and arrival time of their
component waves. The seismic action can be stochastically modelled as a non-
stationary random process in two forms:

1. As a uniformly modulated process, i.e. a stationary process transformed
to a one which is nonstationary only in amplitude. The transfomation is per-
formed through a deterministic function £(t), whose parameters are estimated
from actual records (see equation 1.55).

2. As a process with a evolutionary power spectral density, that is, as one
which not only varies in amplitude but also in the frequency content along the
time (see equation 1.52). The estimation of the governing parameters from
extant records is, of course, more involved than in the previous case. Let us
consider these models in more detail.
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2.3.1 Models with uniform modulation

Let M({t) be a Gaussian stationary random process with one-sided power
spectral density G,,(w). Due to the linearity of the functions that govern the

dynamics of the above models it can be identified with their respective signals
KT o . . . . .
M or MY when the filters are excited by a Gaussian white noise. A realiza-

tion a(t) of the process A(t) corresponding to the ground motion acceleration
with uniform modulation would then be given by

a{t) = £(t)m(t) (2.17)

where a(t) is the simulated acceleration of the ground and £(t) is a deterministic
function which defines the variation of the amplitude in time. According to
the theory of nonstationary processes sketched in the first chapter, the power
spectral density of the compound process A(t) will be

2

G, (w,t) =€) G, (w) (2.18)

The following are the most commonly used modulating functions among the
several that can be found in the literature:

1. Shinozuka and Sato (1967)

The mathematical expression of this funtion is
1
£(t)=—(e™ ~ ™) (2.19)

where a, b and ¢ are parameters. The value of ¢ can be chosen to give the max-
imum of the function a unit value, so that the parameters will be independent
of the amplitude of the desired record or stochastic model. This yields

et = [ (7] am

Alternatively it can be set according to energy criteria as will be explained
later. Figure 2.4 shows two modulating functions of this type which correspond
qualitatively to earthquakes with short and long effective durations.

2. Amin and Ang (1966)

The distinguishing feature of this function is that it is defined by three
branches that mimic the respective phases of the ground motion, i.e. those
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Figure 2.4 Shinozuka-Sato modulating functions

corresponding to the raising, strong motion and withering phases. Its expression
is

t

© t<t
E(t) =<1, St <t (2.21)
e—C(t—tz), t2 S #

where ¢ is a parameter, {;, corresponds approximately to the arriving time of
shear waves and the diference £, — , can be associated to the duration of the
strong motion phase.

3. Yeh and Wen (1990)

This function is given by

2, atﬁbexp(—ct)

FOREI (222)

where a, b, ¢, d and e are parameters,
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Figure 2.5 Record of Orion Boulevard earthquake (units: s, cm/s”)

2.3.2 Evolutive models

On the basis of the purely theoretical physics of earthquakes it can be
expected that a record obtained at free surface will exhibit a evolutionary na-
ture. By this expression it is meant that both the amplitude as well as the
dominant frequencies vary with time. This behaviour is due to the different
velocity and energy of the several waves that compose the motion and their
multiple reflections, refractions and difractions. The evolution of the frequen-
cies appears clearly in some records such as the San Fernando (Orion Boule-
vard, 1971) accelerogram depicted in figure 2.5, in which one can distinguish
the zones corresponding respectively to high frequency, low amplitude P waves,
lower frequency and very high amplitude S waves, and very low frequency and
intermediate amplitude surface waves. Cases with such a clear evolution as the
one shown in the figure are somewhat rare. In the vast majority of records
the evolutive appearance does not take place due to the effects of distance (in
near source earthquakes the frequencies are still chaotically merged while at
long distance high frequency waves damp out) or it is more or less blurred by
the multiple distortions the waves endure along their travel, In the Tokachi-oki
(1968) record depicted in figure 2.6, for instance, the low frequency waves ap-
pear in the last portion of the record merged with high frequency ones, while
waves of the lowest frequency dominate the central portion.
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Figure 2.6 Record of Tokachi-oki earthquake {(units: s, em/s”)

Several models have been proposed for the spectral analysis of the earth-
quake action with inclusion of the evolutive behaviour. Some of them are based
of the theory of evolutionary spectra developped by Priestley (Priestley 1981),
a brief account of which has been given in the first chapter. The above dis-
cussed process with uniform modulation is, in fact, a particular case of such
a model, in which the modulating function £(w,t) is only a function of time,
£(t). The function £(w,t) has been estimated to the Mexico 1985 earthquake
record by (Grigoriu et al., 1988) be dividing the earthquake record into the
three typical zones already mentioned. Other proposal is that by Spanos ef
al. (1992} who propose the use of the energy of single linear systems as a
measure of the evolutive density of the input. Beck and Papadimitrou (1993)
developped a Bayesian approach for the fitting of an evolutive Kanai-Tajimi
model to earthquake records; similar approaches have been proposed by Fan
and Ahmadi (1990), Kameda and Nojima (1988) and others. Finally, interest-
ing evolutive seismological models have been presented by Faravelli (1988b) and
Carli (1992, 1995).

In the present research, a model called instantaneous spectrumn (Yeh and
Wen 1990) has been selected for analysing the behaviour of base isolated build-
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ings in chapter 8. It is based in the concept of frequency modulation which
is common in communication engineering and the Bendat and Piersol nonsta-
tionary representation (equations 1.56 and 1.57). Since the modulation can be
applied to any stationary model it is especially suitable for structural dynamics
purposes when used in connection with seismic filters. For that reason it has
been preferred over other proposals for the analyses reported in chapter 8.

As has been pointed out in chapter 1, any stationary process has a spectral
respresentation of the form

o0

X(k) = f_ _expl(iwR)dZ(w) (2.23)

in which Z(w) is a zero-mean, complex-valued stochastic process with orthogo-
nal increments, i.e.

E[dZ(w,)dZ{w,)} =0 (2.24)
for w, # w,, and
B[|dZ(w)[] = S (w)dw (2.25)

where S (w) is the power spectral density of X(x). Now let the argument of
the process X (k) be a continuous, strictly increasing function of time. A new
process can be created in the form

Y(t) = X(s(t)) (2.26)

for which an instantaneous autocorrelation function can be expressed as (see
equation 1.56)

Ry (t,7) = E[X(t + %)X(t _ %)] _

f_o; f_o:o exp(iwlfs(t + %) — lw, k(t — %))E[dZ(wl)dZ(%)] (2.27)

which, taking into account the properties of the process Z(w), reduces to

o

R,(t,T) :/ exp(iw T4(1))Sy (w)dw (2.28)

—00

for infinitesimal 7. Making the change of variable @ = k(t)w the following
equation is finally obtained:
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o

Ry(tr) = [ i} exp(iwr)—kz—t)sx(%)d@ (2.29)

This constitutes the Wiener-Khintchine relationship of process Y (£). The con-
dition imposed on the function x(t) (namely, of being a strictly increasing func-
tion) stems from the need of having a positive spectral density, which in turn
requires a positive derivative 4(¢) in the above equation. With this condition
the main criticisim raised against the Bendat and Piersol model mentioned at
section 1.4 is overcome. A function that satisfies this requirement and that is
closely related to the frequency evolution of the earthquake record is the total
number of zero crossings of the signal up to the current time. IHence, the expres-
sion proposed in (Yeh and Wen 1990) for the frequency moldulating function
is

wt) = O (2.30)

where n(t) is a polynomial function of time fitted to the actual function of
accumulated zero crossings of the record and t, is the time where the strong
motion starts. The one-sided, evolutionary spectral density of the modulated
process Y (t) = X (x(t)) is then

YW 1 w

Gyl = gy (2.31)

The application of an amplitude modulation function £(¢) will then lead to a
complete nonstationarity of process A(t), which is thus given by

At) = E@Y () = L)X (s(2)) (2.32)

If the parameters of £(t) are adjusted in such a way that the variance of the
stationary process X (k) be unity, the energy of the composed process A(¢) will
be controlled exclusively by the amplitude modulating function. This is due to
the fact that the variance of Y'(t) given by

o0 o

fm Gy (w,8) " dw = f ) }a-,%—t)GX(};_t))dw (2.33)

will not vary with time, as can be demonstrated by making the change of
variable § = w/#(t) in the preceding equation. The expresion of the evolutionary
spectral density of the resulting nonstationary process A(t) is then
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G, )™ = 60 75 Cx () (2.34

Perhaps the main advantage of this model for structural dynamics purposes
is its versatility for modelling the seismic action by filters. In fact, let us consider

the following equation describing the motion of a linear filter excited by a ground
acceleration y(f) on a fictitious time axis «:

(k) 4 2 vwe! (k) + wgm(fs) = —y(k) (2.35)
where the commas stand for derivatives with respect to the dummy time variable

%. Making the later a function of real time k¥ = x(t} and applying the chain
rule yields

. dz dxds ’,
ZB—E—&E——HIH} (236)
which implies that
1o %
o= (2.37)

Then,

. , 2
dez dx dﬁl,_}_iﬁm, (2.38)

Al e s PRy

which is equivalent to

2

i=a"f + k2 (2.39)
Hence
. K, 1
2 = (& - )= (2.40)
& "k

Replacing these expressions into equation (2.35) the final form of the dynamical
equation of the filter in terms of k() is

&+ (2vwk — g):b vk T = —k y(k(D)) (2.41)
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On these basis it is possible to introduce frequency modulation into the con-
ventional Kanai-Tajimi or Clough-Penzien filters. In the first case one has

%+@%%g—ég+w§%@=wﬁwwm@) (2.42)

where the amplitude function £(¢) has been applied to the noise W(k(¢)). In
the second case one has, in addition,

. Ky 2.2 L 2.2
U + 2y~ E)Uf tw ki Up = —2v,w iU, —w £ U (2.43)

According to equations (1.55), (2.34) and (2.41), the underlying modulated
white noise has an evolutionary spectral density given by

-

waﬁfw—hw

"W Gy () = 7€ OF (0Gy  (2.44)

where G, is the one-sided density of the unmodulated white noise. On the
other hand, the expression of the ground acceleration in the Kanai-Tajimi model
(equation 2.1) becomes

KT 1 L 2 2 2v w, . 2
M = ?(2 vyWehlUy +w, 1 Up) = i BV, +w, U, (2.45)

The corresponding equation of the Clough-Penzien filter is

2 nggff
i g

CP _ 2 Vpty

M U, +w, Up + +0, U, (2.46)

[

2.4 Estimation of the evolutionary spectral parameters

This paragraph is devoted to the estimation of the parameters of the func-
tions used for a stochastic description of earthquake motions on the basis of
single acceleration records. The emphasis will lie on the model of instantaneous
spectrum which has been adopted in the analyses of the subsequent chapters of
this work.
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2.4.1 Estimation of the power spectral density

As in many physical stochastic problems, the estimation of spectral char-
acteristics of an earthquake record must be done after a single realization of
the underlying random process. This motivates the conventional resort to the
hypothesis of ergodicity (see section 1.3.4), which allows to assume that the
probabilistic measures obtained on the time axis are equal to those that could
have been obtained from an ensemble of realizations if it were available.

The estimation of the power spectral density from a single earthquake record
faces the additional problem of the strong nonstationarity of such type of signals.
Since the emphasis of earthquake engineering has mainly been placed on the
maximum structural responses, and these can be expected to be reached in the
strong motion phase in most cases, it has been common practice to perform the
spectral analyses on this portion of the accelerogram, which can be treated as
a stationary signal.

To this purpose, one of the most popular methods for defining the duration
of that phase and, consequently, for estimating the power spectral density of
the record is due to Vanmarcke and Lai (1980). The estimator proposed is
A@)]

s

G, (w) = (2.47)

where A{w) is the Fourier transform of the ground acceleration a(t) and s is an
approximation of the duration of the strong motion phase of the event -— an
interval in which the motion can be considered as stationary as said before. Its
expression is derived on the basis of the theory of level crossing of stochastic
processes as

2¢ Foo
=2n(=)——2__ > 1.36T 9.
s }n(TS)maX(a(t))’ s > 1.36T, (2.48)
and
B
=9 —% < 1. .
3= 2 ) s < 1.36T, (2.49)

where T, the dominant period of the strong motion waves and Ey is the energy
of the record measured as

Foo = /0 *al () at (2.49)
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As said in chapter 1, the high variance inherent to the periodogram (2.47) can be
reduced by using spectral windows ( Oppenheim and Schaffer 1989; Priestley
1981). Although, in earthquake engineering it is also usual to apply other
techniques, such as moving-average smoothing of the periodogram or averaging
of N segmental periodograms of the record (Soong and Grigoriu 1993):

- 1 N 2
Galw) = S }_:1 | Ap (@) (2.51)
with
Anfw) = % fo ® an(t)e"Whds (2.52)

The development of evolutionary models and the observation that omitting
the ascending and decaying phases of the motion can lead to underestimation
of nonlinear responses and damage indeces have fostered the use of a more rig-
orous technique of analysing the spectral characteristics of earthquake records,
consisting in the transformation of the nonstationary signal into a stationary
one of the same total duration, {_. This transformation implies, of course,
that an adequate nonstationary model have been fitted to the signal. In a later
paragraph this technique will be described for the particular case of the instan-
taneous spectrum, which has been used to derive stochastic models of some
records that will be employed in subsequent chapters.

2.4.2 Estimation of amplitude modulating functions

The parameters of the amplitude functions £(¢) are usually determined on
the basis of the energy of the record {equation 2.50). Its total value is propor-
tional to the well-known Arias intensity which is widely used as a measure of
seismic damage potential. It is also related to the Fourier amplitude transform
according to Parseval’s theorem:

o0 7 (G oI 2
/G o ()t = = fo |A()| dw (2.53)
In uniformly modulated as well as in instantaneous spectrum models one has
Al) = €M) (2.54)

and hence

o1 (1) =€ (o, (1) (2.55)
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Figure 2.7 Energy functions of Orion earthquake (units: s, cm?/ 53)

since &(t) is deterministic and M{(t) has zero mean. The expected value of
energy is then

BE() = [ & (R[M’ (o) (2.56)

Since the relative distribution of energy between £(t) and M(t) is arbitrary,

it is always possible to set E[M ? (t)] = 1 so that the expected energy will be
completely controlled by £(¢):

t 9
BE(t)] = fo £ (D)t (2.57)

The identification of the parameters of any amplitude modulating function can
then be done by obliging the equivalence of the energies associated to the func-
tion and original record, i.e.,




Estimation of the evolutionary spectral parameters 45

0.

Acceleration

Time

Figure 2.8 Record and Yeh-Wen modulating function of Orion earthquake (units:
2
5, cm/s”)

[ )dt = f ‘o)t (2.58)
0 0

To that purpose it is necessary to make use of algorithms of nonlinear indenti-
fication (Bard 1974}

Figure 2.7 shows a comparison of the energies associated to the record and to
the fitted Yeh-Wen (2.22) and given energy functions of the Orion earthquake.
The parameters of the model, which were obtained by means of the Levenberg-
Marquart algorithm (Press et al., 1992), are a = 0.5577E02, b = 0.3214E02,
¢ = 0.5093E00, d = 0.0 and e = 0.2782E02. It can be seen the good agreement
existing between both curves. The record is drawn again in figure 2.8 together
with the fitted £(¢) function.

2.4.3 Modelling of instantaneous spectrum

Besides the fitting of an amplitude function £(¢) the construction of an
instantaneous spectrum model requires the folowing steps:

1. To fit a model of the frequency modulating function x(t).
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2. To transform the nonstationary signal into a stationary one using the fitted
functions of amplitude and frequency.

3. To calculate the stationary power spectral density and to build a smooth
model that reproduce its essential features.

As has been said previously, the frequency function can be derived from a
M —order polynomial function fitted to the zero crossings of the record, that is,

a(t) = W (2.59)

Il

with

M

n(t) =S rt (2.60)
i=1

The time ¢, corresponding to the beginning of the strong motion phase, can be
estimated by visual inspection as the first inflection point of the energy function
E(t) (see figure 2.7).

Figures 2.9 and 2.10 illustrate the regression of a model to the zero crossings
of the El Centro and Orion records, respectively. The regression has been
performed on a linear combination of Legendre polynomials due to the fact
that their orthogonality makes minimum the least square error {Boas 1983).
The corresponding parameters, as well as those of other records, are collected
in table 2.1. Comparing figures 2.1 and 2.5, it can be observed that the evolution
from high to low frequency waves is stronger in the Orion than in the Il Centro
record. The SMART record has been selected as an example of an intermediate
situation. Their fitted k() functions will be used in the analyses of chapter 8.
Figure 11 shows two snapshots of the Clough-Penzien evolutive spectral density
of figure 2.3 using the fitted Orion () function with £(t) = 1.

The next step is the transformation of the original nonstationary signal into
a stationary one. This can be accomplished in two phases. First, the variation
of amplitudes is removed by dividing the signal by the fitted amplitude function,
ie.,

_ )
my(t) = 0 (2.61)

Then, the resulting signal is mapped in the modified time axis represented by
the frequency modulating function,
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Figure 2.9 Frequency modulating function of El Centro earthquake
Table 2.1 Parameters of fitted frecuency modulating function
Earthquake record T, Ty Ty n(t,)
Imperial Valley 0.7826 e 01 | 0.2733 e-01 | -0.1260 e -02 | 2.0 | 0.792]1 e 01
ART 45 0.9806 e 01 |-0.1980 e 00 | 0.1833 e-02 | 7.5 |0.7145 e 01
San Fernando 0.9585 01 |-0.2291 e 00 | 0.2298 ¢ -02 | 2.5 | 0.8148 e 01
m(t) = my (k(t)) (2.62)

This end signal can be used for estimating the power spectral density using the
total duration in equation (2.47). The fitting of a filter model will be commented
in the following paragraph.

2.4.4 Estimation of parameters of filter models

Lai (1982} and Faravelli (1988a) have proposed the estimation of the pa-
rameters of simple and composed Kanai-Tajimi filters by minimizing the error
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Figure 2.10 Frequency modulating function of Orion earthquake

existing the first spectral moments of the model to those of the signal. The
spectral moments are defined as

A; = ]000 ij(w)dw (2.63)

Since the Kanai-Tajimi filter is defined by three parameters, it is necessary to
solve the same number of nonlinear constraints simultaneously, which corre-
spond to the spectral moments of order 0, 1 and 2. The procedure is facilitated
by the availability of closed expressions ior the spectral moments of this model
derived by Faravelli (1988a). The procedure becomes more involved for higher
order models such as the Clough-Penzien or Boore-type filters for which explicit
expressions of the moments are difficult to obtain. Since these models reproduce
more realistically the power spectrum, there is no alternative than to fit them
by nonlinear identification techniques.

An important statistical study on the shape of the power spectral density
based on U.S. records was performed by Moayyad and Mohraz (1982). The
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authors grouped the records into three cathegories corresponding to different
types of soils, namely hard, middle and soft and averaged the normalized spec-
tra. Sues et ol. (1985) fitted the Kanai-Tajimi model to the resulting averages.
The results are collected in Table 2.2.

Table 2.2 Kanai-Tajimi model parameters (after Sues et al. 1983)

Ground condition W, v,
Soft 10.9 0.96
Intermediate 16.5 0.80
Hard 16.9 0.94

It is important to observe that when fitting the Kanai-Tajimi model to indi-
vidual earthquakes much lower values of v, are tipically obtained in comparison
to those shown in the table. In fact, Lai (1982) has found that the v, values are
concentrated around 0.32 with moderate dispersion, irrespective of seismologi-
cal or geothecnical conditions. This means that the high values stemming from
the study by Moayyad and Mohraz (1982) suppose that the earthquake records
have a wider band of frequencies than the mean one. This can be interpreted as
a consequence of classifying the records by their associated soil conditions with-
out regard to seismological variables such as magnitude and epicentral distance,
which have an important influence on the value of the dominant frequencies. As
a result, spectra of earthquakes origined at different seismological conditions are
merged by the sole reason of their geothecnical similarity, which in turn implies
that the averages display non realistic bandwidths.

2.5 Simulation of earthquake accelerograms

The synthetic simulation of stochastic processes and, specifically of earth-
quake accelerograms has been an active area of research since the advenance
of fast computers. At present there is a wide spectrum of algorithms to that
purpose. The choice among them depends on the available information, the
characteristics to be given to the signal and the computational efficiency and
accuracy (Nigam and Narayanan 1994).

In the present work use will be made of the algorithms that are exposed in
the sequel, which correspond to Gaussian processes. This restriction is due to
the fact that zero mean Gaussian random variables are completely defined by
second order statistical information. Since the latter is indirectly given by the
power spectral density of the process, it will be granted that upon such basis
the synthetic realizations will correspond to the Gaussian probabilistic model.
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This is not valid in case of non-Gaussian processes which require higher order
spectral information.

