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Abstract

Let us consider that somebody is extremely interested in increasing the prob-

ability of a proposal to be approved by a certain committee and let us assume

that for achieving this goal he/she is prepared to pay off one member of the

committee. In a situation like this one, and assuming that vote-buying is al-

lowed and free of stigma, which voter should be offered a bribe? The potential

decisiveness index for simple games, which measures the effect that ensuring

one positive vote produces in the probability to pass the issue at hand, is a

good tool to get the answer. An axiomatic characterization of this index is

given in this paper, and its relation to other classical power indices is showed.
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1 Introduction

Assume that a proposal has to be submitted to a finite set of voters, that each voter

has an independent a priori probability of voting in favor of the proposal and that

some voting rules are established for deciding if the proposal will either be accepted

or rejected after the votes are cast.

Suppose now that an external influence is able to increase till 1 the probability

of a voter for accepting the proposal. Of course, if this happens, and this voter

has even a small influence in the final result, the probability for the proposal being

approved will increase. The amount of this increasing effect is obviously not the

same for all of the voters. It depends on how crucial is his/her vote and it also

depends on his/her initial probability to vote for the proposal.

A new index Ω for measuring potential decisiveness of voters in this context

was introduced in [22], and it was proved that ensuring the favorable vote of the

voter with maximum Ω–measure is the way to obtain the greatest increment in the

probability of getting the proposal approved.

Example 1.1 Assume that a jury has to take a decision on a case. For purposes

of the example, we will suppose there are 4 jurors, one of whom is the president of

the jury. Each juror will vote for either conviction or acquittal and the outcome of

the vote will be the majority decision of the jury. Because ties are possible, these

will be resolved by the casting vote of the president, i.e., the president plays the

role of tiebreaker in the jury. Assume further that an external person, who is very

interested in the verdict of the trial, estimates that the president will vote for acquittal

with probability 1 − p, while the other 3 jurors will vote for acquittal with an equal

probability p. If the outsider considers the possibility of bribing one of the jurors to

ensure his/her vote for acquittal with probability 1, which one of the jurors would

he/she rather select to be offered the bribe: the president or any of the other three

jurors?

Some results in [23] allow us to select a list of voters to be persuaded, given

any particular ranking of their predictions, and this procedure, which can be easily

implemented in a computer, can be applied in an analogous way to select a list of

voters to be bribed, i.e. voters with maximum value for the Ω–measure. We refer

to these two papers for more examples about the applicability of the Ω–measure.
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The usual model for a voting scenario like the one described is a simple game,

that is to say, a pair (N,W), where N = {1, 2, . . . , n} denotes the set of voters, and

W is the set of winning coalitions, i.e., sets of voters whose favorable vote ensures

the acceptation of the proposal. Subsets of N that are not in W are called losing

coalitions, and it is assumed that: 1) ∅ is losing; 2) subsets of losing coalitions are

again losing (monotonicity). It is assumed that W ̸= ∅, so that N is always a

winning coalition. A winning coalition is minimal if each proper subset is a losing

coalition. The set of minimal winning coalitions is usually denoted by Wm, and,

because of monotonicity, it completely determines the game. Given S ⊆ N , S ̸= ∅,
the S–unanimity game (N,US) is the game which has S as the unique minimal

winning coalition. If S = N the game (N,UN) is just called the unanimity game. A

voter i ∈ N is null in (N,W) if i does not belong to any minimal winning coalition,

and it is a vetoer if it belongs to all of them. It is clear that in the S–unanimity

game (N,US) all voters in N \ S are null and all voters in S are vetoers.

Classically, the only elements which are taken into account to define the power

of a particular voter i are the set N of all voters and the voting rule, defined by the

set W of winning coalitions. The definitions of power indices try to reflect different

aspects of power. Most of them rely on the idea of measuring decisiveness (see [33]

[29], [34], [5], [14] or [15] among others), but other aspects like success have also been

used ([31], [18], [9], [7], [8], [35], [24]). There exist another approach, which we call

the contextual approach, that takes into account, to measure the power of a voter i,

not only the elements N and W but also a probability distribution p over the vote

configurations that can emerge. This contextual framework was introduced, as far

as we know, by Laruelle and Valenciano ([26]), although some authors had already

considered this kind of power indices before, with different probability distributions

([18], [35]). When independence of voter’s votes is assumed then the probability

distribution p over the vote configurations is completely determined by the proba-

bilities vector p = (p1, . . . , pn) ∈ [0, 1]n, where pi is the a priori probability of each

voter i for voting in favor of the proposal.

