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Abstract. The aim of this paper is to provide a detailed description of a frame-

work for the estimation of time-sliced origin-destination (OD) trip matrices in a 

transit network using counts and travel time data of Bluetooth Smartphone de-

vices carried by passengers at equipped transit-stops. A Kalman filtering formu-

lation defined by the authors has been included in the application. The defini-

tion of the input for building the space-state model is linked to network scenari-

os modeled with the transportation planning platform EMME. The transit as-

signment framework is optimal strategy-based, which determines the subset of 

paths related to the optimal strategies between all OD pairs.  

Keywords: Demand Estimation, Information Systems, Advanced Transport In-

formation Systems, Kalman Filtering 

1 Motivation 

In the context of estimating private transport demand, Origin-to-Destination (OD) trip 

matrices describe the number of trips between any origin-destination pair of transpor-

tation zones in a study area. For private vehicles, route choice models describe how 

trips select the available paths between origins and destinations and, as a conse-

quence, the number of trips using a given path (or path flow proportions) in private 

transportation modes. The route choice proportion can vary depending on the time-

interval in dynamic models, since the traffic state and the temporal dimension are 

considered. When a public transportation network is the object of study, OD matrices 

describe the number of transit trips between OD pairs or OD stops. 

While an average OD table for a whole period of interest is acceptable for an urban 

transportation planning study, OD matrices over consecutive time intervals are re-

quired for modeling and/or optimizing dynamic system operations. For all formula-

tions of static traffic or transit assignment models (Florian and Hearn [1]), as well as 

dynamic models involved in ATIS (Advanced Transport Information Systems) (see 

Ashok et al. [2]), they assume that a reliable estimate of an OD matrix is available and 

constitutes an essential input for describing the demand in predicting traffic state evo-
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lution over the network. Since OD trips are not directly observable, indirect estima-

tion methods have then been proposed. These are the so-called matrix adjustment 

methods, whose main modeling hypothesis can be stated for a transit networks as 

follows: if assigning an OD transit matrix to a network defines the number of passen-

gers in all segments of transit line itineraries sharing a network link, then the same 

OD transit matrix can be estimated as the inverse of the assignment problem. 

ICT (Information and Communication Technologies) sensors can also provide data 

for estimating dynamic OD transit matrices, though this has received little attention in 

the literature because of the difficulties in collecting real-time passenger loads. How-

ever, with the new technologies, applications for transport planning have been pro-

posed by several authors ([3, 4]), with a particular focus on transit OD inference.  

Wong and Tong [5] proposed a maximum entropy estimator, employing the sched-

ule-based approach for dynamic transit assignment. Ren [6] proposed a generalized 

least squares bi-level approach for estimating time-dependent transit matrices in con-

gested schedule-based transit networks where automatic passenger counts and prior 

OD matrices are available. The proposal was tested on a toy network, but no recent 

works from the author have confirmed any offline or online applicability to large 

scale transit networks. 

Real-time transport information systems or traffic management applications have 

an additional requirement for estimating dynamic OD matrices: a short time response 

(less than 15 min) for estimating and for forecasting the dynamic matrix and network 

estate over the next 30 min horizon.  

Almost 20 years ago, memory space was expensive and unavailable on ordinary 

laptop computers. Because of this, linear Kalman filtering (KF) approaches for esti-

mating dynamic trip matrices were considered inefficient, and unable to satisfy the 

requirements of on-line applicability, as indicated by Wu [7]. A linear KF prototype, 

coded in MATLAB [9] (Barceló et al [8,10]), has proven to meet the requirements for 

on-line applications using traditional data collection and new ICT data.  

