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The presence of burstiness in temporal social networks, revealed by a power-law form of the waiting
time distribution of consecutive interactions, is expected to produce aging effects in the corresponding
time-integrated network. Here, we propose an analytically tractable model, in which interactions among the
agents are ruled by a renewal process, that is able to reproduce this aging behavior. We develop an analytic
solution for the topological properties of the integrated network produced by the model, finding that the
time translation invariance of the degree distribution is broken. We validate our predictions against
numerical simulations, and we check for the presence of aging effects in a empirical temporal network,
ruled by bursty social interactions.

DOI: 10.1103/PhysRevLett.114.108701 PACS numbers: 89.75.Hc

Our understanding of the structure and properties of
social interactions has experienced a boost in recent years
due to the new availability of large amounts of digital
empirical data [1,2]. This endeavor has found the necessary
theoretical grounding in network science [3,4]. A first
round of studies focused on a static network representation
[5,6], in which nodes (standing for individuals) and edges
(indicating social interactions) are constant and never
change in time. From such a static representation, a wealth
of complex topological information was obtained, con-
cerning, e.g., the presence of scale-free, power-law degree
distributions PðkÞ ∼ k−γ , large clustering, positive degree
correlations, or a distinct community structure [7]. More
recently, this framework has been challenged by the
empirical observation of a temporal dimension in networks,
particularly evident in social systems, due to the fact that
social relationships are continuously created and termi-
nated. From these temporal networks [8], a static repre-
sentation is obtained by means of an integration of the
instantaneous interactions over a time window of width t,
and its associated topological properties, such as the degree
distribution PtðkÞ, are thus to be understood to depend on
the integration time [9]. The empirical study of the
temporal aspects of social networks has unveiled an addi-
tional level of complexity, embodied in many statistical
properties showing heavy-tailed distributions. Remarkable
among them are the distribution ψðτÞ of interevent or
waiting times between two consecutive social interactions,
revealing the bursty nature of human dynamics, and the
distribution FðaÞ of social activity, measuring the proba-
bility per unit time of establishing a new social relation.
Both distributions approximately obey power-law decays
of the form ψðτÞ ∼ τ−ð1þαÞ and FðaÞ ∼ a−δ, respectively
[10–14]. Noteworthy, the bursty nature of social inter-
actions represents a common feature of human dynamics
that can be related to the prioritized behavior of human
beings [11].

This twofold nature of social interactions naturally raises
the issue of the relation between the temporal correlation
properties of time-varying networks and the topological
features of their static representations. Among others, Song
et al. [15] proposed an empirical scaling theory bridging
the exponents of human dynamics patterns and social
network architecture, while Perra et al. [14] considered
an activity driven model, built upon the idea of a constant
social activity, defined as the probability per unit time that
an agent becomes active and starts a social interaction. The
activity driven model allows us to show that the degree
distribution PtðkÞ of an integrated network is functionally
related to the distribution of social activity FðaÞ by PtðkÞ ∼
t−1F½ðk=tÞ − hai� [16]. Following this direction, in this
Letter we focus on a different property of social temporal
networks, naturally expected in systems in which the
addition of connections is ruled by a non-Poissonian,
power-law distribution of interevent times, namely, the
presence of aging behavior [17,18]. Indeed, the construc-
tion of integrated networks assumes implicitly an integra-
tion interval ½0; t�. One can however consider a more
general time interval ½ta; ta þ t�, spanning a width t, after
an aging time ta. While the effects of a varying integration
window have been already considered in the literature of
temporal networks [9,19], here we focus on an aging
behavior translating into a breaking of time translation
invariance, manifested in the dependence of the topological
properties of the integrated network on the time ta at which
the integration starts. We notice that this notion of aging is
closely related to the aging observed in renewal theory
[20,21], which is not due to the physical aging of agents,
i.e., to the possible changes of the activity or connectivity
patterns of agents because of their becoming old, but it is
uniquely due to the heavy-tailed form of their interevent
time distribution. Physical aging phenomenology has been
considered in standard nontemporal networks in
Refs. [22,23] (see also Ref. [24]).
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In order to study this possibility from an analytic point of
view, we propose and analyze a non-Poissonian activity
driven (NoPAD) model, in which the waiting time between
consecutive agent activations follows an arbitrary form
ψ iðτ; ciÞ, c being a parameter quantifying the (possible)
heterogeneity of waiting times in the population. We
compute the topological properties of the ensuing inte-
grated networks by applying the hidden variables formal-
ism [16,25]. We find that if ψðτ; cÞ is a power-law
distribution with exponent 1þ α, then the degree distribu-
tion exponent γ is simply related to α, mediated by the
heterogeneity distribution ηðcÞ. In this model, effects of
aging are clearly evident. We observe in particular that
both the degree distribution Pta;tðkÞ and the average
degree hkita;t, computed in a time window ½ta; ta þ t�,
depend explicitly on the initial integration time ta.
Evidence of this sort of aging is recovered in an empirical
analysis of the temporal network defined by the scientific
collaborations in the journal Physical Review Letters
(PRL), published by the American Physical Society
(APS) [26].
Previous modeling efforts have shown that the concept of