Either in the classical approach or in the contextual one, a power index can

also be defined by a set of properties which uniquely characterize it. This has been

done for most of the classical indices, in particular the first axiomatization of the

Shapley–Shubik index on simple games was given in [17] and the first one for the

Banzhaf index in [18] (different alternative axiomatizations have been proposed, see
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for example [32], [19]). In the contextual approach, a decisiveness index, which

extends the Banzhaf index, was proposed in [18] and axiomatized in [10], different

success indices were introduced in [26] and axiomatized in [2], and the potential

decisiveness index was introduced in [22] and an axiomatization for it is presented

in this work.

The paper is organized as follows. In Section 2 the definition and the motivation

of the potential decisiveness are recalled. An axiomatic characterization for this

measure is established in Section 3, and the independence of the axioms is proved.

Section 4 is devoted to relate this index with the classical Banzhaf and Shapley–

Shubik indices, and Section 5 summarizes the contents of the paper and points out

some future questions to work on.

2 The Ω measure of potential decisiveness

Let (N,W) be a simple game, where N = {1, 2, . . . , n} denotes the set of voters (we

assume that n ≥ 2) and W is the set of winning coalitions. Assume that each voter’s

vote is independent of the others’ and let pi be the a priori probability of voter i

for voting in favor of the proposal. Our contextual model is a triple (N,W ,p),

where (N,W) is the simple game and p = (p1, . . . , pn) ∈ [0, 1]n is the probabilities

vector. In [10] and [11], this triple is called assessed simple game and we also use

this nomenclature in this paper. The set of all assessed simple games is denoted by

ASG.

Under the assumption of independence of voter’s votes, the probability for a

proposal being accepted in (N,W ,p) is given by

f(N,W ,p) =
∑
S∈W

∏
i∈S

pi
∏
i/∈S

(1− pi). (1)

The function f is the multilinear extension (MLE) of the simple game (N,W)

which was introduced by Owen in [28] in the general context of cooperative games.

The MLE of a simple game is a polynomial function. Thus, it is continuous in its

domain [0, 1]n and differentiable in (0, 1)n. It verifies two types of monotonicity

properties:

• f(N,W ,p) ≤ f(N,W ′,p) if W ⊆ W ′,
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• f(N,W ,p) ≤ f(N,W ,p′) if p ≤ p′ (componentwise).

We will use f(p) instead of f(N,W ,p) whenever there is no possible misunder-

standing.

The increment on the probability f(p) due to an increment ∆pi on pi is:

∆if(p) = f(p+∆i(p))− f(p) = fi(p)∆pi (2)

where ∆i(p) = (0, . . . , 0,∆pi, 0, . . . , 0), and fi stands for the partial derivative of f

with respect to the component i, which is non-negative.

Note that ∆if(p) depends on fi(p) but also on the values ∆pi that is possible to

achieve. Indeed, it is obvious that if pi = 1 no increase of this probability is possible,

while if pi = 0 we can think of an increase ∆pi = 1. So the potential decisiveness

importance of a voter i depends on two factors: the rate of change fi(p) and the a

priori probability pi. This is the motivation given in [22] for defining the index Ω in

the following way:

Definition 2.1 The potential decisiveness index Ω is the map that assigns to every

(N,W ,p) ∈ ASG a vector Ω(N,W ,p) ∈ [0, 1]n defined by:

Ωi(N,W ,p) = (1− pi)fi(p).