Kostakos et al [3] proposed the use of passengers’ Bluetooth mobile devices to de-

rive passenger OD matrices in a simplified context. A Bluetooth device set to discov-

erable mode must respond to a discovery request by transmitting its unique Bluetooth 

identifier (12 hex digits) and device class (6 hex digits), since a Bluetooth scanner 

located on vehicle units constantly scans the presence of the various devices it en-

counters (along with the date and time). Extending this idea, our aim is to explore the 

possibility of using the experience in private networks to estimate on-line dynamic 

OD transit matrices. To do this, we use ICT data, counts and travel times, provided by 

a sample of passengers with Smartphones and BT/Wifi signals are captured by Wi-Fi 

antennas, which are located in a subset of transit stops. A prior historic OD transit 

matrices estimated off-line is also used.  

The remainder of this paper is structured as follows. A section with the previous 

experience of the authors is presented, followed by a description of the model formu-

lation for estimating dynamic OD matrices in transit networks. The model-building 

environment for validation is outlined next. The paper concludes with a discussion 

and concluding statements. 



2 Previous experience 

In [8], we used counts and travel times provided by Bluetooth devices to estimate 

dynamic OD matrices for commuters driving their own cars, either on freeways or in 

urban networks. In that work, we proposed space-state formulations by means of line-

ar Kalman filters (KF). For linear freeways, traditional and ICT data at entry ramps 

were required. Bluetooth equipped vehicles were identified by antennas (in the fol-

lowing ICT sensors) located on some freeway sections. Equipped vehicles provided 

accurate travel time data from their entry points up to the freeway points they went 

through, where they were detected by ICT sensors.  

A prevailing basic hypothesis is that equipped and non-equipped vehicles follow 

common OD patterns. A common dynamic horizon was defined to be 1.5 to 3 hours, 

and it was divided into time-intervals of between 1 to 5 minutes in length. We adapted 

an idea proposed by Lin and Chang [11] and proposed our own linear KF formulation 

that relates state variables and observations. Congestion effects of traffic dispersion 

were taken into consideration, since time-varying model parameters were derived 

from travel times provided by the sample of equipped vehicles.  

We proposed a flexible formulation suitable for urban networks, and also for free-

ways as a particular case of a network, where state variables were defined as deviates 

(Ashok and Ben-Akiva [2]) of the number of OD equipped vehicles for intervals 

along the most-likely OD paths with respect to a priori historic values. Dynamic User 

Equilibrium (DUE) based on the historic time-sliced OD matrix was computed to 

define the set of most likely OD paths. The proportion of OD flows using the selected 

paths was not taken as input, as it is considered indirectly by some authors through 

assignment matrices. The measurements were: the link flow counts on traditional 

detectors, link flow counts of equipped vehicles in a subset of links where ICT sen-

sors were located, and travel times of equipped vehicles between ICT sensors.  

We achieved a linear KF formulation dealing with congestion in freeways and 

networks. Our approach exploited ICT travel time measurements from equipped vehi-

cles in order to estimate discrete travel time distribution (H bins were used for adap-

tive approximations). Travel times collected from ICT sensors were incorporated into 

the proposed model [8]. Throughout this paper, they are referred as time-varying 

model parameters. It was not necessary that vehicles reach their destination, since the 

measured travel times from any previously crossed ICT sensor updated the discrete 

travel time approximations at any intermediate sensor that they passed through. 

Therefore, completed trips were not the only source for updating time-varying model 

parameters in the program KFX3 implemented in MATLAB [9].  

2.1 Proposed framework for time-sliced OD transit estimation 

The research experience gained for estimating OD trip matrices and the extensive 

computational experience [8, 10] of simulating data determined the crucial design 

factors to be considered. The computational results reported that it is possible to apply 

a linear KF approach for estimating dynamic OD trip matrices in real-time applica-

tions, since a half-hour forecast takes less than 2 min using MATLAB [9].  



 

 

Fig. 1. Framework for Estimating and Predicting in ATIS 

The conclusions about the key design factors taken into account were: 

─ The penetration rate of ICT is a critical factor, but not controllable.  

─ The detection layout defined in terms of the number and location of detectors, 

which is in practice frequently determined by budget constraints.  

─ The quality of the historic time-sliced OD matrix used to initialize the KF algo-

rithm and a priori covariance matrices involved in the KF process.  