2.5.1 Simulation of filtered white noise

There are, in general, two ways of performing this kind of synthetic simu-
lation. The first consists in generating a realization of a white noise process,
w(t) (cf. chapter 1) and then calculating the response of the filters by solving
the equations of structural dynamics, namely

Lz, £ = w(t) (2.64)

where L[] is the mathematical operator of the filter. The second technique
relies on the availability of the mathematical or empirical expression of the
power spectral density function of the process, Sy (w). The realizations can be
generated by the algorithm (Shinozuka 1987 )

M
z(t) = 2121/5'}{ (w;)Aw cos{w,t +¢;) (2.65)
1= .
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where the spectral density has been discretized into M frequencies, which have
an associated random phase angle uniformly distributed between 0 and 2m.
Evidently,

Aw = ~max (2.66)

where w_,. is the maximum frequency given to the signal, selected on seismo-
logical as well as structural considerations. The frequencies w, are allocated
either in the middle of each interval or randomly inside it. The algorithm is
based on the spectral representation of stochastic processes sketched in chap-
ter 1. In particular (see equation 1.36) the total variance computed on the

simulated realizations

M
z(t) = Y Z; cos(wit + ;) (2.67)
j=1
is
2 1 2
oy =35 sz (2.68)

On the other hand, the variance is also given by

0‘; = f Sy (w)dw (2.69)
—oo
Accordingly, one can set amplitudes Z; as

Z; = 2¢/8y (w;)Aw (2.70)

1t can be demonstrated that the density function of the signals z(t) obtained
this way tend to that of the process X(t) as M — oo (Shinozuka 1987). By
expressing the cosine function in equation (2.65) as the real part of a complex
exponential, the simulation can be carried out much more efficiently by means
of the fast Fourier transform algorithm (Shinozuka and Lenoe 1976). In fact,
equation (2.65) can be put in the form

M
z(t) = %{ z 24/8y (w;) Aw exp(i¢;) X exp(iwjt)} (2.71)

j=1
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which indicates that 2(t) can be calculated as the real part (R(-)) of the discrete
Fourier transform of the complex set

{24/Sy (w;)Aw exp(i¢;) } (2.72)

2.5.2 Simulation of nonstationary accelerograms

The simulation of zero mean, nonstationary Gaussian processes character-
ized by a time-variant power spectral density S ,(wj, t), can be performed by a
simple modification of the above algorithm:

M
2(t) = 3 24/ Sy (w;, 1) Aw cos(w;t + ;) (2.73)
j=1

In the particular case of processes modelled according to Priestley’s evolutive
model, i.e.

Syelw,t) = 6(t,)] Sy () (2.74)

one has

M
z(t) = |£(t, W)l 2:1 21/Sy (w;)Aw cos(w;t + ;) (2.75)
J:

which in case of uniformly modulated processes reduces to
M
z(t) = £(1) Y 24/8y (w;)Aw cos(w;t + () (2.76)
j=1

The simulation of accelerograms according to the instantaneous spectrum
model can be done by solving the equations of motion of the time varying filters
excited by the synthetic realizations of the driving white noise (equations 2.42
and 2.43).




Chapter 3

Second order stochastic analysis
of nonlinear systems

3.1 Introduction

Let us consider a nonlinear dynamical system subject to a random external
excitation:

h(X,X,X)=P(t) (3.1)

Here h(-) denotes a nonlinear vector function of its arguments and P(t) is
the excitation. This chapter deals with the second order stochastic analysis of
nonlinear systems. The main part of the chapter deals with method of stochastic
equivalent linearization, which allows the estimation of first and second order
statistical moments of the response vector of nonlinear deterministic structures
subject to random vibration. This method, indeed, is not the only one available
to such purpose (see, for example, Nigam 1983; Roberts and Spanos 1990; Soong
and Grigoriu 1993; Lin and Cai 1995; Lutes and Sarkani 1997). For instance, the
method of perturbation secks the statistics of the response X of the system by
power series expansions of all the terms involved in equation (3.1). It, however,
can only be applied with good aceuracy to weakly nonlinear systems, that is,
those whose departure from linearity is slight. A similar restriction applies to
the method known as stochastic averaging, which proceeds by searching some
functions of the amplitude and phase of an harmonics which is the solution of the
associated free vibration problem. Besides the restriction of applying to weak
nonlinearities, both methods also pose computational difficulties when dealing
with large nonlinear systems. Obviously, any of the methods for calculating
higher order stochastic response that are the subject of chapter 7 provide the
first and second order information as a bye-product. But as can be seen there,
the application of such methods to large structural systems is also very limited.
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In contrast to the methods of perturbation and stochastic averaging, the
method of stochastic equivalent linearization can be applied to large structural
systems exhibiting strong nonlinear response. The present chapter begins with
a formal summary of the theory of second-order, random vibration analysis of
linear systems, as this provide a basis for the calculation of the response of
the nonlinear hysteretic models which are dealt with in the next chapter. The
method of stochastic equivalent linearization is then exposed for the general
case of nonlinear dynamical structures, after which the simplifications stemming
from the assumption of Gaussianity of the response random processes are intro-
duced. The chapter follows with a brief exposition of a method which exploits
the second order information provided by stochastic linearization to the as-
sessment of the reliability of nonlinear systems under nonstationary conditions,
when it is measured as the probability of exceedance of maximum allowable
displacements. Finally, the last section deals with an approximate method for
considering the uncertainty of the structural or load model parameters on global
response measures, which has been proposed by some authors as an attempt for
overcoming the deterministic definition of such models in conventional random
vibration analysis. The method, which is based on the Taylor expansion of the
covariance response about the mean of the parameter set, is applied in chapter
8 to the analysis of base isolated buildings.

3.2 Second order analysis of linear systems

3.2.1 State space formulation

As is well known, the dynamics of a linear structure of NV degrees of freedom
with mass, viscous damping and stiffness matrices denoted by M, C and K
respectively is given by (Clough and Penzien 1993)

Ma(t) + Ca(t) + Ka(t) = p(t) (3.2)

in which @, £ and @ are displacement, velocity and acceleration vectors, respec-
tively. With the aim of calculating the statistical second order response of the
structure, it is convenient to express the above system of equations in state
space form. That is, by collecting the displacement and velocity responses in
the state vector gT(t) = [®T(t), £T(t)], the original system of N sccond order
differential equations is transformed into the following system of 2V first order
differential equations:

q(t) = Aq(l) + F(t) (3.3)
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A is the so-called system matriz given by

0 I
A= (_M—IK MMQIC) (3.4)
and the vector of external loads is then
70 = _arpe) (3.5)
~M “p(t)

3.2.2 Mean and covariance evolution

Let us now derive the differential equations governing the evolution of the
first and second order moments of the random response of a linear structure,
when excited by a external load defined as a stochastic process P(f). Under
this stochastic point of view equation (3.3) is written as

Q(t) = AQ(t) + F(t) (3.6)

The application of the expected value operator E[:] to this equation gives the
evolution of the vector of mean responses

p(t) = Apt) + pr(t) (3.7)

which for the stationary case simplifies to

-1
p=—A pp (3.8)

For the sake of simplicity in the derivation of the covariance evolution, let
us assume that the excitation and, consequently, the response have zero mean.
The time derivative covariance matrix, given in such case by

2(t) = E[Q(1)Q{)"] (3.9)

5(0) = SEQOQ )

— B[{AQ(t) + F()}QT()] + ElQ{AQ®) + FH)}™]  (3.10)

which leads to
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3(t) = AE[Q(1) QT (1)] + EQ()QT ()| AT +E[F(1)QT (1) + Q) FT(?)] (3.11)
that is,
S(t) = AX(t) + Z(t) AT + E[FH)Q*#) + Q) FT (2] (3.12)

Let the external excitation in equation (3.2) be modelled as a modulated
white noise, i.e.,

P(t) =W () (3.13)

where W (t) is a vector of stationary white noises and §(t) a vector of deter-
ministic functions that modulate the instensity in time, thus giving P(t) a non-
stationary character. We will now derive the value of the last term in equation
(3.12). For simplicity a single-degree-of-freedom system will be considered:

mX (t) + cX () + kX () = EQ)W(2) (3.14)

Here m, ¢ and k are the mass, damping and stiffness constants. The intensity of
the white noise W (t) is 27S,,. The above equation can be written in the form
of a stochastic differential equation,

d (ﬁgg) N (—mwlk)]g(i)m_lc)i’) dé + (m‘%(ti/ﬂ) dB  (3.15)

Applying the Ito formula (1.98) on the function
h(X,X) = XPX1 (3.16)

and then the expectation operator E[], the following general differential equa-
tion is obtained:

ﬂp,q(X, X) - pnu’p-—l,q-|-1 (X7 X) - qm—lkup-}-l,q—l(X? X)_
_ . 1 _ .
am ety o (X, X) + S5m0 2w S, a(d — Dty g2 (X, X) (3.17)

For the set of values (p, q) = (2,0), (1,1), (0, 2) it is easy to see that the first three
terms of the right hand side of this equation generate the terms AX(t)+X(t) AT
in equation (3.12). Accordingly, the unsolved expectation is
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BFOQTO) +QOFT ) =27 () oeups ) G

Generalizing to the multidimensional case we have

BFOQ™M +QOFTO1 =2 (3 aremsnermm) @19

Turning back to the equation (3.12} we arrive to the final expression that
governs the evolution of the covariance response of a linear structure excited by
a vector shot noise of intensity Sy,

2(t) = AB(t) + B(t) AT + 2nSp(t) (3.20)
where

0 0
— _ - 21
e =27(g (S T ()M 1) (3.21)
Tt can be demonstrated that this equation also applies to the case of nonzero
mean random excitation (Cunha 1990; Soong and Grigoriu 1993).
In the stationary case the covariance matrix does not vary with time and
then we have the following algebraic equation

AS+ZAT+ 8, =0 (3.22)

which has the same appearance as the Lyapounov equation arising in the study
of chaos and bifurcation of nonlinear systems.

Finally, it is important to note that in many instances the random external
forces are modelled as linear combinations of the responses of linear filters to
white or shot noises. In that case, the equation of motion in state space form is

() = Aq(t) + Bg;(t) (3.23)

where B is a matrix of the coefficients of the linear combinations of the responses
g, of the filters. The dynamics of the latter is governed by

g, (t) = Dg,(t) + p(t) (3.24)

in which the vector of forces p can asume any of the forms mentioned in the
preceeding, i.e. white or shot noise. Since the above equations have the same
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linear structure, both systems can be grouped into a single one describing the
dynamics of the enhanced state vector qT(t) = [2T(t), #T(t), ¢F (1)]; the struc-
tural matrices are assembled accordingly.

3.3 The method of stochastic equivalent linearization

3.3.1 Basic formulation

Let the motion of a nonlinear structural system excited by random forces
be described by the nonlinear equation

h(X,X,X)=P (3.25)
where the time argument has been omitted for simplicity. In the case of hys-
teretic systems is commonly assumed that the function h(-) is antisymmetric,
i.e.,

h(X,X,X)=—-h(-X,-X,-X) (3.26)

For the random vibration problem this assumption implies that the function
has a zero mean.

The method of stochastic equivalent linearization, when applied to struc-

tural dynamics problems, proposes the substitution of the above nonlinear equa-
tion by the following linear one

McX-CoeX—-KeX=P (3.27)

In this equation M, Ce and K, are the equivalent mass, viscous damping and
stiffness matrices which are in general time -varying. The error of this equation
is

e=hX,X,X)-McX-CcX-K¢X (3.28)

and the most common strategy for the calculation of the equivalent matrices is
the minimization of the expected value of its square norm

Ele€T] — minimum (3.29)

which is equivalent to
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N 2
gl Ele,] (3.30)

due to the linearity property of the expectation operator. The terms of the
above summation are

N N
e, = h(X,X,X) - Z X Zcex Zkﬂ (3.31)

in which h,(-) is the i—th component of the function h(-), while m¢,, ¢, and
kej are the elements of matrices Mo, C and K ¢ respectively. Since the terms
of the above summation are positive the minimization of the total error is
equivalent to the minimization of each of them. Hence, it can be concluded
that the conditions allowing the determination of the equivalent matrices are
the following:

2
OF[e; |
Lleil _ o, {ei o 1 —0 (3.320)
2 - -
oRle] de, ]
5 = 2P |56 =0 (3.32b)
2 -
OE[e;] Oe, |
e = 2 | = (3.32¢)

Substituting these expressions in equation (3.29) and invoking the linearity
property of the expectation operator we arrive to the set

N . N - . N L .r . .
E_}::lm::‘lE[Xth] + l_zlcgE[XlXj] +121 keB(X,X;] = B[X;h,(X, X, X)] (3.33¢)

N " . N - 2 N * O L 0
> meE[X,X)] +l§%cg£E[Xth] +IZ1 kEBIX,X,] = B[X;h (X, X, X)] (3.330)

N " N . N e .
E_Z:lmf.lE[Xth] + l_z:lcaE[XlXj] + 121 k2 BIX, X)) = BIX; (X, X, X)] (3.33¢)




60 Second order stochastic analysis of nonlinear systems

Collecting terms we have

ME[X XT] + CE[XXT] + K E[XXT] =ERr(X, X, X)XT] (3.34a)

ME[XXT] + CE[XXT)+ KE[XXT] =E[R(X, X, X)X"] (3.34b)

ME[X XT] + CB[X XT] + KE[XXT] = E[R(X, X, X)XT] (3.34c)

Denoting by @ and H ¢ the response and equivalent structural matrices given
respectively by

QT = [X7, X1, XT], He=[Me,Ce, Ke (3.35)
the above expressions can be condensed into the following matrix equation:

E[QQT|H{ = E[QRT(Q)] (3.36)

which is the fundamental equation of the method. Notice that the equivalent
structure matrix is a function of the covariance response as well as the expected
value of the product of the state vector and the nonlinear function. Such a
complicated structure can be greatly simplified if one assumes that the state
vector obeys a Gaussian distribution, as detailed in section 3.3.3.

The equations leading to the minimization of the error correspond to the
necessary conditions for the calculation of the equivalent structural matrices.
It is possible to demonstrate that these conditions are also sufficient to that
purpose by applying a perturbation to the resulting equivalent system (Roberts
and Spanos 1990). Let then a new structural system be defined as

me. = me, + Amg, (3.37a)
%] %3 ¥
& = ¢S + Act (3.37b)
i1 5] X
ki = kfj + Akfj (3.37c)

Since the polynomial expression of the square error is of second order, the
derivatives of order higher than two vanish. For this reason the following Taylor
expansion of the square error about the equivalent system is exact:
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N 2
5] - pid 4 {%%Z_é]zs% . OBl ]A . . OFlg ]Ake}

= Bes, i T ok,
% > %%LA w O chngce Act,+
k=1 Tk O 8.0,
nggkl Ak AKS é(?szk_[aszAme At +
%A AR ¥ ch{[ikgAmkAke (3.38)

Taking into account the conditions {3.32) the above expression simplifies to

N : 2
Fle;) = Ble;] + %E{ (3 X,ame, + X, Act, + X; Ak ] | (3.39)
j=1

in which the last term in the right hand side is always greater or equal to zero.
Hence it can be concluded that

B3[E;] > Ele;] (3.40)

which means that the error corresponding to the linear system obtained by the
minimization procedure is less than or equal to that corresponding to any other
system. This is not, of course, a statement about the accuracy of the method
but only on the existence of a minimum of the error.

3.3.2 Historical development

The method of stochastic equivalent linearization has its roots in the work of
Krylov and Bogoliubov (1943) on deterministic linearization and it first appears
in papers by Caughey (1963), Iwan (1973) and others in a probabilistic formu-
lation. It was soon evident that the method was the most suitable for random
vibration analysis of large nonlinear structures among the existing techniques
for such purpose (Iwan and Yang 1972). A great impulse to practical appli-
cations of the method was given by a paper of Atalik and Utku (1976) which
demonstrated that the assumption of a Gaussian behavior of all the state vari-
ables greatly simplified the computation of the linearization coefficients, as it
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will be seen in the next paragraph. A later paper by Faravelli et al. (1988),
demonstrated that the Gaussian density is the only for which such a simplifi-
cation is valid. Mathematical questions such as the existence and uniqueness
of the solutions have already been discussed (Spanos and Iwan 1978). A mono-
graph by Roberts and Spanos (1990) on computational techniques in nonlinear
stochastic dynamics shows that this is the one with the clearest appeal to the
practical analysis of large structures among them.

Much of the interest received by the method for practical applications is
due to the introduction of an smooth and versatile model of hysteresis by Bouc
(1967) and its posterior development by Wen (1976), Baber and Wen (1979),
Casciati (1987a), Noori et al., (1991}, Chen and Ahmadi (1994), Foliente et al.
(1996) and others. This class of models opened the way to the application of
the method in many areas of structural dynamics such as vibration of frames
(Baber and Wen 1981; Baber 1985, 1986) reinforced and concrete structures
(Wen and Eliopoulos 1994; Noori et al. 1991; Sues et al. 1988), soil liquefaction
(Pires et al. 1983), three dimensional frames (Casciati and Faravelli 1988), base
isolation devices (Constantinou and Tadjbaksh 1985) and active control (Yang
et al. 1994) among others. The extension of this hysteretic model from the
one dimensional force-displacement space to the bidimensional one (Park et al.
1986; Casciati and Faravelli 1988) and also to stress-strain space (Casciati 1989;
Pradlwarter and Li 1991) allowed the application of the method to structures
modelled by hysteretic spatial frames and planar finite elements. Complex
modal decomposition was introduced to minimize the computational labour
required when applying the method to such complex large structural systems
(Chang 1985; Faravelli et al. 1988; Simulescu et al. 1989).

The smooth hysteretic model has also found its way in nonlinear stochas-
tic dynamics not only because of its versatility but also for the possibility of
calculating the linearization matrices in explicit form. This is rarely possible
for other hysteretic oscillators, such as elasto-plastic, bilinear, origin-oriented,
etc, which together with the smooth one can be grouped under the label of
Markovian, after Li and Katsukura (1990). Some of this classical models have
been studied by the method of equivalent lincarization by Kimura et al. (1994)
among others.

The accuracy ot the method with respect to exact known results or to those
obtained by Monte Carlo simulations has also been investigated. Generally
speaking, it can be said that the size of the errors depends on many factors,
such as oscillator’s type and parameters, type of calculation (i.e., stationary
or nonstationary), excitation level, etc. (Robert and Spanos 1990). For the
specific case of the smooth hysteretic model it has been found that, under the
assumption of joint Gaussian behaviour, the method estimates with reasonably
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good accuracy the response in stationary analyses, but underestimates the dis-
placement responses in nonstationary cases (Baber and Wen 1979; Iwan and
Paparizos 1988). Given the importance of displacement estimations in design,
attempts to overcome this situation has been proposed (Wen and Yeh 1989;
Park 1992; Pradlwarter et al. 1988; Pradiwarter and Schuéller 1992). The
method proposed by the author (Hurtado and Barbat 1996a) is studied from
the point of view of accuracy in the chapter 5 after a detailed analysis of the
nature and source of the errors when using the assumption of Gaussianity.
Finally, it must be said that alternative ways of linearization to the classical
one that was exposed in the previous paragraph have been investigated. Among
them the following are worth mentioning: the energy approach (Elishakoff and
Colombi 1993), in which linearization is not perfomed on response but on energy
error; higher order linearization (Naess and Johnsen 1991) which pursues the
approximation to the nonlinear system by raising the order of the error norm;
statistical quadratization (Donley and Spanos 1991), which is based on the use
of Volterra series; linearization based on the crossing rate of the response process
(Casciati et al., 1993) or on the search of the system that best solves the Fokker-
Planck equation (Polidori and Beck 1996). It must be said, however, that
most of these recent developments in this field are not applicable to Markovian
hysteretic oscillators, or only to limited situations in which they are involved,
due to the fact that these models are built up at the very brim of mathematical
discontinuity. The same comment applies to the methods for estimating the
probability flow and evolution which are the subject of the chapter 7.

3.3.3 The hypothesis of Gaussian behaviour

An important property of the Gaussian density function has proven to be
useful for calculating the expectations in equation (3.36). If a vectorial variable
Q has a normal density, then it can be shown that the following property holds
(Atalik and Utku 1976)

E[QhT(Q)] = E[QQT]E[Vh(Q)] (3.41)

under the following conditions:
1. Q is a jointly Gaussian vector with zero mean.

2. Function h(Q) has first partial derivatives with respect to the elements of
vector Q.

3. The inequality
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N
Ih(Q)] < k exp (Z Qa) 5<2 (3.42)
gzl

holds for some arbitrary k. In Faravelli et al. (1988) it is demonstrated that
these are also necessary conditions for the validity of equation (3.41). Tt must
be observed that most nonlinear fuctions found in structural dynamics satisty
these requirements.

The main advantage arising form the supposition of normality of all the
variables is that the calculation of the joint expectation of the responses € and
nonlinear forces b can be splitted into two parts corresponding to each of those
terms. Substitution of (3.41) into (3.36) yields

E[QQTIH{E = E[QQT]E[VTh(Q)] (3.43)
which means that
H{ =E[VTh(Q)] (3.44)

if the inverse of the covariance matrix exists. This in turn requires that the state
variables are not linearly dependent; otherwise, it is always possible to remove
the redundant equations to obtain an equivalent system of reduced dimension.
The particular expresions of the equivalent dynamic matrices are therefore the
following:

me, = E [3hi (X’..X’X)} (3.45a)
K 3Xj
(o, (X, X, X)]
o =g | KX X) (3.45b)
L ] BXj
Oh (X, X, X)]
ke = t .
=B oX, (3.45¢)
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3.3.4 Solution of the overall moment differential equations

The system matrix being already linearized, the evolution of the covariance
matrix can then be calculated by solving the differential equation (3.20), which
is here put in the form

B(t) = Ao()B(t) + Z(t)AT(E) + 27 S, (t) (3.46)

The system matrix has been denoted as A(t) to indicate the equivalent lin-
ear nature of some or all of its elements. Notice that unlike the linear case
the system matrix A¢ is now time-dependent because the linearized matrices
M., C. and K require the knowledge of expectations of the responses which
are themselves functions of the system matrix as shown by the last equation,
This interdependence between the system and the responses is a characteristic
feature of nonlinear systems, as is well known. The calculation of the covari-
ance evolution by means of the above equation will be called direct method to
distinguish it from the complex modal method discussed in chapter 6. In the
stationary case one has to solve the algebraic system

AZ+XNAT + 278, =0 (3.47)

Taking into consideration the symmetry of the covariance matrix the last equa-
tion can be transformed into a system of linear equations of dimension 2N,
where N is the size of the system matrix. Alternatively, the algorithms pro-
posed by Bartels and Stewart (1972) or Beavers and Denmann (1975) can be
applied. However, Casciati et al. (1986) and Casciati and Venini (1994) report
large overestimations of the response in the application of the former to nearly
elatoplastic hysteretic systems and the impossibility of reaching a solution for
purely elastoplastic ones.