The function Ω is, for any fixed game (N,W), a continuous function on [0, 1]n, dif-

ferentiable of any order in its interior (0, 1)n. From (2) it is clear that Ωi(N,W ,p) =

f(1i,p)− f(p), where f(1i,p) denotes the value of f on the vector (1i,p) obtained

from p by replacing pi with 1. Thus, this index gives precisely the increment of

f(p) obtained by only changing the i–component of p from pi to 1. Corollary 3.3

in [22] shows that 0 ≤ Ωi(N,W ,p) ≤ 1, where 0 is only achieved for null voters or

for any other voter with pi = 1 (i.e., pure yes–voters), whereas 1 is only achieved

for a dictator being a pure no-voter (i.e., Wm = {{i}} and pi = 0).

As the difference f(1i,p)−f(p) or, equivalently, Ωi(N,W ,p) equals the increase

of probability for the issue at hand to be passed when only voter i changes his/her

vote from pi to 1, Ω is the most natural measure, from the probabilistic point of view,

for bribes or vote buying in the context of assessed simple games, when the alleged

briber is interested in approving the proposal. Once stated that this observation in

terms of probability is the main support to this measure, we additionally propose

in this paper a first axiomatic characterization for it. Thus, from the results of this
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paper, the index Ω has support from both approaches, probabilistic and axiomatic.

Needless to say that finding other axiomatizations for Ω is an open issue.

This twofold characterization is a natural procedure for the justification of well

known power indices in simple games. For instance, either the Banzhaf or the

two Coleman’s power indices admit several axiomatic characterizations but also a

probabilistic interpretation, see e.g. [27]. We also refer the interested reader to [22]

and [23] for additional theoretical information about Ω, which, as far as we know,

is the only tool expressly introduced to measure the potential decisiveness of voters

in the context of assessed simple games.

Note that if the alleged briber was interested in defeating the proposal (instead

of approving it) then the difference f(p)−f(0i,p) would be the appropriate measure

because it gives the increase of probability, in absolute value, for the issue at hand

to be defeated when only voter i changes his/her vote from pi to 0. In this last

expression, f(0i,p) denotes the value of f on the vector (0i,p) obtained from p by

replacing pi with 0. This measure for assessed simple games is somehow analogous to

Ω because, by applying (2) with ∆i(p) = (0, . . . , 0,−pi, 0, . . . , 0), we obtain f(p)−
f(0i,p) = pifi(p).

Before continuing with the axiomatic characterization let us return to Exam-

ple 1.1.

Example 2.2 (Example 1.1 revisited)

For the voting system in Example 1.1, we have N = {1, 2, 3, 4}, where 1 denotes

the president,

W = {{1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.1

For this game, expression (1) gives:

f(p) = p1p2 + p1p3 + p1p4 − p1p2p3 − p1p2p4 − p1p3p4 + p2p3p4.

Thus, the partial derivatives are:

f1(p) = p2 + p3 + p4 − p2p3 − p2p4 − p3p4, f2(p) = p1 − p1p3 − p1p4 + p3p4,

f3(p) = p1 − p1p2 − p1p4 + p2p4, f4(p) = p1 − p1p2 − p1p3 + p2p3.

Let us consider now the particular value of p = (1 − p, p, p, p) for some 0 < p < 1.

For this probability vector we have: f1(p) = 3p(1− p) and f2(p) = f3(p) = f4(p) =

1This game can also be represented by the weighted game with representation [3; 2, 1, 1, 1].
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1−3p+3p2. Thus, we can compare the potential decisiveness index of the president,

i.e., player 1, with the potential decisiveness index of any other juror. Without loss

of generality we take player 4:

Ω1(N,W ,p) = (1− p1)f1(p) = 3p2(1− p),

Ω4(N,W ,p) = (1− p4)f4(p) = 1− 4p+ 6p2 − 3p3.

Thus, Ω1(N,W ,p)− Ω4(N,W ,p) = −3p2 + 4p− 1 and

Ω1(N,W ,p)− Ω4(N,W ,p) > 0 ⇔ p ∈ (1/3, 1),

Ω1(N,W ,p)− Ω4(N,W ,p) < 0 ⇔ p ∈ (0, 1/3).

Hence, according to the potential decisiveness index, the president of the juror is the

best candidate to be bribed in (N,W ,p) if p > 1/3, while for p < 1/3 any other juror

should be chosen as a candidate to be bribed. Note also that the maximum difference

in the interval (1/3, 1) is achieved for p = 2/3.