Thus, we conclude that, one cannot skip off-line estimation of a reliable historic 

(time-sliced) OD matrix when defining an on-line framework. So far, this lesson is 

considered in the framework for estimating the time-sliced OD transit matrices shown 

in Fig.1.  

3 Formulation of the model 

Notation is defined in Table 1. Some additional aspects to the data model and formu-

lation that have to be considered are: 

─ The demand matrix for the period of study is assumed to be divided into several 

time-slices, accounting for different proportions of the total number of transit trips 

in the time horizon. 
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─ The approach assumes an extended space state variable for M+1 sequential time 

intervals of equal length t (between 5 and 10 min), in order to consider non-

instantaneous travel times. M should guarantee traversal of the network. 

─ Bluetooth antennas are ICT sensors assumed to be located at (some) transit-stops. 

─ OD paths are those involved in optimal strategies for OD pairs for the period of 

study. They can be computed by any transportation planning software including a 

strategy-based equilibrium transit assignment using historic demand. We do not 

have a strategy-based dynamic transit assignment tool available, so we considered 

EMME [12] to define state-variables in our tests. The description of paths involved 

in optimal strategies from centroid i to j going through ICT sensors (pairs of ICT 

sensors) can be systematically programmed in any language (although this is not 

trivial), from the EMME output to the input files for the MATLAB data model.  

Table 1. Definition of model variables 

 kQl

~ ,  kql
~  : Historic total number of passengers and equipped passengers accessing a transit 

unit and first detected  at stop r, related to centroid i in flow conservation l at time 

interval k. 

 kQl
,  kql

 : Total number of passengers and equipped passengers accessing a transit unit and 

first detected  at stop r, related to centroid i in flow conservation l at time interval k. 

 kyq
~

, 
 kyq  

: Historic and actual number of equipped passengers crossing at time interval k either 

the q sensor or destination sensor s, for a pair of ICT transit stops q=(r,s) 

 kGije , 
 kGije

~

 kgije ,
 kgije

~
 

: Total number of current  kGije
 and historic  kGije

~  passengers, as well as the 

current  kgije
 and historic  kgije

~  equipped passengers accessing centroid i at time 

interval k  and heading towards  j using path e. 

 kgije
 
: State variables are deviates of equipped passengers from centroid i during interval k 

headed towards centroid j using path e with respect to average historic data 

     kgkgkg ijeijeije
~ . 

 kz
,
 kz~

 : 
The current and historic measurements of equipped passengers during interval k, a 

column vector of dimension Q (counts) plus L (flow conservation equations). 

 ku h

rs
 : 

Fraction of equipped passengers that require h time intervals to reach sensor s at 

time interval k from sensor r during time interval     thkthk  ,1 . 

Time-varying model parameters. 

 ktrs
 : 

Average measured travel time for equipped passengers that reach sensor s at time 

interval k  from sensor r 

 

The total number of origin and/or destination centroids (related to transportation 

zones) is I; the total number of ICT sensors is P, located either at bus-stops or at seg-

ments in the inner network; and the total number of paths corresponding to optimal 

transit strategies from the historic OD transit assignment for the period of study is K. 

Q is the number of pairs of ICT sensors (r,s) plus individual sensor counts q to be 

considered. We estimate OD transit trips between OD pairs, not between transit-stops. 

The state variables gije(k)
 
are assumed to be stochastic in nature, and OD path 

flow deviates at the current time k are related to the OD path flow deviates of previ-

ous time intervals by implementing an autoregressive model of order r <<M; the state 

equations  are: 



              ,
1

k1wkw1k
r

w

wΔgDΔg  


 (1) 

where w(k) is zero mean with diagonal covariance matrix 
kW , and  wD  are  transition 

matrices which describe how previous OD deviates gije(k-w+1) affect current flows 

gije(k+1) for w = 1,…,r . In our tests, we assume simple random walks to provide the 

most flexible framework for state variables, if no convergence problems are detected. 