Note that in the stationary problem it is necessary to iterate the value of
the equivalent matrices for arriving at the solution. In nonstationary analysis
the equivalent matrices obtained in a time step are used for calculating the
mean and covariance matrices at the next, so that iteration is not required.
Conventional algorithms for solving systems of differential equations such as
Runge - Kutta, Adams - Moulton, etc. can be used without difficulty.

3.4 Reliability assessment based on second order information

By the expression reliability assessment it is generally meant the estimation
of the probability that a system does not exceed a response level considered
as critical for its performance. It is well known that a distinghising feature
of the Gaussian over other probability density functions lies in the fact that
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it is completely specified by first and second order moment information. This
means that the reliability of a Gaussian system under any situation could be
easily and exactly assessed on such basis. The random response of nonlinear
systems is, however, non Gaussian even when excited by Gaussian forces. As a
consequence, their reliability can only be estimated approximately if only first
and second order information is available.

In random vibration theory many methods have been proposed to this pur-
pose (see, e.g., Soong and Grigoriu 1993). In the present section a method
due to Yang and Liu (1981) for the assessment of the probability distribution
of maximum responses will be briefly summarized. The method constitutes a
solid basis for estimating the performance and reliability of linear or nonlinear
structural systems subject to nonstationary random loads.

Let X denote the maximum of a random variable X. Yang and Liu postu-
late the following Gumbel-type distribution function for a maximum ocurring
between time instants ¢, and ¢, :

m%@m=mkmwwﬂ%mmﬂ (3.18)

where the parameters 7 and ¢ depend on the time instants ¢, and ¢, and the
first two moments of the peaks ocurring in that interval. The latter are given
by

w 1 tg
t,)=4/= dt .
RS 2%_h41%u) (3.49)
2 \/§ tg 2
O'P (tl’tQ) = E;-_—tl tl O'X (t)dt (3.50)

where o (1) is the standard deviation of X. On the other hand, 5 and € can be
obtained by solving the following system of nonlinear equations:

—

op(ty,ty) — [F(% th- FZ(% i 1)}

pp(t), ) F(%+1)

(3.51)

1
7.1
et 1) = en" Tz + 1) (3.52)
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where I'(-) is the Gamma function. The value of K is expressed in terms of the
time-varying zero upcrossing rate of the process )\T(t), i.e. the mean rate at
which the process crosses the time axis with positive slope:

=

K = [n In / 2 2)\T(t)dt] (3.53)

b

Tt has been reported that the use of the zero upcrossing rate of Gaussian pro-
cesses gives satisfactory results. The latter is given by

o. 1— . 2
) = 1= py (B) 550

2mo (1)

where o (t) is the standard deviation of the time derivative of X and p, . the

correlation coefficient of X and X, as given by the second order analysis. Note
that since the postulated distribution of the maximum is Gumbel, the mean
and standard deviation of the maximum are

py, () = (K + 0.577K 1 M)e (3.55)

oy ()= "x/%:’—? (3.56)

3.5 Consideration of model uncertainties

Classical random vibration analysis deals with deterministic structures sub-
ject to random external or parametric excitations. It is desirable, however, to
enhance the scope of the second order analysis to include the effect of the un-
certainties of the parameters defining the excitation or the structural models on
some measures of the overall stochastic structural response, such as maximum
displacement, damage indexes, etc.

Some aproaches have been proposed for an analysis of this type. For instance
the response surface method (Box and Draper 1987; Casciati and Faravelli 1991)
could be applied in this case. It consists in the realization of some planned
numerical experiments, each one with combinations of some prescribed values of
the uncertain quantities, and the fitting of an adequate function to the response
of interest. For instance, a single numerical experiment would consist in the
estimation of a expected maximum response, E[U] by means of the method
of stochastic equivalent linearization using certain values of the excitation and
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structural model parameters. Fitting a non linear surface by least-squares to
the pairs (E[U],0), where 8 is the set of uncertain parameters, the resulting
analytical relationship will serve as an indication on the sensitivity of each
model parameter on the maximum displacement.

Another approach, directly linked to method of stochastic equivalent lin-
earization has been proposed by Sues et al. (1985) and applied to specific
situations by Socha (1986) and Socha and Zasucha (1991). It is based on the
so-called first order sensitivity method, which has its roots on Taylor expansion
of a certain vector variable v in the vicinity of the mean value of a vector of
parameters @, truncated at the first derivative:

dv
v = Ulﬂg + %(9 — ig) (3.57)

Multiplying the above equation by its transpose and applying the expectation
operator yields the following equation for the covariance of the variable:

Efvv™] = E{m’r]\“a + %%E[BBT](%%)T (3.58)

while the mean value of v corresponds simply to the result obtained using the
mean value of 8, p g 88 can be seen by taking averages on equation (3.57).

This approach constitutes the fundamentals of the perturbation method
widely used in the field of stochastic finite elements (Kleiber and Hien 1992).
In the frame of random vibration analysis of structures by means of the equiv-
alent linearization method, the perturbation technique can be used to analyse
the sensitivity of the variance of the displacement with respect to the model
parameters. The evolution of the covariance of the linearized state vector ) is
governed by the differential equation

N =A X+ XAYT + S, (3.59)

Deriving this equation with respect to 8 the following equation for the evolution
of the covariance sensitivity is obtained (Socha 1986} :

8% _ 0A. 0% 0% . 0A%  0S;
which in the stationary case reduces to
DAe o0x  ox 0AF o8
— Ac—— + AL e —F - .
oo =t Aoyt gt E 5 T =0 (3.61)
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As can be observed in the above equation, for the computation of the evolution
of the covariance sensitivity at time ¢ the covariance itself must be known at
the current time so that the two systems must be solved in parallel. Also,
the calculation requires the knowledge of the derivatives of the elements of the
linearized system matrix Ae with respect to #. The latter will be derived in
chapter 5 for the specific case of the smooth hysteretic model linearized by the
proposed non Gaussian approach.







Chapter 4

Gaussian linearization of hysteretic
structures

4.1 Introduction

After presenting the basic concepts and equations of the method of stochas-
tic equivalent linearization in the preceding chapter, the specific problems of its
application to the estimation of the stochastic response of hysteretic structures
when making use of the hypothesis of Gaussian behaviour will be dealt with
in the present chapter. The emphasis will lie on the nonstationary analysis
of a class of such systems inasmuch as higher errors are found in this class of
problems than in stationary ones when using such hypothesis.

The chapter begins with a formal presentation of the hysteretic model which
will be used in the rest of this work. The stochastic linearization of this model
as resulting from the application of the assumption of Gaussianity is then de-
rived and discussed. Tt is shown that, depending on the combination of load
and system parameters in the case at hand, it can lead either to satisfactory
or to quite erroneous results when compared to those afforded by Monte Carlo
simulation. Tt must be observed that this is a theme on which there are opposite
views published in the technical literature. While in some publications it is ar-
gued that the Gaussian method leads to moderate errors other report very large
ones. This chapter is thus partly purported to shed light on this error scenario.
Taking as reference the results of Monte Carlo simulation comparisons will be
made of the results given by the conventional {Gaussian) method. The numer-
ical study will show that there are situations in which the conventional method
is reasonably accurate while in others errors as large as 300% are common.
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4.2 Smooth Markovian models of hysteresis

The analysis of random vibration of structures performed in state space
requires the formulation of the equations of motion in the form

Q) = g(Q;t) + F(1) (4.1)

where Q(t) is the state vector, g(-) is a vector nonlinear function and F(t) is
the external excitation. The Euler approximation of the derivative gives

Q(tk-H) = Q(tk) + h[g(Q;tk) + F(tk)] (4.2)

This formulation justifies the denomination of Markovian given to some
hysteretic models presented in state space form, because the probabilistic de-
scription of any state can be completely derived from the knowledge of that cor-
responding to the preceeding time instant. (Li and Katsukura 1990; Rahman
and Grigoriu 1994) For example, consider a bilinear system of mass, damping
and stiffness constants denoted as m, ¢ and k subject to a external excitation

p(t):
mi(t) + ei(t) + akz(t) + (1 — a)kz = p(t) (4.3)

Here o is a coefficient related to the post-yielding stiffness and 2 a function
that controls the hysteretic behaviour. A Markovian decription of the latter
has been proposed by Kobori et al. (1977 ) in a normalized space as

3=l — H(@)H(z— 1) — H(=&)H(~z — 1)] (4.4)

where H(-) is the Heaviside function, i.e.,

_ {0, if <0
H@_{L it >0 (4.5)

Similar but more involved piece-wise formulations have been proposed for other
hysteretic models such as origin-oriented, peak-oriented, stiffness degrading,
etc. (Rahman and Grigoriu 1994). Evidently, such piece-wise models are char-
acterized by strong changes imposed by the Heaviside function. Therefore, the
resulting hysteretic loops do not have the smooth appearance observed in lab-
oratory tests of many structural materials. Furthemore, piece-wise models are
difficult to extend to the case of biaxial hysteretic vibration. These reasons
have fostered the development of some Markovian hysteretic models which use
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smoother functions so that the resulting loops have a more realistic and ele-
gant appearance. Such models are known as smooth endochronic models. They
essentially are developments of an initial proposal by Bouc (1967).

In the present research smooth endocronic models have been preferred over
piece-wise ones for several reasons. In first lieu, the estimations of the response
statistics of the latter by equivalent linearization are by far more inaccurate
when compared with Monte Carlo simulations than those of the former (Roberts
and Spanos 1990). Also, when dealing with piece-wise models use must be made
of functions of a lower order of continuity which pose numerical or mathematical
difficulties when treated in a probabilistic frame. This is specially true for higher
order methods such as those examined in chapter 7. Finally, the computation
of the linearization matrices for piece-wise systems is more involved since they
are not given by closed expressions as in the case of smooth models. Indeed,
this is a desirable feature in nonstationary analyses of large structures.

4.2.1 Non degrading model

Instead of equation (4.4), the equation of the hysteretic component is in
this case (Wen 1976)

2= Ai—Blalle] 2 —yile” (4.6)

where A, n, 8 and -y are parameters that define the size and shape of the hystere-
sis loops. More specifically A is related with the initial stiffness of the system
as well as with the maximum level of the restoring force; n controls the smooth-
ness of the transition from elastic to plastic behaviour in the (z,z) space, in
such a way that the smaller n, the smoother the transition. A bilinear model
corresponds to n — oo and for modelling a perfectly elasto-plastic transition
the condition a = 0 must be added. On the other hand [ represents the energy
dissipation level, tending to zero for little dissipation. In fact, a null value of 3
corresponds to elastic behaviour. Finally v defines the softening or hardening
of the system together with /3; the first condition corresponds to S+ > 0 while
the second to 8+ v < 0. For the analyses that follow it is important to ob-
serve that in softening systems there is however a tendency to hardening when
v < 0,|y] < 8. Figure 4.1 illustrate the softening loops corresponding to cases
in which the hardening tendency is absent (8/y = 1) and present (/v = —2)
for a system subject to a negatively damped harmonic force.

The softening case will be given more attention in this work because it is
more usually found in earthquake engineering. The smooth endochronic model
has mainly been applied to softening materials, i. e. those exhibiting saturation
of the restoring force when deformation increases. An expression for the maxi-
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mum value reached by the auxiliary variable z, z,, can be derived by setting to

zero the derivative of z with respect to :
dz |8, m-t n
e LR @7)
For positive & and z the solution is
7
A

2. = | =—— 4.8
.= (54) (48)

which gives the following expression for the maximum achievable restoring force

(4.9)

S

(or strength):
=)

h, = (1 —a)k
W= (- k{5
On the other hand, the initial stiffness k, of the system can be obtained by

derivation, i.e.
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k, = (gﬁ)ﬂ = ak+ (1 - a)k (%)0 (4.10)

or
ky = ak+ (1 - a)kA (4.11)

Aditionally, the post-yielding stiffness for softening systems is

b, = (g—i) — ok +(1-a)k (%Z) (4.12)

N u

or
k. = ok (4.13)

The above equations allow the identification of the model parameters on the
basis of experimental results (Sues et al. 1988).

The original derivation of this model is due to Bouc (1967). It did not
included parameter n which was added by Wen (1976) for enhancing the ap-
plicability of the model to some common materials. Further refinements of
the model have been proposed. Worth mentioning are those due to Baber
and Wen (1981), who extended the model to include energy-based stiffness and
strength degradation; the proposals by Noori et al. (1991) and Foliente et al.
(1995), who included new terms to model also the phenomenon of pinching
observed in reinforced concrete and masonry structures; the extension to the
biaxial case proposed by Park et al. (1986) and Casciati and Faravelli (1988),
which greatly contributed to the analysis of deterministic or random vibrations
of spatial frames or base isolation devices under bidirectional excitations; and
the proposals for modelling a hysteretic continuum and the formulation of the
corresponding finite element strategy for its numerical analysis (Chang 1985;
Casciati 1989; Simulescu ef al. 1989). Some applications of different versions of
the model in a random vibration context have been mentioned in the preceding
chapter.

On the other hand, the model has been examined from the point of view
of plasticity theory by several authors. Casciati and Faravelli (1991) have dis-
closed the connections between this model and the endochronic theory of plas-
ticity whose main characteristic is that it makes no use of the concept of yield
surface (Khan and Huang 1995). Also, the authors have pointed out the major
drawback of the smooth model, which consists in the local violations of the
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so-called Drucker stability postulate according to which the difference between
the net work performed by external forces during the cycle of adding and re-
moving stress is nonnegative (Shames and Cozzarelli 1992). The violation of
this principle has been observed in the smooth endochronic model when the
restoring force does not change sign. The main consequence of this violation
from the external point of view is the appearance of some negative energy cy-
cles which entails the introduction of an artificial plastic drift (Thyagarajan and
Iwan 1990} (see figure 4.2).

Force

o2 015 01 005 0. 005 01 0I5
Displacement

Figure 4.2 Artificial drift of the smooth endochronic system

An improved version of the model that attempts to reduce the effect of this
drawback has been proposed by Casciati (1987a) in the form

. . . n—1 . . &—1 . K
z = Ai — Blg]|2] v —ila] = (elillz] +edlz]) (4.14)

where € and s arve parameters. It has been argued, however, that for from
the point of view of random vibrations the additional drift has minor relevance
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(Wen 1991) and that the comparison of both models under stationary random
vibration shows no significant discrepancies (Casciati and Faravelli 1991).

4.2.2 Degrading model

The above model has been extended to the case of systems exhibiting stiff-
ness or strength degradation, which have been related with the dissipated energy
or with the maximum deformation reached in previous states. The former type
has been included into the endochronic model by Baber and Wen (1979) while
an approach to the incorporate the latter was proposed by Sues et al (1988). In
the present paragraph we will consider only the first case. An infinitesimal of
the dissipated energy is

de = (1 — @)kzdz = (1 — a)kzt di (4.15)
which means that its evolution is governed by the following differential equation:
g = (1 - a)kzz (4.16)

According to equations 4.8 and 4.11 the strength of the system is controlled
by A,n, and + while the contribution of the hysteretic component z to the
initial stiffness is determined by A. If n is mantained constant along the de-
formation history (a reasonable assumption, since the hysteretic loops tend to
exhibit a similar transition from elastic to plastic states, the level of degradation
notwithstanding), the strength reduction will be controlled only by A, G and .
In addition, if the energy-dependent variation of £ and «y is collected into a
single factor v(g), the value of the latter will have the meaning of a strength
reduction only, while a factor n(e) affecting A, B and ~ will produce strength as
well as stiffness reduction. According to this reasoning, Baber and Wen (1981)
proposed the following energy-based degrading model:

A©)é — v(e)Blallz" — vilal")
()

If it is assumed that hysteretic energy changes slowly with time (an assumption
valid even in case of strong earthquakes), it can additionally be supposed that
functions A(g),v(€) and n(e) vary also slowly in a monotonic manner, which
suggests the adoption of the following first-order approximation of the evolution
of the energy-dependent parameters:

2=

(4.17)

Ae) mpy = Ay — byp, (4.18a)
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V(E) =~ H, = VO + 6:/“’5 (4’18b)

"7(5) =~ Ju’n = nﬂ + 517’1’8 (4186)

In the above equation i, i, 4, and p, are the mean values of the respective
variables and J,, 6, and 6, are parameters. As a rule v, and 7, are set equal to
one.

4.3 Gaussian stochastic linearization

Having outlined the basic formulation of the method of stochastic equivalent
linearization and its methods of solution in the preceding chapter we will devote
the present paragraph to derive the expressions of the linearization coeflicients
of the Bouc-Wen hysteretic model.

Let us consider the case of a single degree of freedom structure whose restor-
ing force is of the Bouc - Wen endochronic type. The results of the linearization
can be readily used for larger structures such as buildings modelled as shear
beams or frames with plastic hinges at the ends of the members (Casciati and
Faravelli 1991). The equation of motion of such a system is

mX +cX + akX + (1 — a)kZ = P(t) (4.19)

where the nonlinear random variable Z is the solution of the following differen-
tial equation

7= hX,7) = AX - gX|2" 2 - X|2[" (4.20)
An stochastically equivalent equation will be looked for in the form
7 =s8,X+c,X+k2Z (4.21)

where s, ¢, and k, are coefficients which are to be obtained by minimizing the
expected value of the square of the error

e = h(X,2) = (5, X + . X + k,X) (4.22)

By proceeding in a similar fashion as it was done in the general formulation
of the method and admitting the hypothesis of (marginal and joint) Gaussian
behavior of all variables, the coefficients, making use of equation (3.44) are given
by
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A -
¢, =B Ol _pla- ﬁamz 7z — 2" 4.93b

2] -2 R D
k=8| 03] = Bl-pltl 12T 2 % g ] o

Using the expressions of the one- and two-dimensional zero mean Gaussian
density functions

1 T
L) = expl———5 4.24a
(PX( ) 2mo ., p( 202.) ( )
X X
2 . 2
, 1 1 i 2pp %%z
¢, (& 2) = - GXD(—il—“*“g—{—z"” axi 4”?})
2mo o 1P, ( _p)‘(z) Ty x%z 9y

(4.24b)
and carrying out the derivatives and expectations, the following result is arrived
at (Casciati and Faravelli 1991):

s, =0 (4.25a)
¢, = A — fF, — vF, (4.250)
k, = —BF, —F, (4.25¢)

where the coefficients F;, ¢ = 1,2, 3,4 are given by

on n+ 2\ _n/2
F, = 7;%1‘( ; )2 (4.260)
. O'Z n+ 1y n/2
Fy, = ﬁr( 5 )2 (4.26b)
n—1
no o n+ 2y /2 ngl
Fy= —X2 r( 2 )2 (20 - ,0 S Py le) (4.26¢)
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n—1
nPYZUAUZ n+4 1y n/2
= 2 4.26d
with
[ n
I =2 j sin” 0d6 (4.27)
)
£ = ta,n—l( ) (4.28)
Xz

Tt must be noted that no closed expressions such as these can be obtained
for piece-wise hysteretic models, in whose case the linearization coefficients are
tipically expressed through integrals that should be solved at each time step in
nonstationary analyses (Roberts and Spanos 1990}). In the more general case of
the degrading uniaxial model proposed by Baber and Wen (1979), the equation
of the dynamics of the hysteretic component reads

. . n—1 . n
AX —v(B|X||Z]” Z—~X]2])
n

Z =

(4.29)

and the linearization coefficients, calculated according to the Gaussian assump-
tion can be obtained as

ce—E[l[ginkA—g—;( px11ZI"" 2 + X120 - (e 2" 2
. O AX —u(BX|\2]" 7 Z + X\ 2"
- 2 ! | aa

kmE[i[g’;X——(mxum 'Z44X12") - B2 )

ay [AX — V(ﬁIXHZI "Z+ 7Xizln]] (4.300)

X5 (IZi =37 7
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These expressions are more difficult to solve in explicit form than those of the
nondegrading case due to the presence of the expectations of partial derivatives
of the parameters that control the degradation, i.e., A,¥ y 7. Nevertheless, if
it is assumed that these parameters exhibit a low variation with time (which
corresponds to the physical fact that degradation takes place in a slow manner
and is represented by little values of d,,0, and 4,) their mean values p,,p,
Y W, can be used in each time step of the calculation instead of their actual
values. In that case the non linear component of the hysteretic system evolves
according to the following approximate equation

. . n—1 L] k)
, X - m (BXIZ T 2~ X1

Z (4.31)
Foy
whose linearization leads to
— I F.
Ce:I‘LA ul/(ﬁ 1+(Y 2) (4.32‘2‘)
o
ke — _lu'v(ﬁF:i +PYF4) (4.32b)

H

where functions F,, ¢ = 1,2,3,4 are given by equations (4.26) while the mean
values of the degrading parameters can be calculated as functions of the mean
dissipated energy by equations (4.18).

4.4 Error sources

The stochastic linearization of the hysteretic system exposed above hinges
upon the assumption of Gaussian behaviour of all the variables of the model.
It has been pointed out that such hypothesis leads in some cases to reasonably
good estimations of the second order response when compared with the results
of Monte Carlo simulation, which can be considered as the best approximation
to the true probabilistic measure of the response. Such is the case, for example,
of the calculation of stationary response of structures subject to filtered or
unfiltered white noise (Baber and Wen 1981; Roberts and Spanos 1990). In
other instances, however, large discrepancies can be found between the Monte
Carlo results and those of the conventional method based on the assumption of
Gaussianity (Pradlwarter and Schuéller 1991; Park 1992). The errors concern
mainly the nonstationary estimation of displacement statistics which is one of
the most important variables in practical design. The standard deviation of
velocities and hysteretic forces, as well as the covariances are reasonably well
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estimated. The following is a description of the error sources in the estimation
of displacement statistics based on the published literature on the subject as
well as on the author’s own experience.
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Tigure 4.3 Density function of displacement response

4.4.1 Probability density assumption

The most evident cause of error lies in the assumption of Gaussianity of
all the variables as such. Figures 4.3 to 4.5 ilustrate the probability density
functions of the displacement, velocity and restoring force of a strongly nonlin-
ear uniaxial hysteretic system subject to white noise calculated by Monte Carlo
simulation (10,000 samples) together with the corresponding GGaussian densities
depicted with the information obtained by stochastic linearization with Gaus-
sian assumption. It can be seen that while Gaussianity is reasonably admissible
for displacement and velocity, as far as only second order information is con-
cerned, it is clearly inadequate for the hysteretic component Z. In fact, when
vibrating in the nonlinear range the hysteretic component of a softening system
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equals its maximum z, for large periods of time with the consequence that the
density function presents a concentration at its maximum, as shown in figure
4.5.