We remark that computing the MLE of a simple game is a complex task when the

number of variables involved is high. Some bounds are obtained in [20], and various

computation methods can be found, in another context, in [6] and [25].

From now on we restrict our work in proving some properties for the Ω measure,

and in giving an axiomatic characterization of it.

3 Axiomatic characterization of the Ω measure

In this section we establish some mathematical properties of the Ω measure and use

them to give an axiomatic characterization of it. These properties are consequence

of some characteristics of the MLE of a simple game that we collect in the following

lemma. The first part will be used in the axiomatization of this index, while the

second part is basic for establishing the relationship of the Ω measure with the

Shapley-Shubik index.

Lemma 3.1 Let (N,W ,p) be an assessed simple game and f(N,W ,p) its MLE as

defined in (1).

(a) If (N, W̃ ,p) is another assessed simple game, then

f(N,W ∪ W̃ ,p) + f(N,W ∩ W̃ ,p) = f(N,W ,p) + f(N, W̃ ,p).
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(b) If π : N → N is a permutation on N , then f(N, π(W),p) = f(N,W , π(p)),

where π(W) = {π(S) | S ∈ W} and, π(p) = (pπ(1), . . . , pπ(n)).

Proof:

(a) For any subset A of 2N we define

f(N,A,p) =
∑
S∈A

∏
i∈S

pi
∏
i/∈S

(1− pi).

If (N,A) is a simple game then f is its MLE as defined in (1). It is also clear that if

{W1,W2} is a partition of W then f(N,W ,p) = f(N,W1,p) + f(N,W2,p). Thus,

f(N,W ∪ W̃ ,p) = f(N,W \W̃ ,p) + f(N, W̃ \W ,p) + f(N,W ∩ W̃ ,p)

= f(N,W ,p)−f(N,W ∩ W̃ ,p)+f(N, W̃ ,p)−f(N,W ∩ W̃ ,p)+f(N,W ∩ W̃ ,p)

= f(N,W ,p) + f(N, W̃ ,p)− f(N,W ∩ W̃ ,p).

(b) From (1) we can write

f(N, π(W),p) =
∑

S∈π(W)

∏
k∈S

pk
∏
k/∈S

(1− pk) =
∑

π−1(S)∈W

∏
k∈S

pk
∏
k/∈S

(1− pk)

=
∑
S∈W

∏
k∈π(S)

pk
∏

k/∈π(S)
(1− pk) =

∑
S∈W

∏
π−1(k)∈S

pk
∏

π−1(k)/∈S
(1− pk)

= f(N,W , π(p))

�

In the following theorem, four basic properties of the potential decisiveness index

Ω are established. We will prove later that these axioms completely characterize this

index. In the following definition we introduce some new concepts needed to enounce

the theorem.

Definition 3.2

Let i ∈ N and N−i = N \ {i}. The new game (N−i,W−i) is defined by

S ∈ W−i if and only if S ⊆ N−i and S ∪ {i} ∈ W

The game (N−i,W−i) is the reduced game of (N,W) determined by N \ {i} as

defined in [36]. The notation we use is borrowed from [10].
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Theorem 3.3 Let (N,W ,p) ∈ ASG and Ω be the potential decisiveness index.

(A1) Null voter property: If j is null in (N,W) then Ωj(N,W ,p) = 0.

(A2) External null voter property. If j is null in (N,W) then

Ωi(N,W ,p) = Ωi(N−j,W−j,p−j)

for any i ∈ N (i ̸= j), where the jth component of p has been deleted in p−j.

(A3) Transfer property: If (N, W̃) is another simple game, then

Ω(N,W ∪ W̃ ,p) + Ω(N,W ∩ W̃ ,p) = Ω(N,W ,p) + Ω(N, W̃ ,p).

(A4) Unanimity property: If (N,UN) is the unanimity game then

Ωi(N,UN ,p) = (1− pi)
∏
k∈N
k ̸=i

pk

for all i ∈ N.