Thus, our first trial is r=1, and  wD  becomes the identity matrix. The relationship 

between the state variables and the measurements involves time-varying model pa-

rameters (congestion–dependent, since they are updated from sample travel times 

provided by equipped passengers) in a linear transformation that considers: 

─ The number of equipped passengers first detected in the system at equipped transit-

stops r, related to origin zones through explicit flow conservation equations l dur-

ing time intervals in k ,..., k-M,  kql . 

─ H<M time-varying model parameters in form of fraction matrices,   kuh

rs
, where 

the H adaptive fractions are updated from measures provided by ICT sensors. Di-

rect samples of travel times allow the updating of discrete approximations of travel 

time distributions.  

At time interval k, the values of the observations are determined by those of the 

state variables at time intervals k, k-1, …, k-M.  

  ,)v()g()F(Δz kkkk   (2) 

where )kv(  is white Gaussian noise with covariance matrix 
kR . )F(k  maps the state 

vector )g(k
 
onto the current blocks of measurements at time interval k: counts of 

equipped passengers at ICT sensors, accounting for time lags and congestion effects. 

The solution should provide estimations of the OD transit matrix between OD pairs 

for each time interval up to the k-th interval, once observations of equipped passen-

gers at the transit stops equipped with Wi-Fi antennas up to the k-th interval are avail-

able. KF prediction of OD trips for ICT equipped passenger up to some intervals 

ahead must be considered and expanded upon in accordance with historic profiles (for 

day-type and time-period), in order to feed a dynamic transit assignment tool that will 

provide the forecasted travel times, line loads and boardings/alightings at transit-stops 

in the short-future. We consider a 30 min forecasting horizon. 

4 Model Building environment 

The formulation has been programmed as a MATLAB prototype (named KFX3T). 

Correct codification has been verified, but the approach needs to be validated against 

either actual data, which was not available, or by simulation, the chosen option. 

In the research undertaken within the framework of the European Union COST Ac-

tion MULTITUDE, a common evaluation and benchmarking platform was developed 

for estimating dynamic OD trip matrices [13]. The main goal of that platform was to 



provide a testbed in which a number of algorithms can be linked and tested under the 

same conditions in a common network model.  

The MULTITUDE Platform consists of a Mesoscopic Traffic Simulator (AIMSUN 

[14]), one dynamic OD estimation algorithm coded in MATLAB [9], and a MATLAB 

function (AIMSUN.m). The MATLAB function allows dynamic communication 

between the estimation algorithm and the Aimsun model in order to execute a traffic 

simulation run within the OD estimation algorithm. It does this by creating and exe-

cuting a batch file, which launches the Aimsun executable and a python script with 

the relevant information. When the simulation is finished, the MATLAB function 

collects all the outputs and produces goodness of fit indicators. A case study consist-

ing of an old AIMSUN model for Vitoria-Gasteiz, a medium-size city in Spain, was 

provided to MULTITUDE partners. 

We chose to include the KFX3T OD transit estimation tool and Vitoria case study 

in the MULTITUDE platform for validation purposes. Vitoria’s model contains the 

description of a bus network. AIMSUN does not include public transport under the 

scope of the transit-assignment to the transit network, neither under a strategy-based 

nor a scheduled-based behavioral hypothesis. We decided to consider EMME [12] 

instead of AIMSUN and we selected an EMME model that matches the 

MULTITUDE network. The total number of public transit trips was 47816.3 for a 

2003 working day within 340 non-null cells, and an average value of 140 trips (max 

1186 trips).We fixed ICT equipped transit-stops for three of the most important bus 

lines: L7, L8 and L13. The model and equipped transit lines are shown in Fig. 2. Af-

ter selecting OD pairs with captured flows greater than 10, these lines have a total 

load (working day) of 20765 transit trips in 151 OD pairs (according to the additional 

options transit assignment results in EMME). 