4.4.2 Drift motion

A second — and perhaps, the most important — cause of errors lies in the
tendency of some hysteretic systems to drift, that is, to exhibit an erratic trend
to vibrate temporaly in one of the two sides of the displacement axis so that
the hysteretic loops have the appearance shown in figure 4.6. Therefore, drift
consitutes an underlying low-frequency motion that can be thought of as a
Brownian motion of the kind of that illustrated by figure 1.3 (Iwan and Pa-
parizos 1988). For random vibration analyses this trend implies that local non
zero mean vibration occurs and, consequently, the power spectral density of
the displacement response exhibits a large peak at zero frequency (Iwan and
Paparizos 1988; Donley and Spanos 1991). This makes highly inaccurate the
reliability assessment of the structure in the stationary state, which is based on
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the power spectrum of the response. For piece-wise or smooth hysteretic models
this phenomenon is the stronger, the lower the value of o, i.e., the nearer the
system is to the perfectly elasto-plastic case (Park 1992). The typical shape
of the displacement response of a hysteretic system with low and high o when
subject to unmodulated excitation are those illustrated by figure 4.7. It can be
seen that while the latter achieves rapidly a stationary state, the displacement
of the former increases monotonically. However, the size of the errors of the
Gaussian method brought about by drift are tightly linked to the excitation
spectrum as explained in the following.

4.4.3 Excitation model

The response estimates derived from the assumption of Gaussianity are also
greatly influenced by the type of power spectrum and its associated evolutionary
features. In fact, for purely white noise low frequency waves will tend to produce
drift irrespective of the hardening ratio o, whose slope, at least, is reasonably
well detected by the Gaussian method. In contrast, when low-cut filters are
introduced {as in the Clough-Penzien or Iwan-Paparizos seismic models) the
Gaussian method becomes unable to detect the system’s drift, and consequently
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Displacement

Figure 4.6 Drift of a system with null yield ratio

the errors in the displacement estimation grow as far as the excitation remains
in stationary state. This is illustrated by comparing figures 4.8 and 4.9 which
correspond respectively to an hysteretic system with drift-enforcing, null value
of a subject to white noise and Clough-Penzien excitations. It can be seen
that under purely white excitation the Gaussian method gives qualitatively
better results than in the Clough-Penzien case, at which the method does not
follow the displacement trajectory anymore. When a modulating function is
introduced in connection to the Clough-Penzien filter, as a realistic model of
geismic action, the errors can be as large as 300 percent, as figure 4.10 shows.
Notice that in cases like this the Gaussian method not only fails in capturing
the peak value but also in assessing the correct shape of the response. As a
matter of fact, since the Gaussian method is unable to trace the drift errance in
such cases, it becomes entirely governed by the modulating function, as made
evident by the vivid resemblance of the shape of the response to that of the
modulating function shown in figure 2.4 (long duration case) which was used
in this analysis. Note that for many materials, such as reinforced concrete,
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steel (Sues et al. 1988) or soil (Pires et al. 1983) very low values of « have
been proposed, so that some amount of drift can be expected in their response.
Inasmuch as the reliability assessment is based on the whole evolution of the
level crossing rate (see chapter 3), the importance of estimating correctly the
whole evolution of the response moments needs not to be emphasized.

The reason for such a different sensitivity of the method with respect to
drift under white noise or Clough-Penzien excitations lies in the search of an
equivalent linear system as such. In fact, for a linearized Bouc-Wen SDOF
system having the dynamics

Z + 20t + aw' T+ (1—q) Bz=a (4.33a)

z=ca+k,z (4.33b)

where a(t) is a white noise of acceleration units, the squared modulus of the
transfer function of the displacement is
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. W2 1
|Hy(w) | = N - Z
(—~w2 _]_O@z + 1—a)@ we ) I (25@“) _(l—a)@ wceke)
w4k w4k,
(4.34)
Therefore, the power spectral density of the displacement is given by
W, 2
Gy (w) = |HX (iw)] Gy (4.35)
It can be seen that
G
Gylw) — 07 (4.36)
o'W

as w — 0. This explains why the linearized system is able to detect the low-
frequency drift motion to some extent. On the other hand, when a(t) is modelled
according to the Clough-Penzien spectrum, we have

Gy w) = |H, (@)1 ()] Gy (4.37)

where the modulus of the transfer function of the Clough-Penzien filter is given
by equation (2.8):

* w4+41/2w2w2
cP, 2 w p « Wo
H (W) = —5——x3 7 3 2 X 2 3\2 7 92
(w, —w)" +4y wiw (wg—w) +4v, wow

(4.38)

Tt can be observed that unlike the white noise case the displacement power spec-
trum will always tend to zero along with the frequency. This has the important
consequence that when subject to the Clough-Penzien excitation the linearized
system will always filter away the low frequency responses, the values of the
model or excitation parameters notwithstanding. Together with the increasing
importance of drift as o — 0, this points out that, in practical cases, the highest
errors of the method of stochastic linearization occur for excitation models with
low-cut filters and null post-yield ratio, as that of figure 4.10.

Since the above has been demonstrated to be a drawback of linearization as
such, a clear way of overcoming it would be the application of equivalent non-
linearization techniques (Lin and Cai 1995). However, in such case the practical
appealing of the linearization techniques will be lost and, generally speaking,
equivalent non-linearization is not practical for MDOF systems. To cope with
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cases like this the only way for keeping in use linearization techniques is the
employment of non Gaussian densities. In fact, since under Gaussian inputs
linear sytems behave as Gaussian, the modification of this distribution for the
response can be managed to compensate in some way for the drawbacks of the
linearization as such. As will be shown in the next chapter, the proposed non
GGaussian method accomplish this task reasonably well.

15,

St. deviation

4 | e Monte Carlo -
—— Gaussian

0. ' 5. r 10. ' 15. 20.
Time, s

Figure 4.8 Gaussian response estimation under white noise excitation for « =0

4.4.4 Nonlinearity degree of the response

A third cause of errors is the level of nonlinearity of the response (Roberts
and Spanos 1990). In fact, for very low or very large excitation levels (as
measured by the power spectral density function of the input noise) the response
of the hysteretic system is clearly narrow band, because the structure responses
either in the linear or in the nonlinear ranges. When subject to a middle strenght
excitation the response shows a larger width, with the consequence that the
any assessment on the probability density of the displacement be it Gaussian or
non-Gaussian is more uncertain. By stationary analyses that scan the physically
relevant intensity range of white excitation it has been demonstrated, however,
that this type of error affects mainly the response estimations of piece-wise
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rather than those of smooth hysteretic models, for which these errors seem
to be of minor importance (Baber and Wen 1981; Roberts and Spanos 1990).
Nevertheless, when nonstationarity is considered, this kind of errors reappear
and, generally speaking, they are the larger, the higher the nonlinearity degree
of the response. This issue will be illustrated in more detail by the numerical
analyses of the next chapter.

For explaining the diverse accuracy of both stationary and nonstationary
calculations it must be taken into account that (a}, in the latter case the re-
sponse is always wide-band and (b}, their numerical procedures are rather dif-
ferent, the former proceeding by time-independent iteration and the latter by
solving a system of differential equations in which the response at any instant
depends on the whole estimated evolution. Accordingly, one could regard the
nonstationary problem as one more dependent on the assumption of Gaussian-
ity than the stationary one. Since Gaussianity means linearity in this context,
due to the fact that the response of a linear system to Gaussian input is always
Gaussian, it is clear that when the structural model in nonstationary calcula-
tion begins to depart from linearity it also departs from Gaussianity and thus
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Figure 4.10 Gaussian response with modulated Clough-Penzien excitation {fa=0)

the accuracy of future estimations under such hypothesis will depend on the
degree of nonlinearity of the response.

4.4.5 Loop shape

Last but not least, the shape of the hysteretic loops, as defined by the model
parameters has an important influence on the errors of the Gaussian method.
As was said before softening behaviour takes place whenever S++v > 0, but there
is nonetheless an intrinsic tendency to hardening if v < 0,}y| < § (see figure
4.1). Despite the overall response of the system seems not to be not sertously
affected by such details from a deterministic point of view, it is intuitively clear
that the loop shape imposes a different probability distribution for the variable
Z. Tn the numerical analyses discussed at the next chapter it will be shown
that, in fact, the hardening tendency has an important influence on the errors
brought about by the Gaussian assumption. In particular, in the present re-
search it has been found that the underestimation of the displacement response
when using such an assumption is lower is systems with hardening tendency
than in the opposite case under white excitation. It is important to note that
the confussion regarding the accuracy of the conventional Gaussian method of
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stochastic linearization when applied to hysteretic systems is partly due to the
fact that the influence of the loop shape has been overlooked. Softening models
with hardening tendency has been proposed for reinforced concrete (Sues et
al. 1988), lead-rubber isolation devices (Constantinou et al. 1985) and bridge
rubber bearings (Li ef al., 1994). Purely softening systems, i.e. those without
hardening tendency have been proposed for steel (Sues et al. 1988), clay and
sand {Pires et al. 1983) and lead-rubber bearings (Yang et al. 1992a, b).

The above error sources work together in producing a single discrepancy
between Monte Carlo and analytical results derived from the Gaussian assump-
tion in each specific case, so that the determination of their proportions, with
the aim of correcting the Gaussian results by empirical factors, would require
an extensive and tedious parametric study before applying them. A more direct
approach is presented in the next chapter.







Chapter 5

Non-Gaussian linearization of hysteretic
structures

5.1 Introduction

The objective of this chapter is to introduce a non-Gaussian approach aimed
at obtaining better response estimations than those given by the Gaussian one
without significant increase of the light computational effort required by the
latter. To such purpose the proposed method makes use of mixed Gauss-Dirac
density functions, in which the Dirac pulses play the role of weigths that modify
the linearization coeflicients obtained at each step in dependence of the current
degree of response nonlinearity. The derivation of the method as well as the
numerical study shows that it not only is superior over the conventional Gaus-
sian approach but also over some proposals which are either not so accurate or
are much more involved from the computational viewpoint.

5.2 Proposed non-Gaussian linearization approach

It has been demonstrated that if the true multidimensional density func-
tion of the vectorial response @ were used in the linearization procedure (equa-
tion 3.36) the estimated responses by stochastic linearization would be exact
(Roberts and Spanos 1990). Since such an information is not available before-
hand and, if it were, the determination of second order responses by stochastic
linearization would be superfluous, it is necessary to devise methods for estimat-
ing the joint density function as closer to the true one as possible. Attempts in
this direction have been undertaken by some researchers. For instance, Pradl-
warter and Schuéller (1991) have proposed the use of a nonlinear transformation
of the density of the hysteretic component, together with the application of the
Nataf method (Nataf 1963) to estimate the joint density functions required to
calculate the linearization coefficients. Since the target density of the hysteretic
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component is not known in advance the realization of some Monte Carlo simu-
lations is proposed to fill this gap. In case of real structural systems the latter
device will, of course, largely increase the computational effort. Iowever, when
the nonlinear trasformation is not applied the method still produces important
errors in the estimation of displacements (Pradlwarter and Schuéller 1992). On
the other hand Kimura et al. (1994) proposed the use of a truncated Gaussian
density combined with Dirac pulses to simulate the effect of the concentration
at the maximum values of the hysteretic component as mentioned before. The
method proposed here is a variant of this approach. Instead of truncating the
Gaussian density, it is combined with the Dirac pulses in its entire form both
in the marginal and joint situations. The advantages derived from such an
approach over the last mentioned proposal will be explicited in the folllowing
paragraph. The basics of the algorithm as well as the preliminary experiences
in its use appeared in Hurtado and Barbat {(1996a).

Before entering in a detailed exposition of the proposed approach mention
must be done of a different way of upgrading the statistics deriving from the
Gaussian assumption, which consists in the use of empirical factors and equa-
tions. An important method of this kind is due to Park (1992), who proposed
the use of some coefficients obtained through intensive Monte Carlo simulations.
A similar approach was adopted by Yeh (1989) to the specific case of hysteretic
spatial buildings modelled as shear beams. The accuracy of Park’s method will
ocassionally be tested in the numerical analyses.

5.2.1 Non-Gaussian densities

As mentioned in the preceding, the concentration of values of the hysteretic
restoring force in the vicinity of its maximum z, suggests the use of a mixed
density of the type

fz(2) = (1 — 2p)e,(2) + pd(z — 2,) + pd(z + 2,) (5.1)

where p is a weighting coefficient. Note that the Dirac pulses play the role of
a correcting mass intended to modify the second statistical moment, which is
equivalent to area’s moment of inertia. Besides, the value of the coeflicient p is
selected in such a way that it give the best approximation to the Monte Carlo
results in standard cases.

The calculation of the linearization matrices requires the knowledge of joint
density functions of the pairs (X,7) and (X, Z). Denoting by V either of X or
X, they are succintly expressed as

foa(0,2) = (1= 2p)py,(v,2) +pd(z - Z )y () +pé(z + 2, )0, (v)  (5.2)
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in such a way that the integration with respect to « or & will give the marginal
density of the hysteretic component (equation 5.1). On the other hand, tak-
ing into account the aforesaid about the first error source of the conventional
method, variables X and X can be assumed to remain jointly Gaussian, Note
that for separating the contributions of the Gaussian and Dirac parts a dummy
splitting of their density functions is needed, i.e.

fV (v) = (1 - QP)‘Pv(U) + 210991/('”) (5‘30’)

fX}'{ (:E,z) = (1 - 2p)(PXX (3:,:[;) + ZP(PXX (33:33) (5.3b)

Note also that the linearity of the above assumed densities and the use of the
entire Gaussian densities allow making use of the Gaussian coeflicients, whose
closed-form expressions are an important prerogative of this model in most of
its versions.

5.2.2 Consistency requirements

It is important ot observe that p is constrained by an upper bound. In fact,
any density function must satisfy the so-called Pearson criterion (Tikhonov
1982; Johnson et al. 1994),

2
R | (5.4)
lu'2 ”2

where p, is the central moment of order ¢. Notice that for symmetric densities

tty = 0 and for the Gaussian distribution in particular p, = 3;1,2. Taking mo-
ments with the proposed non-Gaussian density function and substituting these
expressions into the preceding equation yields the following upper bound to the
weighting coeflicient:

p= 1 (5.5)

Note that p — 0 for low levels of response (as defined by o, — 0), while
p — 1/3 for intense responses (6, — o0o). Also note that there is no lower
bound. This means that p can be a bounded positive number or a negative one.
In fact, negative p values have been found to be more adequate for improving the
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accuracy of the linearization method applied to the hysteretic models studied
herein.

Also, inasmuch as the Gaussian function is completely determined by mo-
ments of the first two orders, additional consistency requirements must be sat-
isfied by the latter. In particular, using equation (5.33) the variance of the
hysteretic variable Z is

2

2 2
E[Z]|=(1-2p)o, +2p2z, (5.6)
so that the linearization coefficients must be calculated using

2 E[ZZ] - szi

o, = T—2p) (5.7a)
Similarly, the following relationships are obtained:
E[XZ]
Oxz = T —2p) (5.7b)
o, =E[X'] (5.7¢)
0, = BXX] (5.7d)

where V stands for X or X and the expectations are obtained from the solution
of the covariance response. Note that for satysfying these consistency require-
ments when using truncated Gaussian densities, as in the approach by Kimura
et al. (1994), a system of nonlinear equations must be solved in order to find
these covariances at each time step.

5.2.3 Linearization coefficients

Substituting equations (5.1) to (5.3} into (3.36) yields the folowing vector
of linearization coefficients:

H;Tm[se, oy ko] = (1—2p} [s kg]—I—Qp (545 €45 kd]ﬂ—l (5.8)

g! Cg)
Here the subindexes ’g’ and 'd’ denote Gaussian and Dirac parts, respectively,
and in the general MDOF case the 3 x 3 matrix IT is built up with the elements
of the covariance response X' corresponding to the degree of freedom at hand,
i.e.




Proposed non-Gaussian linearization approach 97

X' XX Xz
OI=E|XXx X XZ (5.9)
ZX ZX Z

The calculation of the Dirac linearization coeflicients yields

83=0, (A~ fyz:) (5.10a)

ey = O';(A - ’yz:) (5.100)
2

kd = —O’XﬁZ:_H % (5.106)

while those corresponding to the Gaussian part are given by equation (4.25); in
both cases use must be made of the consistency requirements (5.7). Note that
the new additional coefficients are given in closed form, while their evaluation
in the approach by Kimura et al. (1994) requires the calculation of several
double integrals at each step. Notice also that the method is readily applicable
to degrading systems under the condition that the values

A=ta (5.11a)
o

f=pl (5.11b)
p”?

5=yl (5.11¢)
oy

be used instead of A, 8 and y, respectively.

5.2.4 Weighting coeflicient

The application of the present approach requires the assignation of a weight-
ing coefficient p for the Dirac and Gaussian parts. Since the response in the
elastic range is Gaussian, the coefficient could be put in relationship with the
portion of the area of the Gaussian density ¢,{#) lying beyond the limiting
value z,, due to the fact that this portion is an indirect measure of the error
in modelling the nonlinearity of the stochastic response using Gaussian density.
Several alternatives for the coefficient p were tested, namely, those based on the
dissipated energy ¢ as well as on the excess of probability mass,
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2y
p=r[ p,(a)dz=19,(~2) (5.12)
=00
variance,
2
p= sz z p,(z)dz = A (1.5, —“7) (5.13)
o, Iz VT 207,
kurtosis,

2

__f 2 0,2 dz_vrf:(% Z) (5.14)

and averages between them. In the preceding equations r is constant whose
value is determined on empirical basis and I'°(a,z} is the complementary in-
complete Gamma function,

Fc(a,a:):/ " le“ydy (5.15)

After many numerical analyses performed with this algorithm, varying load and
model parameters, it was found that the excess-mass criterion were the most
stable in the sense that its associated coefficient r was the least influenced by the
several conditions imposed on the random vibration of the hysteretic system,
such as response level, type of excitation, nonstationarity, etc. This coeflicient
will be discussed in more detail in the numerical study that follows.

5.3 Numerical study

In order to demonstrate the adequacy of the proposed approach to give good
estimates of the stochastic response several numerical analyses were performed
on a family of Bouc - Wen oscillators subject to different types of excitations.
The parameters of the system and loads were succesively varied in order to gain
insight into the factors most influential on the errors of the conventional method
and the ability of the present approach to improve the estimations.

The structural mass was set equal to unity and no viscous damping was
considered. Two very different types of excitations were used, namely white
noise base acceleration with one-sided, constant power spectral density G, =
25, = 288 em?/s3, and the Clough - Penzien double filter described in chapter
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2. The parameters w, and v selected to the study correspond to the interme-
diate soil condition, as given by Table 2.2. The parameters of the low-cut filter
were set equal to w, = 2rad/s and »; = 0.65 for all cases. Both unmodulated
and modulated excitations were considered. The modulating function used was
that proposed by Shinozuka and Sato (1967) (equation 2.19) with parameters
a = 0.085 and b = 0.17, which correspond to an earthquake with long effective
duration.

For modeling several degrees of nonlinear behavior it was decided to keep
constant the excitation intensity and to vary instead the value of the restoring
force h,. To do this n was set equal to unity as well as A, in which case
parameter k& will represent the initial stiffness of the system, while the sum
B + v was varied according to the intended degree of nonlinearity of system’s
response in the form

1— a)Rk
By = L C)BE (5.16)
1004/S,,

Here R is a prescribed measure of the degree of energy dissipation that plays a
similar role as the elastic spectrum reducing factors in deterministic earthqualke-
resistant design. Values of R equal to 2.5 up to 10 were chosen to reflect situa-
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tions from low to severe nonlinearity of the response. For analyzing the influence
of system’s natural frequency, the initial stiffness k£ was calculated so as to give
the structure initial periods in the range T = 0.25 to 2.5 s. Finally, the study
was performed on softening systems without and with hardening tendency. The
ratios 0/ = 1 and /v = —2, 7 < 0 were chosen as representative of such cases.

It is evident that the above experimental design samples soberly and ade-
quately the variety of situations on which the Bouc - Wen model is used. The
following are the main conclusions drawn from the multiple analyses performed
on the two type of cases studied.

Density

Q. 5, 10. ES5.
Hysteretic function

'
-

-10.

Figure 5.4 Density functions of Z

5.3.1 Softening systems with no hardening tendency

The most common situation found in the bibliographic research about the
use of the Bouc - Wen hysteretic model corresponds to S+ > 0,8/y=1,1n
which the hardening tendency is completely absent.

The influence of the structural period on the magnitude of errors of the con-
ventional and proposed approaches will be discussed first. Figure 5.1 illustrates
the response of a middle period system with K = 10 and « = 0.0 to white noise.
These parameters have been chosen so as to produce the highest possible error
resulting from the Gaussian assumption when the system is subject to white
noise, inasmuch as the error is the higher, the stronger the nonlinear behaviour
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and the lower the value of c. A value of r = —0.5 was used. It can be observed
that the proposed approach yields a better estimation The results correspond-
ing to the standard deviation of velocity X and hysteretic function Z of the
middle period system are depicted in figures 5.2 and 5.3. Even though both
are satisfactorily estimated by the Gaussian approach, the results obtained by
the proposed method are somewhat closer to the Monte Carlo curves. In the
sequel only the results corresponding to displacement’s standard deviation will
be discussed.