Proof:

We start by proving that if j is null in (N,W), then f(N,W ,p) = f(N−j,W−j,p−j).

If j is null in (N,W) then it can not belong to any minimal winning coalition, so

that S ∈ W and j ∈ S implies that S \ {j} ∈ W . Thus, we can write:

f(N,W ,p) =
∑
S∈W
j /∈S

∏
k∈S

pk
∏
k/∈S

(1− pk) +
∑
S∈W
j∈S

∏
k∈S

pk
∏
k/∈S

(1− pk)

= (1− pj)
∑
S∈W
j /∈S

∏
k∈S

pk
∏
k/∈S
k ̸=j

(1− pk) + pj
∑
S∈W
j /∈S

∏
k∈S

pk
∏
k/∈S
k ̸=j

(1− pk)

=
∑
S∈W
j /∈S

∏
k∈S

pk
∏
k/∈S
k ̸=j

(1− pk) =
∑

S∈W−j

∏
k∈S

pk
∏
k/∈S

(1− pk)

= f(N−j,W−j,p−j).

(3)

(A1) If j is null in (N,W) then, from (3), it is clear that pj does not appear in the

expression of f(N,W ,p) so that its corresponding partial derivative fj(N,W ,p) =

0. Thus Ωj(N,W ,p) = 0.

(A2) If j is null in (N,W), then, from (3), f(N,W ,p) = f(N−j,W−j,p−j), and

therefore their respective partial derivatives with respect to any component i ̸= j

coincide. Thus, Ωi(N,W ,p) = Ωi(N−j,W−j,p−j) for any i ̸= j.
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(A3) From Lemma 3.1-(a) it is f(N,W ∪ W̃ ,p)+f(N,W ∩ W̃ ,p) = f(N,W ,p)+

f(N, W̃ ,p). Thus, for any i ∈ N , it is fi(N,W ∪ W̃ ,p) + fi(N,W ∩ W̃ ,p) =

fi(N,W ,p) + fi(N, W̃ ,p). By multiplying all addends by 1− pi we get the result.

(A4) If (N,UN) is the unanimity game then f(N,UN ,p) =
∏
k∈N

pk. Thus, for any

i ∈ N it is fi(N,UN ,p) =
∏
k∈N
k ̸=i

pk. By multiplying this expressions by 1 − pi we get

the result.

�

Some comments are in order about the properties stated in Theorem 3.3. The

first two properties refer both to null voters, but with different perspectives: while

the first one reports that these voters have no capacity of influence on the final

result, the second one emphasizes that neither the adjunction nor the suppression

of one or more null voters will affect the potential decisiveness of the rest of vot-

ers. The two properties are proved to be independent in Remark 3.5 (i) and (ii).

The transfer property ensures that the aggregate potential decisiveness arising from

(N,W) and (N, W̃) is exactly transferred to (i.e., shared among) games (N,W ∪ W̃)

and (N,W ∩ W̃). Analogues of the transfer property were introduced in [17] to ax-

iomatize the Shapley–Shubik index (see also [32]), and were also used in [18], [19]

and others to characterize the Banzhaf value. Finally, the unanimity property can

be viewed as giving the “initial condition” to the potential decisiveness index.

Properties A1, A2, A3 and A4 of Theorem 3.3 characterize the Ω measure:

Theorem 3.4 A function Ω : ASG → Rn satisfies properties A1, A2, A3 and A4

if and only if it is the potential decisiveness index.

Proof:

(a) (Existence) As is shown in Theorem 3.3, the potential decisiveness index

satisfies A1, A2, A3 and A4.

(b) (Uniqueness) Let Ω′ be a function satisfying these four properties. Given N

we will start by proving that for any S ⊆ N and any p ∈ [0, 1]n it is Ω′
i(N,US,p) =

Ωi(N,US,p) for any i ∈ N .