memory can induce non-Poissonian interevent time dis-
tributions in temporal networks [27]. Here, we propose a
model joining the activity driven framework with the
empirically observed bursty nature of social interactions,
which allows for a simple mathematical treatment. The
NoPAD model is defined as follows. Each agent i in a
network of size N is endowed with a time-dependent
activity aiðtÞ, which represents the probability per unit
time that agent i becomes active for the first time after a
time t from its last activation. When an agent becomes
active, it generates an edge that is connected to another
agent chosen uniformly at random. Edges last for a period
of time that we assume to be infinitesimally small. The
activation of each individual follows thus a renewal process
[20] with an interevent time distribution given by [20]
ψ iðτÞ ¼ aiðτÞ exp f−

R
τ
0 aiðτ0Þdτ0g. (We assume that the

time between activation events is not affected by the
reception of a connection emitted by other active agents.)
For a time-independent activity ai we recover the original
activity driven model [14], with a Poissonian, exponential
interevent time distribution. An explicitly time-dependent
activity rate leads to a non-Poissonian activity pattern,
which can take the power-law, bursty form found in human
interactions. Shifting from the activity (failure rate) aiðtÞ to
the equivalent waiting time distribution ψðτÞ, we define the
NoPAD model in a operational way. Each agent in the
network becomes active following a renewal process ruled
by a waiting time distribution ψðτ; ciÞ, where c is a
parameter gauging the heterogeneity of the activation rate
of the agents, which we assume to be randomly distributed
according to a distribution ηðcÞ. Active agents connect to a
randomly chosen node by an edge that lasts an infinitesi-
mally small time.

The topological properties of the integrated networks
emerging from the NoPAD model can be computed by
applying the general hidden variables formalism [16,25].
Hidden variables network models consider a set of N
nodes, each one of them being assigned a hidden variable ~h,
drawn from a probability distribution ρð~hÞ. For each pair of
vertices i and j, i ≠ j, an edge is created with connection

probability Πð~hi; ~hjÞ. The resulting network has the degree
distribution

PðkÞ ¼
X
~h

ρð~hÞgðkj~hÞ; ð1Þ

where the propagator gðkj~hÞ is the conditional probability
that a vertex with hidden variable ~h ends up with degree
k, and whose generating function ĝðzj~hÞ ¼ P

kz
kgðkj~hÞ

fulfills the equation [25]