Figure 5.4 shows a comparison between the density functions of Z of this
example as postulated by conventional and proposed approaches and as calcu-
lated by Monte Carlo (50,000 samples). It can be seen that the introduction
of the Dirac pulses has no other effect than to serve as a balancing mass for
second order calculations, and that they will never be useful as a means of
approximating the true density when combined with the Gaussian. Also, the
figure justifies the somewhat surprising option for negative p values mentioned
before, as it is evident that the effect is to flat the peak and raise the tails of
the Gaussian function just as much as needed for second order agreement with
the empirical density function.
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The results corresponding to systems with low and high periods (figures 5.5
and 5.6) indicate that the correction is achieved independently of the natural
frequency. This feature of the proposed approach was observed in many addi-
tional analyses as well as the independency of coeflicient r on the post-yielding
ratio o, which is one of the main causes of errors stemming from the assump-
tion of Gaussianity as explicited above. This is illustrated by figure 5.7, which
corresponds to the same system as that of figure 5.1 with a large post-yielding
stiffness (o = 0.15).

For seismic analyses purposes it has been observed that the use of adequate
spectrum models, i.e. those characterized by zero energy at null frequency,
makes the Gaussian method unable to detect the drift of the system described
above. The results displayed in figures 5.8 and 5.9 correspond to systems sub-
ject to the Clough-Penzien spectrum with @ = 0 and a = 0.15, respectively.
A period T = 0.4 was used in both cases in order to subject the system to a
nearly-to-resonance state. The assessment made in chapter 4 about the effect
of low-cut filters on the Gaussian method can be verified. Also, the superiority
of the proposed approach in this important respect is evident, as it is able to
detect the drift trend, due to the fact that the alteration of Gaussianism is an in-
direct way of overcoming the effects of the supression of low frequency response
by the transfer function of the equivalent linear system when excited by the
Clough-Penzien spectrum, as shown in the previous chapter. However, it can
be observed that the start of the correcting effect of the Dirac pulses takes place
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later than the somewhat abrupt switching of the drift errance. As a result the
drift path of the Monte Carlo and proposed estimations are different in shape.
Nevertheless, the delay is much less pronounced when smooth amplitude mod-
ulating functions are used, as is common practice in seismic random vibration
analysis. This is illustrated by figure 5.10, which adds to the results depicted in
figure 4.10 the estimation afforded by the proposed method. It can be observed
that the error of the proposed approach is negligible for practical purposes. On
the other hand, while the Gaussian estimation mimics the modulating function
for the reasons explained above, the standard deviation evolution calculated by
the proposed technique is rather close to the right one.

The figure also displays the results obtained by the correction
method proposed by Park (1992). Unlike the present approach, which com-
bines new analytical linearization coefficients with the empiricism required for
finding an adequate r value, Park’s method attempts to upgrade the results
given by the conventional method on purely empirical basis. The method con-
siders two types of errors of the Gaussian approach, namely, what the author
calls stationary error, i.e. the type of systematic, constant error of the conven-
tional approach appearing for example in figure 5.9 which can be attributed to
the assumption of Gaussian probability densities, and the second, nonstation-
ary error, which corresponds to drift. It must be observed that the coefficients
have been empirically derived for the rather specific situation of (a), a seismic
excitation modeled by the Iwan-Paparizos spectrum, which in the nomenclature
of chapter 2 corresponds to the acceleration

M =20, (5.17)

and (b), a prescribed amplitude modulating function which acts on a hysteretic
system with initial frequency equal to that corresponding to the peak of the
spectrum. As a result, it is expected that the empirical method give erroneous
estimations in a case different from those used for its calibration, such as that
of figure 5.10. In fact, the peak of the standard deviation of the displacement is
largely overestimated. Moreover, insofar as Park’s method attempts to modify
a posteriori the results given by the Gaussian method by a multiplying factor,
the erroneous shape of the latter is mantained.

As was said before, the errors of the Gaussian method diminish when the
post-yield ratio o increases due to the implied reduction of drift. This is illus-
trated by figure 5.11, which corresponds to a system with a natural frequency
equal to that of the hard soil conditions of Table 2.3 and & = 0.05. The esti-
mation given by Park’s method in this case are also far from the Monte Carlo
results, while the agreement of the latter with the proposed approach is again
excellent.
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The cases analysed so far correspond to large incursions in the nonlinear
range, as reflected by the factor R = 10. For lower degrees of nonlinear be-
haviour less concentration of Z values near its maximum and hence a different
probability density can be expected. As a result, the effectivity of the Dirac
pulses in that case could decrease when using the same r as before so that it
must be increased in absolute terms. However, as the elastic response level is
approached, the error of the Gaussian estimations diminish drastically, an thus
one could expect that the estimations given by both methods approach to each
other and to the Monte Carlo results at those levels. These intuitive reflections
are confirmed by figures 5.12 and 5.13, which correspond to R =5 and R = 2.5
respectively. A period T equal to 1.5 s was used in both cases. It is noted that
in the first case the same r value used before leads to estimations which are
somewhat unconservative but anyway better than those stemming from the as-
sumption of Gaussianity. On the other hand the approximation of the responses
predicted by both methods to those given by Monte Carlo as R decreases is evi-
dent. The figures also display the results obtained using r = —0.8 and r = —11,
respectively. Closer estimations to the exact ones can be observed. In general,
the empirical curve for the —r coefficient depicted in figure 5.14 can be used for
obtaining more accurate estimations of the displacement response of this type
of system for low degrees of nonlinear behaviour. The coefficient has been put
in relation to a sort of ductility ratio given by
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g=208 (5.18)
CEY
where z, is the yield displacement of the system and o, is the standard de-
viation of the displacement obtained with r = —0.5 at the maximum response
level when subject to unmodulated white noise. The dots displayed in the figure
have been obtained by iterating until the moment when the proposed approach
and Monte Carlo gave close results. The equation of the empirical curve is

2.082 — 61.823 <0.5
—r:{3 o8 1 7= (5.19)

0.5184 + e0-445¢ | —1.183¢> < g5

Figure 5.14 Empirical curve of —r for g/y =1

It can be seen in the figure that the standard value of —0.5 is adequate for
a wide range of the ductility factor g. Thus, for the analysis of multidegree-
of-freedom hysteretic systems subject to random excitations, it can be safely
applied to the degrees of freedom showing moderate to large energy dissipation.
However, for those hysteretic degrees of freedom showing small incursions in the
nonlinear range there would be a need of analysing the structure using the ref-
erence value in order to calculate an upgraded one. Nevertheless, complications
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can be avoided if use is made of the standard value of —0.5 for the entire struc-
ture, due to the following reasons: first, such degrees of freedom are of lower
importance insofar as their contribution to the overall probability of failure is
small; second, the underestimation of the displacement results for such degrees
of freedom is slight in percent when compared to that ocurring at high levels of
response nonlinearity due to their proximity to the elastic response.

5.3.2 Softening systems with hardening tendency

As said in the preceding, a negative -y, such that 8+ > 0 (softening condi-
tion) and |y| < B imposes a tendency to hardening. Consequently, the frequency
distribution of Z and the errors arising from the assumption of Gaussianity will
be different from those resulting from positive v. As an example, let us consider
the case 8/y = —2,v < 0. The agreement of the proposed approach with the
simulation results is shown figure 5.15, which corresponds to a system akin to
that of figure 5.10 with the only change of f/y = ~2,v < 0, calculated with
r = —0.22, which appeared to be suitable to this type of system. No regression
curve for » has been calculated in this case.

Generally speaking, it can be concluded that the estimations reached with
the proposed approach are always better than those given by the classical
method and the empirical correction approach proposed by Park (1992). Also,
the method is computationally much simpler than the proposal of Kimura et
al (1994) as well as than other methods which are based on non linear trans-
formations and/or on-line Monte Carlo simulations (Pradlwarter and Schuéller
1990). Its practical application only requires to find an adequate r value for
each type of system, as defined by the doublet n and g/ ratio.

5.4 Sensitivities of the linearized model

This chapter ends with the derivation of the sensitivities of the elements of
the covariance matrix A with respect to the any parameter @ of the excitation
or structural models, which are necessary to apply the perturbation approach
introduced in chapter 3 for considering the effect of parameter uncertainty on
the overall measures of structural response. The derivation will be carried out
in the general frame of the non Gaussian method of stochastic linearization
introduced herein.

Most of the derivatives of the elements of matrix A. are trivial except
those corresponding to the linearization coefficients. Deriving equation (5.8)
with respect € yields

OHT 3 9
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Figure 5.15 Displacement response of a system with 3/v = —2 under C-P excitation
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where the weighting coefficient p has been considered constant. The derivatives

of the Gaussian part are (Sues et al. 1985)

ds

9 _
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8 =09~ Bas ot 158 T
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29 50 36

dvy
5072

¥
+ a5t 15+ apT)

)

(5.21a)

(5.21b)

(5.21¢)

where the derivatives of the functions F,,¢ = 1,2,3,4 required in the above
equations, with respect to any model parameter different from n, are given by

n

oF, 27 n+2, 28  n-100,
G0 = 7L oy +n, k)

(5.220)
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In case the selected structural parameter € is the strength of the hysteretic
model b, given by

1
n

hy = (L — a)k( (5.27)

517)

it is convenient to calculate the covariance sensitivity with respect to A and
then applying the chain rule,

9% 08X dA
Oh = 8AOh, (5.28)
with
A nA A %
= ( ) (5.29)

(1-a)k\B+v

u

On the other hand, the derivatives of the Dirac coefficients (5.10) are

8sd _ BO-XX n GA 8")/ n n—1 Bzu
28 = 08 AT (Gg T gph TR ) (5:309)
de, 9o, A 8 8
Cq X _ m 2 _ __:,Y_. n _ n—1 02,
a0 = po AT 7A) T (Gg — gt TMA ) (5.300)
8]{7d N 2 8,6 n+1 nazu BO'X n+1
Ga =\ (alggn " + B0 ) (5300

Finally, the derivatives of the elements of matrix II-1 in equation (5.20) can be
obtained by making use of the rule for derivating the inverse of a matrix, i.e.
OIT-1 oIr

89 = —.II_1 WH“I (531)

where the elements of OIT /08 are entries of 0%/36. This method will be applied
in chapter 8 for determining the influence of strength uncertainty of lead-rubber
bearing devices on the maximum displacement of base isolated buildings.







Chapter 6

Nonstationary analysis using
complex modal decomposition

6.1 Introduction

Complex modal decomposition has been proposed to extend the application
of the method of stochastic equivalent linearization to large structural systems
for which the dimension of the state vector is so large that the direct solution of
the resulting set of differential equations by algorithms such as Runge-Kutta or
Adams-Moulton can be very slow. Such is the case when dealing with frames
with nonlinear behaviour of plastic hinges located at member ends or when
using finite element techniques on hysteretic continua for which the smooth
hysteretic endochronic model is formulated in the stress-strain space.

In principle, the modal treatment of random vibration depends on the aim
of the calculation, namely, stationary or nonstationary analysis. In this chap-
ter the solution of the mean and covariance differential equations by means of
complex modal decomposition is addressed, with the emphasis placed on non-
stationary solutions. After a short summary of some basic notions concerning
the state space analysis of linear systems, an well known algorithm proposed
by different authors is discussed. It is shown that this classical algorithm is
characterized by an unadmissible numerical instability when dealing with non
stationary response. More specifically, it is demonstrated that the estimated
moments depend dramatically on the time step chosen for solving the system
of equations according to a roughly proportional law. This simply means that
the estimations obtained by this method are of no use unless there would be a
hint on the right time step needed for the current calculation. Since this would
require the realization of a Monte Carlo analysis, the application of method of
stochastic linearization would be superfluous in that case. It is demonstrated
here that this instability is due to the fact that the method proceeds by direct




116 Nonstationary analysis using complex modal decomposition

integration of the equations of motion as in the solution of linear systems. A
new procedure intended to to overcome this difficulty (that makes this complex
modal approach almost useless) is then introduced. Briefly, the solution for
the modal responses is sought by differential equations rather than by direct
integration. As a consequence, some exponential functions, which are related
with the the so-called state tramsition matriz and that are the ultimate cause
for the numerical instability, no longer appear. It is demonstrated that the
proposed method is mathematically equivalent to the direct method of solving
the covariance equation (3.46) so that it can be connected either with Gaussian
or the proposed non Gaussian linearization schemes for hysteretic systems at
will.

6.2 State space solution of linear systems

In the beginning of the chapter 3 the state space formulation of linear sys-
tems was introduced. The following lines summarize some basic developments
about the solution of linear state space equations which are required for later
derivations.

As said in chapter 3, the dynamics of a linear system can be written in state
space form as

4(t) = Aq(t) + f(t) =0 (6.1)
In case of free vibration, i. e., when f(¢) = 0, we have
q(t) = Aq(?) (6.2)

whose solution, according to the theory of linear systems (e.g. Szidarovski
1993), is given by

q(t) = exp(At) (6.3)
where the exponential function of the system matrix is defined as
1 2 1 3
exp(A(t)) = I + At + E(At) + g(At) +--- (6.4)

The calculation of this function is simplified by solving previously the eigen-
problem

AR=AR (6.5)
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where R and A are the matrices of rigth eigenvectors and eigenvalues, respec-
tively, which due to the asymmetry of matrix A are in general complex. It can
also be shown that

exp(A(t)) = Rexp(At)R (6.6)

which is simpler to evaluate than equation (6.4) due to the diagonal structure
of the matrix A. The general solution of (6.1) is

a(t) = ep(ADa(0) + [ exp(Alt = 1) F(r)dr ©.7)

which in case of quiescent initial conditions reduces to

t
a(t) = [ exp(A(t - ) f(r)dr (6.8a)

or

t
a(t) = [ exp(A®)F(t —)dr (6.85)

These equations show that the matrix exp(At) plays in the time domain the
role of a transfer matrix commonly appearing in the frequency domain analysis
of linear systems. For this reason it is usually called state transition matriz.

6.3 Classical complex modal algorithm

The solution of the differential equation of the covariance matrix (3.46) can
imply a high computational effort when dealing with large structural systems.
For such cases it has been proposed to perform an eigenvalue decomposition of
the equations of motion and to use only the most significant modes in the calcu-
lation of the response. For linear systems a commonly applied technique consists
in the solution of the eigenproblem of the homogeneous version of equation (3.2)
by doing certain assumptions on the viscous damping matrix. When working
in state space those assumptions are no longer needed, but the eigenvalues and
eigenvectors of the system matrix will in general be complex.

The advantages of the complex eigendecomposition of matrices have been
exploited in the context of the method of stochastic linearization in several ways.
Some of them apply exclusively to stationary calculations (Roberts and Spanos
1990; Pradlwarter and Schuéller 1992; Casciati ef al. 1994). The method dis-
cussed herein has been proposed to nonstationary analyses by different authors




118 Nonstationary analysis using complex modal decomposition

(Chang 1985; Simulescu et al. 1989; Pradlwarter and Schuéller 1991; Pradl-
warter and Li 1991). It is rooted in the theory of linear systems outlined above.
The following is a detailed exposition of the essential features of the algorithm
which are common to the different proposals just quoted.

For the equation of motion of the linearized system in state space the fol-
lowing transformation can be applied:

Q=RE (6.9)

where R is the matrix of right eigenvalues of the system matrix A and Z is
the generalized modal coordinate. Replacing this equation into (6.1) we obtain

E=R14.RE+ R'F (6.10)
which can be simplified by considering the statement of the eigenproblem
AcR=RA (6.11)

where A is the diagonal matrix of complex eigenvalues. The corresponding left
eigenproblem is

ATL =LA (6.12)
Applying the normalization
I=L"R (6.13)
which implies that
A=LTA.R (6.14)

the equation of motion in modal coordinates becomes
BE= A+ (6.15)
with the modal external forces defined as
¥ = R-F (6.16)

or
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¥ = LTF (6.17)

according to the normalization condition. In the sequel we will assume that the
excitation and, consequently, the responses have zero mean. Defining

r={r;}={gz=:zc} (6.18)

g

the relationship between modal and global covariance matrices is
2 =RI'RCT (6.19)

For nonlinear systems analysed by the stochastic linearization technique
the application of the above equations, which are valid exclusively for linear
systems, requires that the system matrix Ae be assumed to remain constant
inside each time step (¢, ;). The dynamics of the i—th element of the state
vector will then be expressed as

E(r) = N5, (1) + &,(7) (6.20)
where &, is the i—th generalized force corresponding to the same row of ¥ and
0 <7< h=t,, —t,. Let us particularize for an excitation of the form

F = JN(t) (6.21)

where J is a vector of constants that can be assembled by the considering the
equilibrium equations of the structure and filter systems and N(t) is in general
a modulated stationary process. Denoting by M, the i—th row of any matrix
M, ®,(1) can be expressed as

P, (r)=LTF(t, +71)=LN({E, +7) (6.22)
where

ly=LTJ (6.23)
is the participation factor of the ¢—th mode. On the basis of linear system
theory sketched above the solution of the above differential equation can be put
in the form
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E,(r) = exp(\,7)E;(0) + fo " exp(\[r — o)L N (E, + v)dy (6.24)

i
The covariance matrix of the state vector is

B(t, +7) = R (BQ(, +7)Q(t, +7)°T]) (6.25)
where the symbol R(-) stands for the real part of its argument. According to

the modal transformation it can be related to the covariance of the generalized
coordinate as

2(t, + 7) = R(RI(r)RCT) (6.26)

where I'(T) is the covariance of the modal coordinates at time 7. Taking into
account equation (6.24) and setting 7 = h, its terms can be expanded as follows:

I;(h) = B[S, (WEL(R)] ~ E[{exp(\h)E;(0)
h
+ [ explh = v )@t + v, )dv, Hexp(AER) L (o)

h
+ [ expA0[h = v, @F(, +v,)dv.}] (6.27)

Carrying out the multiplications and expectations, the final expression of the
elementary covariance becomes

I (h) = exp(D, + ASIR) {BLZ;(0)Z£(0)]

h rh
+ fo fe exp(—Avy, — ASU)LICEIN (, +v,)N (1, +v,)]dvgdu, ) (6.28)

In making the above product the cross terms involving =, (o) s (t, +v,) and
EC (0) ®,(t, + v,) have been disregarded as the initial value of the generalized

coordinate is poorly correlated with later values of the excitation. Since N(¢)
has been assumed to be of the form

N(&) = EU() (6.29)
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where £(t) is a slowly varying deterministic function and U(¢) is a stationary
process, the above result can be expressed as

I, (h) = exp((, + ACIW{E(E,(0)£°(0)]

2 h h rh
+£ (L, + §)liljcfo fO exp(—A;v; — }\j’.C'vg)RU(v2 - vl)dfuldfuz} (6.30a)

where R, (v, — v,) is the autocorrelation function of process U(t). In the pre-
ceding equation it has been assumed that function £() varies so slowly that it
can be driven out from the integral and set equal to its value at the half of the
interval of integration. For the specific case of unmodulated white noise the
above integral can be explicited in closed form

QWSWlilJ.C[
A+ AL

1 K

Fz.j (h) = exp([A, + )\jc]h)Fﬁ (0} + exp([A; + )\j@]h — 1] (6.300)

Since the system matrix contains the linearization coefficients, which in turn
depend on the eigenvalues and eigenvectors of the system matrix, an iterative
solution is required at each time step. Note that the eigenproblem must be
solved again at the next step. Therefore, in order to make the method competi-
tive with the direct approach (equation 3.46) efficient techniques for eigenvalue
search based on the current available information should be devised, taking
into account that from iteration to iteration and from step to step only the
linearization coefficients change. The Taylor approach proposed by Casciati et
al. (1994) is an important contribution in this direction.

For performing the iterations it must be remembered that the system matrix
A, is agsumed to remain constant inside the step. However, different lineariza-
tion coefficients will result from using the response values corresponding to its
beginning and end. Therefore, the final expression of the system matrix at the
k—th step can be set to be equal to their average (Pradlwarter and Schuélier
1991). The iteration inside each interval can then be performed according to
the following scheme:

1. Assume as initial value of the matrix at the current step the final value
at the preceding,

Ao(t,) = Ae(t,_,) (6.31)

where the rear superindex denotes iteration,
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2. After solving the equation for the covariance, the linearization coefficients
corresponding to the end of the k— step can be calculated. Denoting it by

*Ae(t,. ),i=1,2,... the new value of the system matrix is

.y

" Ae(t,) = 5 (Aclt) + Aoltys) (6.32)

3. Repeat step 2 until an acceptable convergence in X(f,) is achieved.

On the other hand, a restriction could be imposed on the discontinuous
variation of the system matrix in order that the mean and covariance responses
be in agreement with the necessary continuity of the vector g. This requires
that

q(t;) = q(t) (6.33)
so that
R(t, ,)E(;) = R(t,)=(t)) (6.34)

Applying the expectation operator and taking into account the normalization
conditions (equations 6.13 and 6.14) the following expression is obtained:

@) = {L7(t,) R, (LT @) RE )T (6.35)

Considering equation (6.13), it can be noticed that this is a very mild condition
indeed. However, it has been found that albeit not essential, its introduction
entails numerical difficulties in many cases. Therefore, in the analyses that
follow it has not been imposed.

As an example, let us consider the case of a single degree of freedom struc-
ture whose restoring force is of the Bouc - Wen endochronic type, whose motion
is governed by the classical differential equation

mX +cX + akX + (1 — 0)kZ = —mN(t) (6.36)

in which m,c and k are mass, damping and stiffness constants. The model
parameters for the example are m = 0.933, ¢ = 0.573, £ = 35.2, a = 0.15,
A=1,8=+=2and n =1. The excitation N(t) is equal to the product
of a Gaussian white noise W (¢) with autocorrelation function 275,6(v, — v,)
and a Shinozuka-Sato modulating function (equation 2.19) with parameters
a = 0.25,b = 0.5. The noise intensity has been set equal to 0.1.
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Figure 6.1 Displacement response by conventional complex modal method using
different time steps

Figures 6.1 and 6.2 show respectively the standard deviation of the displace-
ment X and velocity X obtained by this classical algorithm using three different
values of the time step h. They are depicted together with those corresponding
to 1,000 Monte Carlo simulations. It can be observed that the estimation de-
pends so largely on the selected time step h that it is unreliable for practical use.
Up to the author’s knowledge, however, this critical drawback of the complex
modal algorithm has neither been discussed nor overcome in the specialized
literature.