If i /∈ S this equality is satisfied because of axiom A1, since i is null in (N,US)

and both terms are zero. Let us assume that i ∈ S. By applying A4 we have
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that Ω′
i(S,US,p−N\S) = (1 − pi)

∏
k∈S
k ̸=i

pk. Now, let k /∈ S and T = S ∪ {k}. Since

k is null in the game (T,US), then, applying A2, we can write Ω′
i(T,US,p−N\T ) =

Ω′
i(S,US,p−N\S). The recursive application of this reasoning for all elements not in

S allows us to conclude that Ω′
i(N,US,p) = Ω′

i(S,US,p−N\S). Thus, Ω
′
i(N,US,p) =

(1− pi)
∏
k∈S
k ̸=i

pk and this is precisely the value of Ωi(N,US,p).

Now, if (N,W ,p) is an assessed simple game and Wm = {S1, S2, . . . , St} then

W = US1 ∪ US2 ∪ · · · ∪ USt and, applying recursively A3,

Ω′(N,∪t
i=1USi

,p) =
t∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤t

Ω′(N,USi1
∩ USi2

∩ · · · ∩ USij
,p).

Finally, taking into account

USi1
∩ USi2

∩ · · · ∩ USik
= USi1

∪Si2
∪···∪Sik

we get Ω′(N,W ,p) = Ω(N,W ,p).

�

The following examples prove the independence of this axiomatic system.

Remark 3.5 (Independence of the axiomatic system)

(i) The index µ defined by

µi(N,W ,p) =

{
(1− pi)fi(p) if i is not null in (N,W)

1 if i is null in (N,W)

satisfies A2, A3 and A4 but not A1.

(ii) The index µ defined by

µi(N,W ,p) =

 (1− pi)
∏
k ̸=i

pk if i is not null in (N,W)

0 if i is null in (N,W)

satisfies A1, A3 and A4 but not A2.
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(iii) The index µ defined by

µi(N,W ,p) =


(1− pi)

∏
k ̸=i

k vetoer

pk if i is not null in (N,W)

0 if i is null in (N,W)

satisfies A1, A2 and A4 but not A3.

(iv) The index µ = 2Ω satisfies A1, A2 and A3 but not A4.

4 Relationship with standard power indices

In this section we will see that the potential decisiveness index Ω is related to some

well-known power indices.

Let us start with the Shapley-Shubik power index. In the following theorem we

recall the axiomatic characterization of this value ϕ on simple games established by

Dubey in [17] and reformulated in [18]. The set of all simple games is denoted by

SG.

Theorem 4.1 A function ϕ : SG → Rn is the Shapley-Shubik power index if and

only if it satisfies the following properties for any (N,W) ∈ SG:

(S1) If i is a null voter in (N,W) then ϕi(N,W) = 0.

(S2)
n∑

i=1

ϕi(N,W) = 1.

(S3) If π : N → N is a permutation on N , then ϕi(N,W) = ϕπ(i)(N, π(W)), where

π(W) = {π(S) | S ∈ W}.

(S4) If (N, W̃) ∈ SG then:

ϕ(N,W ∪ W̃) + ϕ(N,W ∩ W̃) = ϕ(N,W) + ϕ(N, W̃).

It is known (see Owen [28]) that the Shapley-Shubik power index of a simple

game (N,W) can be expressed in terms of its MLE f by

ϕi(N,W) =

∫ 1

0

fi(N,W , t)dt (4)

where t = (t, . . . , t). The following theorem shows that this index can also be

expressed in terms of the decisiveness index Ω.
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Theorem 4.2 The Shapley-Shubik power index of a simple game (N,W) can be

expressed, for any i ∈ N , as

ϕi(N,W) =

∫ 1

0
Ωi(N,W , t)dt∫ 1

0
f(N,W , t)dt

where t = (t, . . . , t).

Proof:

Let ϕ̂i(N,W) =

∫ 1

0
Ωi(N,W , t)dt∫ 1

0
f(N,W , t)dt

, for any i ∈ N . ϕ̂i(N,W) is well-defined since

f(N,W , t) ≥ f(N,UN , t) = tn for all game (N,W), therefore we have∫ 1

0

f(N,W , t) dt ≥ 1

n+ 1
> 0.

We will prove that ϕ̂ verifies: (S1), (S2), (S3) and (S4).