ln ĝðzj~hÞ ¼ N
X
~h0

ρð ~h0Þ ln ½1 − ð1 − zÞΠð~h; ~h0Þ�: ð2Þ

Focusing for simplicity in an integration interval ½0; t�,
and assuming that all agents are synchronized at time t ¼ 0,
the key point to map the NoPADmodel to a hidden-variable
model resides in computing the probability Πtði; jÞ that
two vertices i and j become eventually linked by time t.
Following Ref. [16], this probability can be written
as Πtði; jÞ≡ Πtðri; rjÞ ¼ 1 − ½1 − ð1=NÞ�ri ½1 − ð1=NÞ�rj ,
where ri is the number of times node i has become active
up to time t. This number of activations is itself a random
variable with distribution χtðrjcÞ, depending on the agent’s
heterogeneity c and time t [20]. The mapping to a hidden
variables network is now clear: the hidden variables are
the vector ~h → ðr; cÞ, with a probability distribution

ρð~hÞ → ρtðr; cÞ≡ ηðcÞχtðrjcÞ, and the connection proba-

bility takes the form Πð~h; ~h0Þ → Πtðr; r0Þ≃ ðrþ r0Þ=N,
independent of c and c0, in the limit N ≫ 1 and
N ≫ r; r0. Applying this mapping to Eq. (2) we obtain
ĝðzjr; cÞ≃ exp½ðz − 1Þðhrit þ rÞ�. The resulting propaga-
tor [28] is a Poisson distribution, sharply peaked at its
average value rþ hrit, where hrit ¼

P
cηðcÞ

P
rrχtðrjcÞ is

the average number of activation events at time t. Applying
a steepest descent approach [16] leads, through Eq. (1), to
an approximate expression for the degree distribution of the
integrated network in the interval ½0; t�

PtðkÞ≃
X
c

ηðcÞχtðk − hritjcÞ: ð3Þ

The remaining element to close the calculation is the
probability χtðrjcÞ, whose expression can be easily worked
out in Laplace space [20]. For the empirically relevant case
of heavy-tailed waiting time distributions with form

ψðt; cÞ ¼ αcðctþ 1Þ−ðαþ1Þ; 0 < α < 1; ð4Þ
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corresponding to a time-dependent activity aðt; cÞ ¼
αc=ð1þ ctÞ, we can use the approximation developed in
Ref. [29], valid for large r=ðctÞα, namely,

χtðrjcÞ ∼
1

ðctÞα e
ξðα;ctÞr1=ð1−αÞ ; ð5Þ

where ξðα; uÞ ¼ −½1 − α�½ðα=uÞαΓð1 − αÞ�1=ð1−αÞ. From
Eq. (3), the degree distribution of the integrated network
up to time t is given, in the continuous c limit, by

PtðkÞ ∼
ðk − hritÞð1−αÞ=α

t

Z
duη

�
u
t
½k − hrit�ð1=αÞ

�
eξðα;uÞ

uα
:

As we will argue below, a reasonable form for the
heterogeneity distribution is a power-law one,

ηðcÞ ¼ β

c0
ðc=c0Þ−ðβþ1Þ ð6Þ

with β > α. The degree distribution is thus given, for
k ≫ ðc0tÞα, by

PtðkÞ ∼ ðc0tÞβðk − hritÞ−1−ðβ=αÞ: ð7Þ

Equation (7) establishes the relation between the exponent
of the power-law degree distribution PðkÞ ∼ k−γ and the
exponent of the long-tailed waiting time distribution
ψðtÞ ∼ t−1−α, namely,

γ ¼ 1þ β=α: ð8Þ

This relation, mediated through the exponent β, manifests
the relevance of the assumed distribution of heterogeneity
ηðcÞ. We can motivate the form assumed for this distribu-
tion by relating it to the empirical activity measurements
performed in Ref. [14]. There, the average activity of an
individual i over a time interval āiðΔtÞ, defined as the ratio
between the number of social acts performed by individual
i in the time interval Δt, and the total number of social acts
in the system in that interval, was actually measured. In the
NoPAD model, the number of social acts of an individual
with heterogeneity c in an interval Δt is determined by the
number of times he has become active in that interval,
which from Eq. (9) (see below) is given by
r̄ΔtðcÞ ∼ cαðΔtÞα. Therefore, we have āðcÞ ∼ cα, indepen-
dent of Δt. A simple transformation between probability
distributions allows us to write ηðcÞ ∼ F½āðcÞ�½dāðcÞ=dc�∼
c−1−αðδ−1Þ. From here, we recover the postulated hetero-
geneity distribution (6), with an exponent β ¼ αðδ − 1Þ.
Most remarkably, for this value of β, the integrated network
shows a degree exponent γ ¼ 1þ β=α ¼ δ; i.e., we recover
the main result of the activity driven model, stating the
equivalence between degree and activity distributions [14].