Seemingly, the reason for this numerical instability lies in the presence of
an exponential function. In fact, for white noise excitation U(t) = W (t), the
derivative of the modal covariance can be estimated from (7.30b) as

Li(h) —I;(0)  I,(0)+b
) Tk

where b is a complex constant equal in this case to

I.(h) ~ (exp([A; + ACTR 1) (6.37a)

2 h
_ 28y lilog (t, + %)
A+ AL

(6.37h)




Nonstationary analysis using complex modal decomposition

— 1 L L L *
f—)
-——
- I \\ I
/ :,
| 7 N F
=] Y, i
: \ Velocity
. ! i
i L B it Monte Carlo
v s ———— =
. i \ h=0.1 -
ST e N hoo:7
; It (t . “ __________ h=0.7
. o LY i
! Yo v
i i Al \
= Il LI Y -
2 =T [ A Y
i [ \
= H M
= {1 H iy, -
L= 1! ™
Laml Iy kS
PERae = I N B
o = :'r ‘,“
i A
4 lr: N b, i
-
H l, e ‘\ ‘V\
ca_ | af ~ oW B
=] #f/ heS N
/ S N
A o LAY
3 N AN ]
~ h -
~ ~ s
-~ ~ "~
— ] \\ ‘\ N e
= e R
~ - hat
-~ b -
] ~a S T~ I
-~ -
~~~~~~ e
1 T T !
o 3 i0. 15 20,
Time

Figure 6.2 Velocity response by conventional complex modal method using different
time steps
Equation (6.37a) makes evident that the exponential function causes a
strong nonlinear dependence of the variation of the modal covariance on the
time step h, so that the selection of the later determines the evolution of the

modal covariance altogether.

6.4 Proposed complex modal algorithm

In this section an algorithm that circumvents the above nonlinear depen-
dency on the time interval is developped. As for using the direct method (equa-
tion 3.46), it requires that the excitation be modeled in terms of white noise. In
particular, it can be either a unmodulated or uniformly modulated white noise
or also a white noise with frequency and amplitude modulation passed through

time invariant or time variant filters.

Let us define
c (6.38)

b

(1}

G, = 5

i

The evolution of the two factors entering in the above expression (see equa-
tions 6.20) can be cast as a bidimensional system of Ito stochastic differential

equations, i.e.,
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(6.39)

(6.40)

(6.41)

Displacement response by proposed complex modal method using differ-

ent time steps (S5, = 0.1)

The Ito formula for this case reads

dG,; = {)\ B,EL+ACECE

zzg

-+ oS, & (D) lC}dt-l—

V2r8, € (LES +1°5,)AB ()

(6.42)
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Figure 6.4 Velocity response by proposed complex modal method using different
time steps {S,, = 0.1)

Taking expectations we finally obtain

1} () =X+ AT, () + 27TSW§2(15)£2.ZJ.C, t, <t <t (6.43)

Notice that there is no need of approximating the modulating function by its
mean value in this case, as it was required in deriving equation {6.30). It can
be seen that in contrast to equation (6.37a) the above derivative of the modal
covariance does not depend on the time interval. Thus, the results obtained
by this method are expected to be no longer beset by the numerical instability
exhibited by those calculated with the classical algorithm. In fact, despite
equation (6.30b) is the exact mathematical solution of equation (6.43) when
£(t) = 1, its numerical use for a step-by-step calculation involves exponential
functions that introduce a strong nonlinear dependence on the time step h.
Therefore, equation (6.43) points out the right way of solving numerically the
nonstationary complex modal analysis, despite the mathematical exactness of
the integral solution.

On the other hand, they should be similar to those obtained by the direct
method, due to the equivalence between both approaches. Such an equivalence
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can be easily demonstrated. In fact, taking time derivatives in equation (6.26)

one obtains

S(t, + ) =R{RI(r)RC" + RI(r)ROT + RI'(r)RCT}
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Figure 6.5 Displacement responses (5, = 0.01).

(6.44)

Considering that the system matrix is assumed constant inside the (2, ,¢, + h),
the first two terms of the right hand side of the above equation vanish in that
interval. The substitution of the resulting expression and of equation (6.26)
into equation (3.46) yields

i, +1)=%9

R(RI'(r)RCT) Ad + 2n S,

{RI(r)ROT} = AR (RT(r)ROT) +

(6.45)
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Figure 6.6 Displacement responses (S, = 1.0).

Pre- and postmultiplying by R-! and R-CT and taking into account the nor-
malization and orthogonality conditions the following equation is obtained:

I'= AI' + TAC + 27 LTS LC (6.46)

which is the matrix expression of the componentwise equation (6.43).

The numerical stability of the proposed approach is illustrated by figure
6.3, which depicts the same Monte Carlo curve of figure 6.1 along with the
estimation from the present approach using two different values of the time
step h. All complex modes have been used in the calculation. It is seen that
the two results of the proposed approach are undistinguishable from each other.
The figure also shows the results obtained by the direct method. The minor
differences between the proposed complex modal and direct approaches can be
attributed to the rather different ways of solving the dynamic equations in the
two procedures {Notice that the direct method does not require iteration). The
corresponding results for the velocity of this system are depicted in figure 6.4.
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Further analyses were conducted on the same system using a lower and a
higher white noise intensities (S, = 0.01 and Sy, = 1) in order to test the
numerical robustness and accuracy of the algorithm in a wide range of response
nonlinearity. In fact, such excitations correspond respectively to slight and high
degrees of nonlinear behavior of the example system, while that with § = 0.1
corresponds to an intermediate situation. Figures 6.5 and 6.6 compare the
displacement results obtained by the proposed complex modal algorithm and
those by direct method and Monte Carlo.

Notice that the method proposed in the foregoing chapter for calculating
the linearization coefficients can be plugged into this algorithm without diffi-
culty. Gaussian linearization coefficients, however, have been used in the above
examples in all which they lead to good response estimations due to the high
value of a.







Chapter 7

Higher order stochastic response
of hysteretic structures

7.1 Introduction

In the preceding chapters the applicability of the method of stochastic equiv-
alent linearization for estimating the first two statistical moments of the re-
sponse of hysteretic structures was discussed. Despite such information seems
to supply only a rough description of the probabilistic behaviour of such systems
when subject to random external or parametric excitations, it is nevertheless
quite useful for an approximate reliability assessment of the structure as ex-
plicited in chapter 3. However, a deeper insight into the system’s stochastic
behaviour is even possible by making use of the Markov methods summarized
in chapter 1, which would eventually lead to an estimation of the (stationary
or evolutive) probability density function of the response.

This chapter is devoted to a discussion on the feasability of the applica-
tion of existing Markov methods for calculating the probability functions of
the response variables of hysteretic systems. It begins with a short account
of the classical closure technigues which are based on the moment equations
generated by the Tto formula. It is shown that when using these methods for
hysteretic systems some assumptions and/or simplifications are required, This
is also valid for using the Taylor method proposed by DiPaola et al. 1995. The
only methods readily applicable to any nonlinear system are the finite element
solution of the Fokker-Plank eguation, on which substantial research has been
conducted in the last years, and the method of mazimum entropy recently pro-
posed by Trebicki and Sobczyk (1996). Since an enormous computational effort
is envisaged in applying the former method to the simplest hysteretic oscillator,
the main attention has been focussed on the latter in the present research.

The maximum entropy method is much less expensive then the finite ele-
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ment approach due to the fact that it decouples the Fokker-Planck equation by
means of the moment equations generated by the application of the Ito formula,
as closure methods do. With respect to the latter, however, it has the added
advantage of exploting a sound physical principle that has proven to be very
useful in information theory as well as in other areas (Kapur 1989). Neverthe-
less, it is shown that the method is so weak from the numerical point of view
that the calculation breaks down even at low levels of nonlinearity when using
conventional numerical methods. After a discussion on the causes of such fail-
ures a somewhat heterodox numerical integration algorithm is proposed. It is
demonstrated that with its aid a solution can be achieved even in case of strong
nonlinear behaviour of the hysteretic oscillator considered in the present work
and, in general, of nonlinear structural systems.

7.2 Closure methods

Let us recall the theory of stochastic systems sketched in chapter 1. The
set of stochastic differential equations for a N—dimensional system subject to
Gaussian white noise W(t) reads

dX () = O(X (1), )dt + W(X (), )dB(t) (7.1)

where X is the state vector of the system, B(¢) is a vector of R uncorrelated
Wiener processes, @ is a N—dimensional vector of drift functions and ¥ is a
N x R diffusion matrix,

For a function differentiable function A(X) the Ito formula states that

an Y oh 1 & X 8h
== . —+ - v (X, )Yy, B e
i=1 4 =14 k=1 k
R N oh
>3 (X, ) 51-dB, (7.2)
r=1i=1 dX;
Set function h{X) equal to
_ vdi yl In
MX) =X X2 . X (7.3)
For the sake of simplicity in the notation, the exponents j,,i=1,2,..., N can

be considered as elements of the multi-index vector

jz[jlajzs---ajN} (74)
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whose sum of elements

lj|:j1+j2+---+jN (7.5)

indicates the order of the moment being evaluated. Consider a dynamical sys-
tem whose nonlinearities have a polynomial form. For instance, in the Duffing
system the equation of motion is

V() + BV () + 0 V() + ew Y3(E) = W(2) (7.6)
Taking into account that
E[dB(#)] =0 (7.7)

and that function A(-) is not an explicit function of time, it can be easily shown
that the application of the expectation operator to the Ito formula for such a
system yields the following set of moment equations:

=g, ey, ), J=12,... (7.8)

Here pi, denotes the vector of all moments y; for which |j| = J and g, are
vector linear functions. For example, writting the equation of motion of the
above Duffing oscillator in the standard form of stochastic differential equations
and applying the Ito formula to the function

WX) = X x22 (7.9)

where X, =Y and X, = Y, the set of moment equations reads

, . . . . 2. . . 2,
Mm(.?l).?z) = Jlf"'|j|(.71 - 1:.72 + 1) —Ww .72.U'|j|(.?1 + 1’3’2 - 1) —EW JpX

. . . .. TGy . . o
ru’[j|+2(31 +3,5,— 1) = 18321”'”;(31132) + Twh(h - 1)1“|ﬂ_2(.71:32 —2) (7.10)

where the arguments of the moments are the powers of the state variables and
Gy is the one-sided power spectral density of the white noise W (t). It can be
seen that in the above general differential equation moments of higher order than
the currently evaluated are involved, thus rendering the problem indeterminate.
In order to arrive at a solution several closure techniques have been proposed.
HEssentialy they consist in expressing higher order moments as function of lower
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order ones, thus allowing the closure of the system of equations. The most
important closure techniques are the following:

1. Central moment closure.
It consists in assuming that the central moments of an order higher than a
certain J are zero, so that they can be discarded from the moment equations.

2. Gaussian closure.

Tn this case it is assumed that the the response of the system X (¢) obeys a
Gaussian distribution at any time ¢. This opens up the possibility of expressing
the higher order moments as functions of lower order ones using well known
formulas for the Gaussian distribution (Soong and Grigoriu 1993).

3. Cumulant or quasi-moment closure.

This technique is based on the fact that cumulants and quasi-moments
provide information of lower importance the higher their order. Therefore,
by means of the relationships linking moments and cumulants (or moments and
quasimoments) it is possible to obtain the desired dependency of higher on lower
order moments by neglecting the cumulants or quasi-moments of order higher
than a certain maximum value (Muscolino 1993; Lutes and Sarkani 1997).

Let us now consider the case of a single mass, uniaxial endochronic hysteretic
system of the Bouc-Wen type subject to a white ground acceleration W (t). The
equation of motion of the system is

mY +c¥ + akY 4 (1 - a)hZ = —mW () (7.11)

where the dynamics of the nonlinear hysteretic component is governed by the
following differential equation:

7= ((V,2) = AY - BIV|| 212 — V|2 (7.12)

The state vector and the drift and diffusion matrices have the following expres-
sions:

Y
X=|V (7.13)
Z
Y
(X ®),t)=| —-m HakY +c¥ + (1 — a)kZ} (7.14)

(Y, 2)
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0
U(X(t),t)= | /TGy (7.15)
0
Set function h(-) as the following power function:

hX) = YhVi2Zis (7.16)

where the exponents j;, i = 1,2,3 can be regarded as elements of the multi-
index vector

j = [jpjmj:s] (717)

Proceeding in the same way as before, the following system of moment equations
is finally obtained:

J[}'|j|(j17j2:j3) = j1#|j|(j1 - I:jz + 1:j3)

ak . . , , c .
_Ejziﬂﬂ(h + 1,7, — 1:.73) - 532“23'1(31’32’33)

11—k, L _ ) ) o
—QT)“JQMM(JPJQ —1,j,+1) + 4, BC(X, Z) X1 X2 27 1]+
Gy . .. o _
QW-?Q(JZ - l)ru’|j|_2(31$32 . 2:.73) (7.18)

It must be taken into account that for antisymmetric hysteretic systetns, ie.
those for which the restoring force g(X, X, Z) has the property

9(X,X,2) = —g(-X,-X,-2) (7.19)

moments of odd || are zero for zero mean random excitation.

Unlike the polynomial case, the above system of differential equations is
not characterized by its lack of closure but only by the presence of expecta-
tions whose calculation requires the knowledge of the joint probability density
function. Since this information is not available beforehand, the employment
of closure techniques would not be sufficient to solve the system of moment
equations unless the required probability density function be inferred from the
current moment values invoking auxiliary assumptions or principles.
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An approximate method for applying closure techniques to the the specific
case of bilinear hysteretic oscillator was proposed by Nielsen ef al. (1990a,
1990b). They substitute the hysteretic equation for Z (4.1) by a third order
polynomial in X and Z whose coefficients are calculated by least-square mini-
mization of the expected error in a similar fashion as it is routinely done when
using the method of equivalent linearization. Since this task requires the cal-
culation of some expectations, a probability density function in the form of a
truncated Gram-Charlier expansion combined with Dirac pulses is postulated.
The coeflicients of the modified expansion are obtained from the current values
of the moments, which in turn are given by the solution of the moment equa-
tions. Then the cumulant closure technique is applied on the new system of
equations having now the general appearance of equation (7.8).

It is evident that this method requires the assumption of a density function,
as in the method of stochastic linearization. In this case the assumed density is a
modification of an expansion which otherwise leads directly to the characteristic
function. Clearly, this modification is imposed by the large departure from
Gaussianity of the restoring force component of hysteretic systems, because
the Dirac pulses play here the same role they do in the linearization approach
proposed in chapter 5. Further, the nonlinear system must be approximated
by a polynomial in order to apply the closure techniques. No solution for the
stationary multidimensional density function of the Bouc-Wen hysteretic model
calculated by this method is known to the author.

7.3 The method of Taylor cumulants

A method for solving a system stochastic differential equations that leads
directly to an estimate of the probability density function was reported by
DiPaola et al. (1995). The method is based on the Taylor expansion of either
the multidimensional density function of the state vector X (¢) or its logarithm.
After substituting into the Fokker-Planck equation the first alternative gives
a system of differential equations of the so-called Taylor moments while the
second produces the system of Taylor cumulants.

Of these two alternatives only the second will be summarized here. Let the
multidimensional density function of the vector process X (¢) be expanded as

N N
1
flx;t) = exp (AO + Z; Ay [ Xz, + .kzzl 5)\2 (X, X o,z + .. ) (7.20)
i= i,k=1""

where the coefficients of the expansion can be shown to be given by the following
equation:
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o . i _
M%) X Lxvye 2 In f(@;t) | (7.21)
JITL T2 N O 92 . g’ N lz=0
1 Yy o Oy
where 5] = 1,2,.... In (7.20) A, plays the role of a normalization constant.

Substituting equations (7.20) and (7.21} into the Fokker-Planck equation

Of @ty Xoomtyflast)] 1 & K 2T (m ) nr (2, 8) f (5 8)]
= 2 “*“5_2 >

i=1 Ba:@ i,m=1r=1 amzaicm
(7.22)
the final form of the differential equation of the coeflicient of order |j| is ob-

tained:

. N N I
: 1 2 ingy c ki kg N
’\|j|[X1 X2 XN ]_ Za'zg + Z b’bjk)\|k|+1[Xl X2 XN X%]
=1 t=1kz.=0
1 N R ]1 R — ) jN
+§Z E 'I/zr(wat)!pm?‘(w;t){)\m_m[xl X, XN Xsz]
t,m=1r=1k =0
k1 Ko ke J1—ky dg—ky in-ky
oMl Xy Xy o Xy XXXy Xy VX,
(7.23)
where
[4]+1
g O (x;t
I (2 j) =0 (7.24)
83:1‘ dx)? ...63:1\?'83%
] } ) [71~—1k]
b =— {7 )(72).. (v 0 Omit) (7.25)
ik ki ] \k, ky 833{1_’“‘83;22%2...83:2\’_% @=0 ‘

OB e

with the notation
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(m) _ m(m—l)...'(m—n—l—l) (7.27)
n 7!

This system of ordinary differential equations can then be solved by conventional
strategies.

The direct application of this method to hysteretic systems is hampered
by some mathematical difficulties. In fact, for both smooth and piece-wise
hysteretic systems some derivatives needed in equation (7.23) are given in terms
of Dirac functions from the very first orders, which make impossible even the
calculation of the Taylor moments. It is evident that for such systems the only
way of using this method would be by calculating equivalent polynomials as in
the closure technique proposed by Nielsen ef al. (1990a, 1990b). As in that
case, no experience has been reported on its application to smooth hysteretic
systems.

7.4 Finite element solution of the Fokker-Planck equation

As said in chapter 1, the Fokker-Planck equation provides a general method
for solving stochastic dynamic problems that can be modelled as diffusion pro-
cesses. This and related equations appear in physics and chemistry, so that
most of the available solutions and methods have been worked out by scien-
tists of such fields (cf. Risken 1989; Gardiner 1985). For the case of nonlinear
structural mechanics it is important to note that explicit solutions have been
obtained for limited types of simple oscillators in stationary response to which
is devoted a monograph by Soize (1994).

In recent times approaches based on finite element techniques have been
proposed (Langtagen 1991; Spencer and Bergman 1993; Shiau and Wu 1996:
Bergman and Spencer 1997). It must be observed that the number of indepen-
dent variables in the Fokker-Planck equation is equal to the size of the state
vector, N, which is just the very size of the finite elements required for the
solution. This means that for a polynomial nonlinear oscillator 2D elements
for the state variables of displacement and velocity are required, while for the
simplest hysteretic oscillator (equation 7.11) 3D elements will be needed due to
the presence of variable Z. It is evident that even the solution of these simple
problems in the nonstationary case implies a very large computational effort.

In general, finite element approaches treat the problem as a convection-
diffusion equation of the type appearing in fluid dynamics, whose terms cor-
respond to the drift and difussion terms in probability flow. Using a classical
finite element approach, the probability density function is discretized in the
form
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M,

flz,t) = > Nx)f,(t) (7.28)

i=1
where M, is the number of nodes per element, N, are the shape functions and
f, the discrete probability densities. Replacing this equation into (7.22) one
eventually obtains a problem in the form

Cp+Kp=0 (7.29)

where C' and K are matrices whose entries are determined by the numerical
approach (Galerkin, streamline/upwind, etc.). For solving the dynamics of such
convection-diffusion problems specific numerical treatment is required {Zienck-
iewics and Taylor 1995). In particular the Crank-Nicholson method has been
applied in most of the few attempts for solving the above system in 2D cases.

A further difficulty found in the finite element solution of the Fokker -Planck
equation is that one has to deal with infinite domains. To solve it the use of
Hermite polynomial expansions (Langtangen 1991) or adaptive grid generation
(Shiau and Wu 1996) have been proposed. Up to the author’s knowledge,
however, for the Bouc-Wen hysteretic oscillator no finite element solution of
the probability density function has yet been reported. But, at first sight, the
application of finite element techniques for orders higher than 2 is discouraging,
because of the need of dealing with high dimensional finite elements for the
analysis of a flow problem over an infinite domain. In the research presented here
the method of maximum entropy has been preferred to such an attempt because
it has two distinct advantages over the finite clement strategies: First, its basic
stuff is not a single equation as Fokker-Planck’s but the set of moment equations,
which play in this context a similar role as the generalized equations resulting
from eigendecomposition in linear dynamics. Second, the moment information
at any time instant is gathered by an additional physical principle which restores
the decoupled multidimensional density function. It will be discussed to a larger
lenght than the previous methods in the next section.

7.5 The method of maximum eniropy

A general method for solving systems of differential equations of moments
based on the principle of maximum entropy, has recently been proposed
(Trebicki and Sobezyk 1996; Sobezyk 1997). It is an extension to the nonstation-
ary case of a previous proposal formulated by the same authors for stationary
analyses (Sobczyk and Trebicki 1990). Its main advantage over the closure tech-
niques described in section 7.2 is that it leads directly to an approximation of
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the probability density function of the state vector without symplifying assump-
tions. At first sight it seems to be of unlimited applicability and its accuracy
has been demonstrated by several examples in the quoted papers. However, it
will be shown in this section that despite its sound physical basis the method
is very weak from a numerical point of view, so that it is difficult to arrive at a
solution when using conventional numerical techniques.

The first section of this paragraph is devoted to a brief summary of the
method, which is in general useful for solving systems of stochastic differential
equations in many fields. After that introduction, the mentioned numerical
difficulties in its application will be examined. This discussion is followed by
the exposition of a proposed procedure that helps to arrive at a solution in
many cases, based on the use of multidimensional Fourier transforms. The
numerical examples demonstrate the accuracy of the method for assessing the
stationary probability function of the response of nonlinear oscillators as well as
the upgrading of the numerical stability of the method when using the proposed
integration technique.

7.5.1 Basic algorithm

The principle of maximum entropy, as formulated in the frame of classi-
cal theory of probability and mathematical statistics, states that under some
constraints (generally given in the form of moments of a N—dimensional state
vector @ or their differential equations) the density function p(a) that must be
chosen is the one that maximizes the entropy functional

H[f] = - / f(x, ) In fz, t)da (7.30)

where the integral spans the entire real space. (Kapur 1989; Dmitriev 1991; Gzyl
1995). The constraints (which are more adequately called prior information in