 

 

Fig. 2. Emme Model for Vitoria: BT located at transit-stops for lines L7, L8 and L13 



At this point, we modified the MULTITUDE platform and substitute the AIMSUN 

model for EMME in order to provide: 

─ A graphic description (centroids, nodes, links and connectors) and transit lines 

(stops, headways and itineraries). 

─ A Transport Zoning System and historic demand matrix for the period of study. 

─ The location of ICT sensors at transit-stops (identified by an additional segment 

attribute @nBT, in EMME terminology, and an additional line attribute, @sline, to 

identify lines affected by BT-equipped stops, either totally or partially). 

─ OD paths involved in optimal strategies for the historic transit demand according to 

an Extended Transit Assignment, where OD flows are split between connectors in 

the origin zone using a logit model (scale parameter 0.5) and are subject to an OD 

path proportion greater than 5%.  

A strategy file is saved by EMME and the Extended Analysis tool reports path-

based details on paths extracted from strategies in a text file. This text file contains 

the path description included in the optimal strategies restricted to OD pairs and 

whose OD flow could be captured by some ICT sensors in accordance with historic 

demand and transit assignment. The path file has a complex format and is post-

processed using python script to generate the desired information in the data model of 

KFX3T. For each ICT-equipped transit-stop, the captured optimal transit OD paths 

are identified. For each pair of ICT transit-stops, the paths and subpaths connecting 

both sensors are identified. Report files related to OD pairs, nodes, links, etc. were 

converted to worksheet and .csv format files, in order to be read by the KFX3T model 

building procedures. This led to: 

─ A network workbook containing worksheets for: centroids, nodes and links. 

─ A demand workbook containing worksheets for: OD pairs, Entrances, Exits and 

OD paths involved in optimal strategies. 

─ A measurement workbook containing worksheets: Measures, SODMeasures, 

ActiveMeas, CapODPaths and Global (parameters). 

The KFX3T internal data model is divided into MAT files that are loaded as need-

ed into the program. They are: Global.mat, Tuning.mat, Graph.mat, Demand.mat and 

Measures.mat. Additionally, two additional MAT files have been included for internal 

use in order to simplify the access to some critical structures. These two files are: 

AccDem.mat (related to accessing OD pairs and paths) and AccMes.mat (related to 

OD paths captured by each defined sensor and pairs of ICT sensors). 

   

qthelp://com.inro.emme.modeller_man/doc/html/modeller_man/extended_transit_path_analysis_tool.html
qthelp://com.inro.emme.modeller_man/doc/html/modeller_man/extended_transit_path_analysis_tool.html


 

Fig. 3. Flowchart with the main elements of KFX3T in the MATLAB application 

Fig. 3 shows the flowcharts between the dynamic transit estimation KFX3F tool 

and the source of data for model building (MAT files). We have completed develop-

ment of all software pieces, except for the simulation tool that emulates passenger 

counts at stops and travel times between pairs of ICT sensors. Once available, the 

estimation and forecasting tool (KFX3F) could be validated using Vitoria’s network. 

5 Conclusions 

This paper has given an account of how to estimate Dynamic OD matrices for pas-

sengers in a real-time context, since they constitute the basic input for dynamic mod-

els involved in Advanced Traffic Management and Information Systems. The purpose 

of the present paper is to show the model-building process for a linear Kalman filter 

formulation developed by the authors. The framework implements a MATLAB pro-

gram (KFX3T) which takes advantage of the EMME transportation planning envi-

ronment through the definition of paths related to optimal strategy-based transit as-

signment.  

Finally, the software prototype, KFX3T, has been validated in a limited way. First-

ly, using a toy network and simulated data. Secondly, the mean squared error (MSE), 

which summarizes accuracy on average; is the default goodness of fit for testing the 

convergence. However, it would be interesting to assess the performance results of 

different measures in the future. Further experimental evidence is needed with a me-

dium-size network. Computational results of a similar approach applied to private 

transport networks by the authors support the on-line applicability.  
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