In order to check our analytic predictions, we have
performed numerical simulations of the NoPAD model
with the waiting time and heterogeneity distributions (4)
and (6), respectively. The integrated network at time t is
generated as follows. To each node i a heterogeneity ci
extracted from the distribution ηðcÞ is assigned. Then, we
generate the number ri of times that each node becomes
active up to time t, according to the distribution (4). Finally,
each node i is connected to ri neighbors chosen at random,
avoiding multiple and self connections. In Fig. 1 we show
the degree distribution PtðkÞ for different values of the
exponents α and β of the waiting time and heterogeneity
distributions. As one can see, the scaling relation of Eq. (8)
is fulfilled remarkably well. In the same figure we validate
the scaling of the PtðkÞ with the integration time t, Eq. (7),
showing the collapse of the degree distribution for differ-
ent t.
The dependence of the topological properties of the

NoPAD model on the distribution of renewal events χðrjcÞ
readily suggests that the model will be affected by aging
effects when the waiting time distributions have the power-
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FIG. 1 (color online). Top: degree distribution PtðkÞ at time
t ¼ 104 as a function of the rescaled degree k − hrit from
numerical simulation of the NoPAD model with a network of
size N ¼ 106, c0 ¼ 1, and different values of α and β. The
exponent γ, as given by Eq. (8), is plotted as a dashed line.
Bottom: rescaled degree distribution PtðkÞ=ðc0tÞβ for different
times t, in network size N ¼ 106, and c0 ¼ 1, α ¼ 0.6, and
β ¼ 1.2. The theoretical decay exponent γ ¼ 3 is plotted as a
dashed line.
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law form (4) with α < 1 [18]. We check these effects in
Fig. 2 (inset), where we plot the aged degree distribution
Pta;tðkÞ obtained from networks integrated for a time
interval t, started after waiting for an aging time ta. This
figure shows that while the asymptotic shape of Pta;tðkÞ
remains constant for large k, its peak shifts to smaller
values of k with increasing ta. An analytical treatment of
these aging effects is in principle possible, using the results
reported in Ref. [21]. We can however easily understand
them at the level of the aged average degree hkita;t. Since
the average degree is 2 times the number of activation
events, if we consider a network integrated from time ta to t
we have hkita;t ¼ 2ðhritaþt − hritÞ. The average number of
activation events reads, for large t [29],

hrit ¼
X
c

ηðcÞ
X
r

rχtðrjcÞ≃ β sinðπαÞ
ðβ − αÞπα ðc0tÞ

α: ð9Þ

The sublinear growth of hrit readily implies aging effects
on the aged average degree, translated into a nontrivial
dependence of the average degree on the initial integration
time ta, which only cancels out in the case α ¼ 1. Indeed,
by applying Eq. (9) we obtain