this context) can be given in the form of moments, that is

pilt) = [ Mi(@,)de = [ mi(@)f(@,t)de (7.31)

where % denotes the multi-index [4,,4,, - 45} and m;(-} is the moment ker-
nel m;(z) = ;! ws?..z¥ For want of a better name, the product M;(z, ) =
m;(x) f(x,t) will be called “weighted moment kernel” in what follows. Ac-
cording to the aforesaid, the probability density function must be obtained by

maximizing the extended entropy functional
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Lifl=H /f(m H)da—1} "HZ A /mk (@, t)dz— iz (1)} (7.32)
ki=1

where A, and Mg are Lagrange multipliers corresponding to the constraints of
unit hypervolume and moments, respectively. The result of the maximization
of the functional is

flx,t) = t)exp( “}: Apmnp(® ) (7.33)
i

where K is the highest order of moment considered and C|(¢) is a normalizing
constant, i.e.,

t) = fp1 (z,t)de (7.34a)
where
Py (1) = exp(— Z Ay (@) (7.34b)
k=1

Alternatively, the prior information can be the system of ordinary differen-
tial equations of moments, which are obtained by application of the Ito formula
and the expectation operator to a system of stochastic differential equations
describing the dynamics of the system as shown before. The former can be put
in the form

fii(t) = v;(t) (7.35)
or, alternatively, as
dE[m,;(X,t
X0 — plgucx, o) (7.3

in which

(X, 1) = Z@(Xt On +i§ % (X, )W (X, ) = Oh | (7.37)
i &~ Jox; t 3 Yir R e xaxl

F=1{k=1
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Note that greek letters are employed here to indicate expected values, while
latin ones denote the corresponding kernels. By taking the system (7.35) as
prior information, the maximization of entropy gives the following estimate of
the probability density function:

fa,t) = C; () exp(~ 12 Mgk () (7.38)
|k|=1
with
1) = f Py, t)dz (7.39)
b ) = exp(— 3 Mugu(a) (7.390)
|kj=1

Observing the dual definition of v;{(), any of the above interpretations of the
probability density function can be introduced into the following integrals:

350 = ii(®) = [mi@) Vg (7.40)
%) = Bloi(X,0)] = [ 6i(@)f(w,t)de (7.41)

where the subindex a states for 1 or 2. If the first interpretation is followed, the
evolution of the Lagrange coefficient is given by

K
> [Ri(®)Ry(t) — C,()Qik (DA (t) = C, (B P;(2) (7.42)

k=1

which is obtained by substituting equation (7.33) into (7.40) and (7.41). In this
equation

= / mq(x)p, (x, t)de (7.43a)

P@) = f 9i()p, (z,t)da (7.43b)
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Qint) = [ mi(@)ymy(@)p, (@, t)de (7.430)

Under the second interpretation the corresponding system of algebraic equations
is

|’;Z{:1[Pz’(t)Rk (£) = Co(B)Qik ()M () = Cy (8 Py (1) (7.44)
with
R;() = / my(@)p, (, t)de (7.45a)
Pit) = [ gi(e)p, (x, t)dz (7.45b)
Qin®) = [ gi(@)mp(@)p, (@, 1)da (7.45¢)

In both cases the resulting operations can be put matrix form as
SA=1b (7.460)

This system can be solved by diferent strategies. Trebicki and Sobcezyk (1996)
propose the use of the simple Euler scheme to that purpose. This means that
for the { + 1 step the estimated A{l + 1) can be obtained from

SA(+1) = bh — SA(I) (7.46b)

where A is the time increment. It is important to note that the use of more
refined numerical methods for solving the ODE system (such as Runge-Kutta or
Adams-Moulton) will largely increase the computational labour due to the need
of calculating the integrals (7.43) or (7.45) and solving the system of algebraic
equations (7.46) at each intermediate step.

It must be observed that the first interpretation of the maximum entropy
density supposes the knowledge of the moments at each time instant. Trebicki
and Sobczyk (1996) state that despite the latter are not being calculated ex-
plicitly in the algorithm, they can be assumed to be given indirectly by the
solution of the resulting algebraic equations. Moreover, amid the two methods
the first one has more practical appealing due to the following reasons: a) With
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respect to the initial condition it is easier to start than the second one. This
is due to the fact that the initial state of the probability density, which is usu-
ally a Dirac function corresponding to a deterministic original situation, can be
modelled by a slim Gaussian function. That is, the initial condition (1.105) can
be approximated by

N oLl
flae,ty|ey, tp) = 6(x —2y) = (2m)” 7| X[ 2x

wm—gmmmguf%mwm@] (7.47)

where the diagonal elements of the covariance matrix X must be as low as
possible. Equating this Gaussian density to equation (7.33) one obtains a system
from which the initial values of the Lagrange vector A can be easily calculated.
This is rarely the case when applying the second method, because the powers of
the exponential functions are the right hand sides of the system of differential
equations. b) Matrix @ is symmetric while @ is, in general, not and, also, some
Q) coincide with some Rj. As a consequence, that the amount of integrals
that is necessary to evaluate at each time step in the first method is smaller
than in the second.

In what follows the numerical problems associated to the first method of
maximum entropy will be examined. It will be shown that matrix S introduced
in equation (7.46) is so badly conditioned that the use of conventional techniques
of mutidimensional integration for calculating its elements (equations 7.43 and
7.45) lead to numerical collapse of the solution before reaching stationarity. A
more accurate method for integration is proposed in the next section, which
consists in calculating the integrals in the complex space as one-point Fourier
transforms. In the numerical study it will be shown that this method leads
to a solution in many (not all) cases. That is, even with such highly accu-
rate method of multidimensional integration the method of maximum entropy
(whose generality and sound physical roots make it quite alluring) cannot be
unconditionally applied.

7.5.2 Numerical evaluation
The numerical analysis will be performed using the following nonlinear os-
cillators as examples:

1. Duffing oscillator. The equation of motion in this case is

Y() + Y1)+ Y +2Y3() = W) (7.48)
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where W(t) is a Gaussian white noise with autocorrelation function
Ry (t1,t2) = d(ta — t1)

2. Coulomb oscillator. The governing equation of this highly nonlinear case
is the following:

Y (t) + 047V (£) + 472V (t) + 0.98 sgn(Y ()= W (1) (7.49)

where the auto-correlation of the noise is Ry, (t1,t2) = 2md(tg — £1).

3. Van der Pol oscillator. This example has been studied by Donley and
Spanos (1991) using Padé approximants. The corresponding equation of motion
is

V(1) +0.2(—14 10Y2(0)Y () + Y () = W(t) (7.50)
The excitation is defined in the same way as in the Duffing example,

4. Quadratic damping oscillator. The dynamics of this system is governed
by the following equation:

Y () + 05V (0)|Y () + Y (8) = W(t) (7.51)

with Ry, (t1,t2) = d(ta — t1).
5. Bouc-Wen hysteretic oscillator.
Y+ 0.20Y + aw?®Y + (1 — a)w?Z = W (t) (7.52)

where w = 27/3 and Z is governed by the differential equation (7.12) with
a =01,A=108=v =05 and n = 1. The noise intensity was set at
Sy = 0.1,

These examples were solved by the Euler integration scheme using Gauss-
Legendre integration with 19 points per axis. The initial covariance matrix
in equation (7.47) was built with diagonal values equal to 0.04 and zero off
diagonal entries. The system of algebraic equations (7.46) was solved by LU-
decomposition. The calculation in all cases collapsed at its beginnings by over-
flow when using single or double precision. In the later case the failure time
instants were 1.46, 2.01, 0.95, 1.67 and 1.31 s for the five examples considered,
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respectively, so that in not a case the system reached stationarity. Several at-
tempts were made using a higher number of quadrature points and/or different
strategies for solving the linear system of equations (7.46), such as the powerful
Singular Value Decomposition without success.

Table 7.1 Singular values of the § matrix of the Duffing example

No. Gauss-Legendre Gauss-Legendre Fourier
att=145s at t= 1461 s att=1.4bs
1 8.2406 4.8789E+075 2.2734
2 1.4313 4.4579E+074 0.3877
3 0.4272 3.2306E+073 0.1731
4 0.1093 1.0732E+072 0.0592
5 0.0970 1.0674E4+071 0.0385
6 0.0823 1.4512E-+068 0.0285
7 0.0186 3.3698E4-064 0.0111
8 0.0321 1.8100E4-066 0.0076

It is easy to see that the algorithm is numerically weak in at least three as-
pects. First, the ill-conditioning of matrix S. This is the most important factor
contributing to the numerical collapses encountered in the analyses carried out.
The best measure of ill conditioning of a matrix is given by its singular values,
insofar as if the ratio of the largest to the lowest one (the so-called condition
number) is greater than the reciprocal of the machine precision (roughly 1076 for
single and 10~12 for double) the matrix is said to be ill conditioned (Hammerlin
and Hoffmann, 1991; Press et al., 1992). Table 7.1 shows the singular values of
matrix § at two instants on the verge of the numerical breakdown in the Duff-
ing’s case, which has the most well-behaved nonlinear function among the five
systems analysed. It is seen that the just before the collapse the range of the
singular values range is 5.2 E10, which is wider than the required by single pre-
cision calculations, and at the next step it becomes greater than 1.0 E12, thus
exceeding the double precision accuracy. Second, the location of the quadra-
tures. As can be seen in any table on numerical integration by Gauss-Legendre
quadratures (which is the most economical method for integrating any function)
they allocate the integration points the closer to each other, the farther their
distance from the origin. It has been observed that this feature represents a
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further contribution to the numerical breakdown of the solution. In fact, when
evaluating the density function and the weighted moment kernels, in which the
values of the state variables are to be raised to high powers, the argument of
the integrand’s function can reach very large values at some points. The use of
higher order precision did not remedy the situation. Needless to say that such
a concentration of high values does not occur in uniformly discretized spaces
such as those required by Simpson method or the herein proposed Fourier-based
algorithm. A third cause could eventually be attributed to the use of the Kuler
integration scheme, which is reputed to be the the most unstable method for
solving differential equations. However, even when using more accurate meth-
ods to such purpose such as fifth order Runge-Kutta no significant differences
in the partial results calculated have been found; moreover, such a device did
not help in overcoming the numerical breakdown of the solution.

In the next paragraph a method for numerical integration based on Fourier
transforms is introduced. The solution of all the above examples has been
possible with its aid due to its high accuracy.

7.5.3 Proposed Fourier integration algorithm

It is well known that if a N—dimensional integral is to be evaluated by a
discretization of L points, the number of function evaluations is Ly, Thus, the
practical use of the method of maximum entropy requieres efficient methods for
performing such a large numerical task at each time step.

Figure 7.1 On the calculation of one-point Fourier transforms
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Besides conventional methods for numerical integration, this labour can be
faced by having resort to the characteristic function of the maximum entropy
density. Dividing both sides of equation (7.42) by Clg(t) it is easy to see that
it can be recast in terms of moments, i.e.,

K

I le (5 O (1) = pi e (DIAR(E) = %8) (7.53)
k=1

In passing, it can be seen from the above equation that if the highest order of
moment to be evaluated is K, the maximum entropy method uses information
of order 2K, which explains the good accuracy achieved at low K orders as
reported by Trebicki and Sobezyk (1996).

While the moments are defined as integrals of the product of the respective
kernels by the density function, they can also be expressed as:

_ Ly olee)

Hi = (;) (ailaig - 8iL)9:0 (7.54)
where i. = —1 and Q2(#) is the characteristic function defined as the Fourier
transform of the density

Q) = f exp(i0' ) f(x)da (7.55)

According to this definition the moment of order ¢ can be calculated as the
following one point Fourier transform of the weighted kernel functions:

pi = ([ w0 2ymie) f@)de) (7.56)

It is obvious that any integral spanning the whole real space can be esti-
mated as the real part of the zero frequency value of the Fourier transform,
provided the later exists. Hence, from a computational point of view the cal-
culation of the elements of matrix 8 can be done by taking advantage of some
properties of the Fourier transform. Specifically, the computer code written for
these analyses takes into account the following facts:

1. The need of calculating one single transform point which corresponds to
the zero “frequency”. Figure 7.1 (adapted from Oppenheim and Schaffer 1989)
illustrates by solid lines the operations needed for calculating such single point
out of the many needed to compute the discrete Fourier transform
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L-1 Ik
X[k =3 xl]e’™T (7.57)
=0

at L = 8 locations. The circles represent summation and the functions Wi are
the weights exp(2nij/L) applied to the corresponding value. It is evident that
the operations indicated dashed lines are superfluous in this case. This simplifi-
cation of the calculation is needed to make the method competitive with other
numerical strategies such as Gauss-Legendre quadratures in terms of computa~
tion time.

2. The reduction of the N-—dimensional Fourier transform to a sum of
LN=1 5ne dimensional, one point transforms, where L is a discretization order
common to all dimensions. In fact the multidimensional continuous transform
(equation 7.56) can be approximated by

Ly—1 Li1—1
NZ lz ex (271"1[ﬁ +..+ m])M(E W I A (7.58)
p I T gk s by N .
Iy=0 1,=0 1 N n=1

in which Ly,..., Ly are the number of discretization points of the weighted mo-
ment kernel on each axis, k;, ..., k&, are the coordinate points of a desired value
of the transform, M;(-) is the value of the ¢ weighted moment kernel evaluated
at the point of coordinates (;,...,1) and Ayg,..., Ay are the discretization
intervals. Since the moment integrals extend over the whole real space, there
is no special reason for assigning a different number of discretization points
to each axis, so that all of them can be made equal to a certain L. Also, by
proceeding in this way, the value of all the k£ ,n =1,2,... N corresponding to
the zero frequency happen to be also mutually equal because the null frequency
occupies the central position. If its corresponding coordinate is denoted by k,
the single point multidimensional trannsform (7.56) can be estimated by

N{L-1) 111k N
||Z exp(ZWi(—E—))Mi(ll,...,lN)- HlAn (7.59)
t =0 n=

A simple examination of this equation makes apparent that, by splitting the
whole sum into segments according to the index that changes most rapidly,
the calculation can be done by summing up LY 1 one dimensional, one point
transforms. Symbolically, we have
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LN—I
FET(N, k) = Y. FFT;(1,k) (7.60)
i=1

Table 7.2 illustrates the way the splitting must be done in a bidimensional case
(N = 2) using L = 4 points so that IN-1 = 4. The elementary single point
FFTs are calculated following the paths depicted in figure 7.1.

Table 7.2 Splitting of a one-point bidimensional Fourier transform (Equation 7.59)

Single FF'T No. L L 12|
1 0 0 0
1 0 1
2 0 2
3 0 3
2 0 1 1
1 1 2
2 1 3
3 1 4
3 0 2 2
1 2 3
2 2 4
3 2 5
4 0 3 3
1 3 4
2 3 3
3 3 6

3. The possibility of calculating two transforms at a time, due to the fact
that the weighted moment kernels are real quantitites. This option represents
an additional saving of computation time. A complex array can be built in
such a way that its real and complex parts are filled up with the values of
two different weighted kernel functions and the transform will return the cor-
responding moments simultaneously. This device makes use of the symmetry
of the Fourier transform for both purely real and purely imaginary functions
(Press et al. 1992).

Figure 7.2 shows the shape of a typical Fourier transform of an even weigthed
moment kernel of a zero mean variable. It can be observed that the zero fre-
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Figure 7.2 Aliasing in transforming a moment kernel

1561

quency is the least affected by the so-called aliasing phenomenon, by which the
transform values corresponding to frequencies above the critical Nyquist fre-
quency are folded up and added to the values of the transform corresponding
to frequencies lower than it. This means that the transforms can be calculated
with a reduced number of points per axis with no serious risk to the accuracy

of the algorithm.

Table 7.3 Integration of the normal density function (Equation 7.61}

Integration method Number of points Value error, %
Fourier 8 0.9999978 0.00020
Gauss-Legendre 10 0.9998938 0.01062
Simpson 65 0.9999366 0.00634
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Table 7.4 Integration of the normal kurtosis kernel (Equation 7.62)

Integration method Number of points Value error, %
Fourier 8 2.998442 0.051
Gauss-Legendre 10 2.973016 0.899
Simpson 129 2.979467 0.684

Table 7.5 Integration of a 3D normal kurtosis kernel (Equation 7.63)

Method Number of points Value error, %
per axis
Fourier 8 26.12110 0.065
16 26.99837 0.006
Gauss-Legendre 9 32.28138 19.561
17 26.98895 0.041

Tables 7.3 and 7.4 compare the results obtained by the present algorithm
with those calculated by Gauss-Legendre quadratures and adaptive Simpson
rule (Press et al. 1992) for the case of the one dimensional integrals

2

1 _z_
1 i o
IQ:E_/:EE Zdr =3 (7.62)

which correspond respectively to the standard Gaussian function and a kurtosis
kernel. It is observed that the proposed Fourier method is the most accurate of
all and that it is as economical as the Gauss-Legendre’s.

Since for a task of masive multidimensional integration (as that required
by the method of maximum entropy) techniques like Simpson’s or Romberg’s
represent a large computational burden, only the Gauss-Legendre’s will be used
as a reference for comparing the accuracy and efficacy of the proposed Fourier
algorithm in the sequel. Table 7.5 shows a comparison of the evaluation of the
normal kurtosis kernel in three dimensions:
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I, = 1 - f[]mjmixiexp(—%{ ?-l— :cz - $§])d$ldmzdﬂ:3 =27 (7.63)
(2m)*

It is observed that the Fourier method converges faster to the target value than
the Gauss-Legendre technique, due to the low sensitivity of the zero frequency
transform to the aliasing phenomenon as said above. Also, its accuracy is at
least one order of magnitude higher than Gauss-Legendre’s when using a similar
number of points. Thus, the accumulated error for a calculation of several
seconds of response will be less when using the present approach, let alone the
problem of the numerical instability which will be examine next,.

The reason for the superior accuracy of the Fourier method over the other
ones lies in the fact that the transform is linked to the integrand by an exact (al-
beit tricky) mathematical relationship. On the other hand, Simpson or similar
rules are exact only for polynomial integrands of specific order and Gaussian
quadratures give exact results only for integrands that can be expressed as
a polynomial multiplied by the corresponding weighting function. Finally, the
Fourier technique employs a regular discretization mesh that is less riskly in the
frame of the maximum entropy method than the one used by Gauss-Legendre
quadratures, as explained in the foregoing.
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7.5.4 Numerical examples

The above method of integration was applied to the five examples presented
above using 16 Fourier integration points and double precision. In all cases it
was possible to calculate many seconds of response without numerical difficul-
ties. A value of K = 4 was used in all cases. As expected, it was observed that
the first method of maximum entropy does not estimate correctly the first sec-
onds of the evolution of the probability function up to its stationary state due
to the need of starting the calculation with a density different from the Dirac
pulse. But when stationarity is finally reached the agreement is excellent, as is
also the the estimation of the nonstationary evolution when compared with a
- Monte Carlo solution that includes the randomness of the initial velocity and
position, as shown in the paper by Trebicki and Sobezyk (1996).

Figures 7.3 shows the results of the distribution function of the displacement
of the Duffing oscillator as calculated by intensive Monte Carlo (50,000 samples)
and maximum entropy approaches (both calculated at ¢ = 5 s). On the other
hand, figure 7.4 depicts the evolution of the displacement standard deviation
of the same oscillator as calculated by Fourier and Gauss-Legendre integration
techniques. The failure of the latter is evident. It can also be observed that
the solutions follow different paths from the very beginning due to their diverse
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accuracy degrees.

Figures 7.5, 7.6 and 7.8 show the estimated probability functions of the
displacement X of the Coulomb, Van der Pol and quadratic damping oscillators,
respectively. In the second case the density function is depicted in figure 7.7.
Together with figure 7.6, it suggests that a higher K is needed for improving
accuracy in this case.

On the other hand, figure 7.9 shows the results of the Bouc-Wen case. As
indicated in the figure, there was a need of calculating 40 seconds of response
in order to find a close-to-stationarity state due to the effect of drift (see chap-
ter 4) Figure 7.10 shows the evolution of the standard deviation as given by
Monte Carlo and maximum entropy methods. It can be observed that the lat-
ter oscillates erratically at the first instants, which is an indirect measure of
the inability of the method for estimating correctly the initial evolution of the
probability functions for the above stated reason. However, after stabilizing, it
shows a trend to converge from above to seemingly the same value to which the
Monte Carlo result tends from below. It can also be observed that the max-
imum entropy method leads to a value similar to the assymptotic one faster
than Monte Carlo. Taking into account that for calculating accurate density
functions of the response a large number of Monte Carlo analyses are required,
these remarks indicate that a good approximation to the stable result of the
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stationary probability function can be obtained by calculating a few seconds of
response with the maximum entropy method at a very low computational cost.

Figure 7.11 shows the stationary joint X, Z stationary density function of
the Bouc-Wen system as calculated by the method of maximum entropy. Its
shape clearly indicates that the response reaches a moderate degree of nonlin-
earity under an excitation S, = 0.1 because there is no concentration of Z
values near the maximum z, = 1 (see figure 4.5). In order to test the numeri-
cal stability of the method under a stronger excitation, a further analysis was
performed with S}, ten times larger. Figure 7.12 displays the evolution of the
joint density function of X and Z. It can be observed that, when the stationary
state is finally reached, the function is bell shaped on the displacement axis
while bimodal on the Z axis. This confirms that this case in fact corresponds
to a severe nonlinear behaviour,

Finally, it should be pointed out that the better accuracy of Fourier integra-
tion has a reflect on the numerical stability of the entropy algorithm. This can
be illustrated by comparing the singular values of the S matrix of the Dufling
case obtained by the Fourier approach at the threshold of the Gauss-Legendre
failure time (see Table 7.1). Tt is noticed that the range of singular values of the
Fourier approach (299.6) is lower than that obtained in using Gauss-Legendre
integration a little bit before its numerical breakdown (441.2}. Since there is no
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direct mathematical link between the accuracy of the integration and the con-
ditioning of matrix S, the superiority of the Fourier-based calculation can only
be stated here on the empirical basis of the many cases analysed in the present
research, some of which are included in this chapter. However, the achievement
of a stationary solution by the Fourier approach can not be taken for granted,
inasmuch as the calculation advances along the edge of numerical pitfalls bur-
rowed by the ill-conditioning of matrix S. In fact, despite the conditioning of
S is in general better when use is made of the Fourier technique, some analyses
performed on the Coulomb system failed. Perhaps the abrupt discontinuity of
its restoring force function contributed to the breakdown.







Chapter 8

Seismic stochastic response of
base isolated buildings

8.1 Introduction

It is well-known that current earthquake-resistant design aims at dissipat-
ing the input seismic energy in the form of nonlinear deformations when the
structure is excited by strong ground motions. In the last years, intensive re-
search has been conducted in the field of seismic base isolation, i.e. a technique
purported to reducing the vibrations of buildings caused by earthquake ground
motions. The building is supported on an additional slab which in turn rests
on special devices which are intended to undergo very large displacements. The
effect is to have the structure vibrating with a close-to-rigid-body motion. As
illustrated by figure 8.1, the objective is to avoid the damage associated to
the energy dissipation mechanism of conventional seismic design philosophy.
(Barbat and Bozzo 1997).

Several types of devices have been developped for base isolation. The most
spread of all are the laminated rubber bearings, which is formed by layers of
neoprene and steel plates (Kelly 1993). The purpose of this system is to give
the structure a large natural period such that low response accelerations can be
expected. The lead-rubber bearings (Skinner et al. 1993) include in addition a
lead cylinder which is intended to give some energy dissipation (figure 8.2). The
friction isolation system was developped to dissipate the input seismic energy by
friction at the base. A major disadvantage of this system lies in the possibility
of having large residual displacements after the end of the ground motion. In
the friction pendulum system this drawback is corrected by including an elastic
restoring force in the form of a spherical base that grants the return to the
original position (figure 8.3). Other proposals consist in combinations of the
two leading principles, i.e. increase of the natural period or energy dissipation.
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Figure 8.1 Seismic behaviour of conventional (a} and base isolated buildings ()
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As an application of the concepts and methods dealt with in the foregoing
chapters, some issues of the seismic behaviour of two classes of base isolation
proposals will be examined here. The selected systems are the lead-rubber
bearings and the friction pendulum system, as they represent two of the most
used seismic isolation appliances. However, some conclusions reached in this
chapter apply to other systems as well.

8.2 Equivalent linearization of base isolation models

Before discussing the stochastic response of base isolated buildings as esti-
mated by the method of stochastic linearization it is important to examine its
accuracy when applied to some models of the base isolation devices under study
considered as single mass systems.

8.2.1 Lead-rubber bearings

Lead-rubber bearings have been modelled by some authors using the Boue-
Wen hysteretic system (Constantinou et al. 1985, Lin et al. 1990a, b) The
equation of motion of the single mass system shown in figure 8.2 is

m, X + e, X +agk, X + (1 - oy Yk, Z = —mP(t) (8.1)
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where m,, ¢, and k, are the mass, damping and stiffness constants of the base
system, X = d, the random base displacement and P(¢) the random excitation.
The hysteretic component of the system can be described by the differential
equation

Z=((X,2) = AX — B X||Z[™ 7 Z — 5, X| 2™ (8.2)

For all the numerical analyses of the present chapter we will adopt the follow-
ing model parameters (Lin ef al. 1990a): A, = 1.0,8, = 1.4,, = —0.54 and
ny, = 1. Figure 8.4 illustrates the hysteresis loops of the response of such system
subject to a Gaussian white noise of intensity Sy = 0.(}1m2/ s3, which corre-
sponds to a strong excitation. It is evident that the parameters of the system
compel to a close-to-linear behaviour in which the governing stiffuess is that of
the post-yielding branch. Therefore, the estimation of its statistics can be per-
formed by stochastic linearization using the assumption of Gaussianity. In fact,
as figure 8.5 points out, this hypothesis even leads to a slight overestimation of
the response of this system. This trend has been confirmed in several additional
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analysis with different excitation types and intensities. As a consequence there
is no need of employing the approach proposed in Chapter 5 to this case.

8.2.2 Friction pendulum systems

Friction forces are usually modelled as Coulomb systems. This means that
for a structure described with the equation of motion

m, X + ¢, X + h(X) = P(t) (8.3)

the restoring force is given by

hX} = pgm,, sgn(X) (8.4)

where 4 is the coefficient of friction, ¢ the acceleration of gravity and sgn(-) is
the signum function defined as:
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-1, X<0
sgn(X) = {0, X=0 (8.5)
I, X>0

Common friction coefficients found in base isolation systems are in the range
of 0.05 to 0.15 (Barbat and Bozzo 1997). It has been recognized that this
model represent a simplification of the actual relationship between restoring
force and velocity, in that friction coefficients has been found to be somewhat
velocity-dependent (Robert and Spanos 1990; Bozzo and Barbat 1995). Also,
the equation of motion should be completed with the so-called stick condition,
according to which sliding does not occur unless the absolute value of the re-
ponse acceleration exceeds a threshold value given by pg sgn(X ). However, from
the point of view of random vibration the effect of these details is blurred by
the large scattering of the earthquake action and the subsequent randomness of
the structural response and therefore they are usually ignored in such type of
studies (Fan and Ahmadi 1991).

In the friction pendulum system the equation of motion must be enlarged
to include the restoring force associated to the pendulum, i.e,
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my X + ¢, X + kX + h(X) = P(t) (8.6)

where k, can be determined after the period of the pendulum. The latter is
usually set in the range from 2 to 3 8. The linearization technique can be easily
applied to this equation by transforming the nonlinear force into a linear one
in the form of an equivalent damping force

h(X) = u,X (8.7)

The classical result derived under the hypothesis of Gaussian behaviour is an
equivalent damping coefficient equal to (Roberts and Spanos 1990)

2
py =1 2P (8.8)
s O“X

Tt is not difficult to see that the direct use of the Coulomb formulation poses
numerical difficulties to the solution of the equation of motion in deterministic
analysis due to the presence of the signum function. As an alternative, it has
been proposed the modelling of the frictional restoring force by means of the
Bouc-Wen differential equation (Yang ef al. 1992a, b). In this case one has

hMX) = pgm,V (8.9)
where V is an auxiliary variable governed by

. 1 . . _ .
V= m—(AbX ~ B XNV~ — 4, X|V]™) (8.10)
Y

Here z, is a dummy yield displacement to which a very low value is assigned
in order to obtain the typical rectangular hysteresis loops resulting from the
signum function in equation (8.4) (see figure 8.6). Obviously, the above equation
can be linearized in the same way as the Boue-Wen auxiliary variable.

Figures 8.7 and 8.8 display the results of the analysis of a frictional oscil-
lator with friction coefficients 0.05 and 0.15, respectively, subject to Gaussian
white noise of intensity S, =. The parameters m, and &, have been assigned
to give the system a pendular period of 3 s. It can be seen that while the
Gaussian linearization of the original Coulomb model (equation 8.7) largely un-
derestimates the displacement response, in the endochronic formulation it leads
to estimations that depend somewhat on the selected parameter n,, but which
are although undoubtly better. As seen in the figures, a value of n, = 1 seems
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adequate in the range of interest. In the analyses that follow the endochronic
formulation of the friction restoring forces will be preferred over the Coulomb
one.

8.3 Structural model

In the present chapter a simplified structural mode] of the superstructure
of base isolated buildings known as shear beam model has been adopted. In
such model slabs are assumed to have an infinite stiffness so that the story
flexibility equals that of the columns. Such a simplification, of course, implies
that there are no rotations at column ends — an assumption that contradicts the
real behaviour of building frames. However, beam flexibilities can be considered
in an approximate manner in the value of the story stiffness by calculating the
stiffness of equivalent, more flexible columns. Approximate formulas for such a
simplification have been proposed.

.
2M story %
7{L
s

O

1%t story

O

Base
isclation

Figure 8.9 Shear beam model of base isolated buildings

The main consequence of the shear-beam simplification is that the whole
building can be analysed as a string of masses interconnected by linear or non
linear springs (figure 8.9). For the analysis of base isolated buildings the use of
this model is more justified than in case of conventional ones due to the tendency
of the superstructure to move as a rigid block when isolated at the base (Kelly
1993). Let us consider a shear-beam model with N hysteretic stories of the
Bouc-Wen type, considering the base isolation layer as one of them. Linear
layers can be modelled by setting its « equal to unity. Refering to figure 8.9,
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for the i—th story, ¢ = b,1,2,..., N where ¢ = b corresponds to the isolation
layer, we have the following equation of motion:

Zz: i (t) + T, N+ & (8) = €41 @41 (8) + By (t) — h;,_ (1) =0 (8.11)
j=b

where #,(t) is the ground acceleration and z; (t) is the so-called story drift
defined as the difference between sucessive story displacements,

AQESAGEL ) (8.12)

Assembling the equilibrium equations for the entire building model, and chang-
ing from deterministic to stochastic notation, the following system of differential
equations is obtained:

MX®) +CX(t)+ KX({t)+GZ(t) = -NJIX,(t) (8.13)
with
m, 0 0
m, m 0
M = . (8.14a)
my Ty My
¢, —¢ 0 0
0 ¢ —c 0
C= X (8.14b)
0 0 0 Cy
apyk, —ak 0 0
0 ak,  —ayk, ... 0
K=| | P o _ (8.14c)
0 0 0 ayky
(1—ay)k, —(1—a)k 0 0
0 1—o )k, —(1—ay)k, ... 0
G= : ( :‘) vl : ks _ (8.144)
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my, 0 0
0 m ... O
N=| . . . (8.14e)
] 0 my
and
JT=11,1,...,1] (8.14f)

For frictional systems of the type considered here, the first diagonal term of
matrices K and G are equal to k, and pgm, respectively, where m, is the
total mass gravitating over the isolation layer. The linearized equations of the
hysteretic components of the restoring forces of the strings can be collected in
vector form as

Zt)=Ce X(t)+ Ko Z (1) (8.15)

where C'¢ and K¢ are diagonal matrices of the equivalent coefficients. In the
analyses performed in this chapter the ground motion acceleration is exclusively
modelled as a Clough-Penzien filter. In such case the state vector is

QT (1) = [X (1), X(8), Z(2), U, (1), Up(8), Up(£), Uy (2)] (8.16)

where the dynamics of the filter is governed by the equations (2.2) and (2.6)
which are repeated here for convenient reference:

U, () + 20,0,U, (1) +w, Uy (t) = ~W (1) (8.17a)

U, (1) + 21,0,U; (8) + w0, Uy (t) = —2 5,0, U () — w, U, (0 (8.170)

where W () is a Gaussian white noise of power spectral density S,,. These
equations correspond to the following model for the random ground acceleration:

. . 2 . 2
Xy =Up = 200U —w, U — 20,0, U, —w Uy (8.18)
Finally, the differential equation for the linearized system is

Q)= A Q1) + F (1) (8.19)
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with system matrix

0 I o 0 ) 0 0 0
-K -C -G wN-wg -N-2v,w, -N-w ~N- 2vuw,
0 Ce Kg 0 0 0 0
Ag = 0 0 0 0 1 0 ) 0
0 0 0 (e -2 Valy —w, —2 v,
0 0 0 0 0 0 ) 1
0 0 0 0 0 —w, -2 VW,
(8.20a)
and excitation vector
0
F(t) = : (8.200)
W (t)

In the above equations

K=M'K, ¢=M'C,G=-M "G, N=M NJ  (8.20)

The evolution of the covariance matrix of the zero mean state vector Q

% =E{QQ"} (8.21)
can be obtained by solving the differential equation (3.46)

Y= AN+ XAT + 278 8.22
r

where the entries of matrix S, are all zero with the exemption of the one in
position (N, N) which is equal to ZWEZ(t)SW in the uniformly modulated non

X 2, 3 : . .
stationary case, or to 2m€ (f)x (t)S,, if the instantaneous spectrum model is
adopted. In the latter case it is necessary to make the following transformations
in the system matrix:

~-N -2 vy, — ~N 2y, [K(t) (8.23a)
—w = —w () (8.23b)
—2v,w, = —2vw, (£(t) + E(t)/E(E)) (8.23¢)

where subindex h stands for either f or g.
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8.4 Seismic random vibration of base isolated buildings

The introduction of base isolation is very recent. As a consequence, there is
little experience on the actual response of buildings with passive or active base
isolation to actual strong earthquakes. This makes more relevant the insight
provided by random vibration analyses of such structures, due to the synthetic
view they can afford.

Some research in this direction has been performed. A first attempt was
done by Constantinou et al. (1985), who applied the classical method of stochas-
tic equivalent linearization to analyse the response of some models of passive
base isolated buildings. Lin et al. (1989) analysed various systems using as
seismic model a Clough-Penzien filter fitted to a seismological model. The ob-
jective was to compare the response of the selected systems and to classify then
according to their range of applicability. A similar study had been conducted by
Lin et al. (1989). It is important to observe that in both studies the seismologi-
cal model chosen corresponds to rock motions and the analyses were performed
for stationary conditions. Thus the effect of loecal soil conditions is ignored as
well as that of non stationary details of the seismic action. Finally, stochastic
analysis of active base isolated building models have been performed by Yang
et al. (1994) using the algorithm of optimal control.

The aim of the present section is to discuss the effect of some features
of the seismic exctiation as well as other aspects of the stochastic modelling.
Specifically, the issues examined are the following:

1. The influence of the nonstationary features of the seismic excitation.
2. The influence of seismic spectrum parameters.
3. The effect of structural nonlinearities.

In the numerical analyses, which are performed on two- and six-story build-
ings, use will be made of the structural parameters appearing in table 8.1. The
stories are numbered from top to bottom in the table, so that the two-story
case takes only the first two lines of the table. The mass of the isolation slab is
my, = 450 t and that of the stories is 345.6 t. The values are taken from Yang
et al. (1992a).

8.4.1 Influence of nonstationary features of the seismic excitation

Even though a thourough parametric study on the subject of nonstationary
seismic response of base isolated buildings is beyond the purpose of this section,
the case studies presented herein will shed light on some important issues of their
seismic response that are not reflected when analysing them in the stationary
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Table 8.1 Siructural parameters of the shear beam building models

Story No. damping, ¢, stiffness, k,
(kN-s/m)x10° (kN/m)
1 37 196
2 1.69 243
3 2.07 208
4 2.43 348
5 2.69 386
6 .85 410

regime. The conclusions, then, will serve as a complement to those drawn in
the quoted previous studies, most which have analysed the stochastic behaviour
of base isolated buildings from a stationary point of view.

The main purpose of introducing flexible base isolation bearings in building
design is to increase the natural period of the structure in order to reduce the
acceleration response (Kelly 1993). This is due to the fact that typical earth-
quake acceleration spectra exhibit large ordinates at the low period range and
a rough exponential decrease after a certain period. However, the introduction
of high flexibility at the base of the building can make them quite vulnerable to
earthquakes of a different spectral content, such as those filtered and amplified
by very soft soils in which low frequency waves play the dominant role. In such
cases the use of base isolation systems that increase the natural period is ob-
viously discarded. Nevertheless, the behaviour of such building under normal
high frequency earthquakes exhibiting some low frequency waves of high energy
is worth an investigation.

In order to examine this issue, a two story building supported on 20 lead
rubber bearings was subject to an earthquake excitation with the intermediate
soil conditions of table 2.2, The nonstationarity in amplitude was defined by
means of two Shinozuka and Sato (1967) functions {equation 2.19) correspond-
ing to earthquakes with low and high effective durations. The parameters are
a = 0.25,b = 0.5 on the one hand and a = 0.085 and b = 0.17 on the other.
The building model was first analysed with amplitude modulation only and
then with the three frequency modulation functions corresponding to El Cen-
tro, SMART No. 45 and Orion Boulevard records, whose parameters appear in
table 2.1. As said in chapter 2, these records correspond respectively to situa-
tions in which there is a low, intermediate and high presence of low frequency
surface waves at the end of them.

Figures 8.10 to 8.13 display the evolution of the standard deviation of the
base isolation displacement and the drift of the second story of the building,
subject to low and high effective duration earthquakes, respectively. It can be
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seen that the evolution of frequencies can produce a large increase of the dis-
placements of both the base isolation system and the structure if it is associated
with a long effective duration. In the opposite case the eflects are minimal. It
must be noted also that such an effect is not captured by a stationary anal-
ysis nor by a nonstationary one in which the seismic action is modelled as a
uniformly modulated process.

The importance of considering these nonstationary effects in practical de-
sign can be appreciated in figure 8.14 and 8.15, which correspond to the same
building as above with 10 and 30 lead-rubber devices. It is apparent that the
only way of controlling the increase of base displacement produced by a severe
frequency evolution is the stiffening of the base. However, this decision would
imply an important cost increase and the reduction of the effects pursued with
base isolation.
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Figure 8.14 Base displacement of a building on 10 lead-rubber bearings

A similar result for a six-story building supported on a frictional pendula
with p = 0.1 is depicted in figure 8.16. Only the case of long duration earth-
quake with the Orion frequency modulating function has been considered. It
can be observed that this kind of system is similarly sensitive to the frequency
evolution as the lead-rubber one. This is due to the imposition of a high period
at the base system for restoring the final position.
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8.4.2 Influence of seismic spectrum parameters.

Being a large period structural system, the response of buildings supported
by lead-rubber or frictional pendulum bearings can be expected to be insensitive
to the main damping and frequency parameters (v,,w,) of the Clough-Penzien
spectrum as given by table 2.2, This was confirmed by some numerical analyses
performed on both type of systems whose results are not shown. In contrast,
a high sensitivity to the low-cut filler parameters v; and w; can be anticipated.
To confirm this hypothesis, an analysis was performed on the two-story lead-
rubber and frictional pendulum buildings using the SMART function and an
intermediate duration envelope defined with a = 0.15 and b = 0.3. As figures
8.17 and 8.18 illustrate, the decision on these values in practical applications
must be done carefully, because their influence is crucial in the assessment of
the response statistics.

0.2

0,|15

§t. deviation

Figure 8.19 On the influence of S,

Finally, an analysis was carried out in order to examine whether the in-
crease of the displacement statistics produced by the consideration of frequency
modulation is affected by the strength of the excitation. To this purpose a six-
story building with 20 lead-rubber devices subject to Clough-Penzien spectra
with driving white noises of strengths 50 and 200 ¢m? / 3 was analysed. It can
be observed in figure 8.19 that the percent of increase in both cases is similar.
Therefore, it can be concluded that a rigth modelling of earthquake actions
for analysing this type of buildings should always consider the possibility of
ocurrence of high energy, low frequency waves.
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8.4.3 Influence of structural nonlinearities.

Another aspect that deserve examination is the effect of nonlinear incur-
sions of the elements composing the upper stories. To model such nonlinear
behaviour, the strength of each story j was set equal to

j
hyy = C, Y myg (8.24)
i=1

where C, is the so-called seismic coefficient in earthquake-resistant design, whose
typical values are in the range 0.05 to 0.2. Figures 8.20 and 8.21 display the
results of the standard deviation of the displacement of the isolation system and
bottom story of the two-story building supported on 20 lead-rubber bearings
with C. = 0.1 in all stories. It can be observed that, while the nonlinear
behaviour of the structure reduces the base displacement, it increases that of
the stories. If such greater structural drift does not become critical for the safety
of structural and non-structural elements, this can be considered a positive effect

as a whole.
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8.5 Influence of strength uncertainty

As said in the introduction, the seismic behaviour of base isolated buildings
depends narrowly on the structural characteristics of the isolation devices and
much less on the characteristics of the structure, due to the tendency of the
latter to move as a rigid body. This means that the uncertainty about the
isolation model parameters affects directly the assessment of the response in
stochastic terms. Specifically, to what extent the randomness of the strength
of the base isolation system affects the estimation of the maximum base dis-
placement is the question that will be briefly examined in this section using
the method of perturbation introduced in chapter 3 and developped in chap-
ter 5 for hysteretic systems. Using the results of the analysis of a two-story
building supported on lead-rubber bearings, the probability distribution for the
maximum base displacement was calculated by the method of section 3.4 with
t, =5s and t, = 30s.

Figure 8.22 shows the assumed Gaussian distribution of the displacement
inferred with the peak value of the standard deviation and the Gumbel distri-
bution of the maximum. The mean and standard deviation of the maximum
are 28.5 and 10.9599 cm, respectively. The solution of the sensitivity differ-
ential equation (3.60) with respect to the strength of the isolation devices h,,
using the equations of section 5.4, and the posterior calculation of the perturbed
deviation by equation (3.58) yields 10.9607 or 10.9631 cm if the coefficient of
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variation of the strength is set equal to 0.1 or 0.2, respectively. Since these
increments are negligible, it can be concluded that the lead-rubber system is
robust with respect to the uncertainty in its strength.

Such a sheer insensitivity of the maximum base displacement to the
strength of the isolation devices is due to the fact that the latter is a parameter
of little significance in a system whose behaviour is close to linear, as illustrated
by figure 8.5. In last analysis, it can be attributted to the high value of the
post-yield ratio o of the model. Note that a much higher value (o = 0.6) has
been proposed by other researches for this very same system (Yang et al. 1992a,
b; Yang et al. 1994).
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