hkit;ta ∼ ½ðta þ tÞα − tαa�: ð10Þ

Thus, for t ≫ ta, the average degree is independent of ta,
hkit;ta ∼ tα ∼ hkit, and aging effects are negligible. On the
other hand, for t ≪ ta, the average degree decays with ta as
hkit;ta ∼ tα−1a , and aging effects induce an anomalous ta
dependence, ruled by α [18]. These strong aging effects can
be easily understood as due to an intervent time distribution
lacking a first moment, i.e., with α < 1. Such a distribution
implies that very large gaps between two interactions are
relatively frequent. Starting the observation of the system at
a random time ta results in a increased probability of having
an integration window overlapping such frequent large
gaps, in which one or more individuals do not interact. This
facts immediately implies a decrease of the average degree
for t ≪ ta, as analytically recovered in Eq. (10). In Fig. 2
we check that Eq. (10) correctly reproduces the behavior of
the NoPAD model. In particular, we emphasize in this plot
the scaling behavior, evident from Eq. (10), hkit;ta≡
tαaF ðtat−1Þ, with a general scaling function F ðxÞ ¼
ð1 − xÞα − 1.
We explore the possibility of aging effects in empirical

temporal networks by considering the scientific collabo-
ration network in PRL, published since 1958 [26]. In this
network, two authors are connected by a link if they
coauthored a Letter published in PRL. Since PRL is weekly
edited, time is measured in units of weeks. In order to avoid
spurious effects due to effective physical aging of the
population considered (i.e., scientists changing their pub-
lication rate as they become older), which are not consid-
ered in the NoPAD model, and single out the role of the

heavy-tailed waiting distribution, we select only those
authors who published at least one paper in any APS
journal before and after an interval of 30 years, spanning
from 1968 up to 1998. We then reconstruct the temporal
network of the N ¼ 677 resulting authors, by considering
those papers cowritten by two authors in this interval, and
drawing an instantaneous edge between the authors at the
date of the paper’s publication. In Fig. 3 we check that the
waiting time distribution between two consecutive publi-
cations of the same author has a clear heavy-tailed form,
approximately compatible with a power-law decay
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ψðτÞ ∼ τ−1−α, with exponent α≃ 0.3. We then proceed to
construct the integrated networks, varying the aging time ta
between 0 and 30 years and fixing the integration time as
t ¼ 1; 2, and 3 yr. In this construction it is important to
realize that the actual aging time of the network is in
principle unknown. Each author i, indeed, starts his
academic life at some time T0

i , included in the observational
time window between 1958 and 1968. Aging effects are
thus observed in networks integrated over a time window
explicitly dependent on T0

i of each author considered. This
point makes it extremely difficult to detect aging effects in
the degree distribution Pta;tðkÞ, also because the low
activation ratio aiðtÞ yields a very sparse network, with
small degree values. Nevertheless, we are able to observe
aging behavior in the average degree hkita;t ¼

P
kkPta;tðkÞ.

Figure 3 (inset) shows the aged average degree hkita;t of the
empirical data, plotted in the rescaled form suggested by
the NoPAD model (10). As one can see, the data are
compatible with the theoretical prediction, particularly in
the limit of large ta, where we expect the actual aging time
T0
i to become small with respect to ta.
To sum up, in this Letter we addressed the aging effects

observed in time-integrated networks produced by bursty
social interactions. We proposed a mathematically tractable
model, the NoPAD model, aimed at combining the non-
Poissonian form of the waiting time distribution with the
activity-driven framework, and we developed an analytic
solution for its topological properties. In this analysis, we
have focused on the properties of the corresponding binary
integrated network, neglecting the possibility of edge
weights given by the total number of connections between
two nodes in the considered integration window. The
formalism developed can be easily extended to deal with
the statistical patterns of such a weight distribution. Aging
effects are demonstrated by the dependence of the degree
distributionPta;tðkÞ not only on the integration timewindow
t, but also on the aging time ta at which we start the
integration. Inspired by the results obtained in themodel, we
checked that aging behavior can also be observed in real
temporal networks. In this respect, it is important to notice
that, in real systems, the effects purely derived by a
heavy-tailed interevent time distribution can be mixed
with, and masked by, other features, such as finite-size
effects, population fluctuations, actual aging of the
individuals, memory effects, clustering, or community
partitioning. The elucidation of the contribution of all these
effects in the physical aging of temporal networks remains
an open issue, deserving further empirical and theoretical
effort.
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