(S1 ) is an obvious consequence of Theorem 3.3-(A1). To prove (S2 ) we can write

from Definition 2.1 that

∑
i∈N

ϕ̂i(N,W) =

∑
i∈N

∫ 1

0
(1− t)fi(N,W , t)dt∫ 1

0
f(N,W , t)dt

=

∑
i∈N

∫ 1

0
fi(N,W , t)dt−

∑
i∈N

∫ 1

0
tfi(N,W , t)dt∫ 1

0
f(N,W , t)dt

.

Note now that ∑
i∈N

∫ 1

0

tfi(N,W , t)dt =

∫ 1

0

t
∑
i∈N

fi(N,W , t)dt

and, integrating by parts, taking into account that d
dt
f(N,W , t) =

∑
i∈N

fi(N,W , t),

we get ∫ 1

0

t
∑
i∈N

fi(N,W , t)dt = tf(N,W , t)]10 −
∫ 1

0

f(N,W , t)dt.

Then, using (4) and Theorem 4.1(S2) we have

∑
i∈N

ϕ̂i(N,W) =

∑
i∈N

ϕi(N,W)− (1−
∫ 1

0
f(N,W , t)dt)∫ 1

0
f(N,W , t)dt

= 1.

To prove property (S3) it is enough to verify the case of π being a transposi-

tion that interchanges two different elements i, j ∈ N . From Lemma 3.1-(b) it is

13



f(N, π(W),p) = f(N,W , π(p)) for any p ∈ [0, 1]n and so we have f(N, π(W), t) =

f(N,W , t). On the other hand, fi(N, π(W),p) = fj(N,W , π(p)) so that

Ωi(N, π(W), t) = (1−t)fi(N, π(W), t) = (1−t)fj(N,W , π(t)) = (1−t)fj(N,W , t) =

Ωj(N,W , t). This proves that ϕ̂i(N,W) = ϕ̂π(i)(N, π(W)).

Finally, (S4) is an immediate consequence of Definition 2.1, Lemma 3.1-(a) and

Theorem 3.3-(A3). �

Other well–known measure of power is the Banzhaf index. It is known (see Owen

[28]) that, in a simple game (N,W), this index can be expressed in terms of the

MLE f by Ψi(N,W) = fi(
1
2
, . . . , 1

2
). From Definition 2.1 it is clear that

Ψi(N,W) = 2 Ωi(N,W ,
1

2
),

where 1
2
= (1

2
, . . . , 1

2
).

A generalization of the Banzhaf index for assessed simple games, denoted by θ,

was proposed in [10], and it was proved that θi(N,W ,p) = fi(N,W ,p). Thus, if

pi ̸= 1 then, from Definition 2.1, we have

θi(N,W ,p) = (1− pi)
−1Ωi(N,W ,p)

In addition, the Banzhaf index is a particular case of a family of semivalues, known

as binomial semivalues, Ψp
i (N,W) = fi(p, . . . , p) for every p ∈ [0, 1], introduced

in [12]. From Definition 2.1, if p ̸= 1 we can write

Ψp
i (N,W) = (1− p)−1Ωi(N,W , p∗),

with p∗ = (p, . . . , p).

5 Conclusion

The measure Ω evaluates the potential strategic importance of each voter in order

to improve in the desired direction the final decision. This measure multiplies the

partial derivative of the MLE of the simple game by a term capturing the degree

to which an outsider interested in passage of a proposal could still increase a given

voter’s acceptance probability. Voters for which Ω is maximum are those that pro-

duce a greater change in the probability to pass the proposal when they ensure their

14



vote for it. Bribes might be offered to these voters. The axiomatization of this

measure introduced in this paper offers an easy way to characterize it. Of course

the set of axioms presented is not the only one, and finding another set of axioms

is an open problem.

Different power measures in assessed simple games (N,W ,p) have been defined

intending to measure different aspects of power. It is an interesting problem to

study the ordinal equivalence of these measures as was done in previous works for

the classical Shapley-Shubik and Banzhaf indices in the more restricted context

(N,W), see e.g. [3], [16] and [21] for successive wider results on simple games. It

also deserves interest the extension of these measures for multichoice games or for

games with a coalition structure, see e.g. [4], [1], or modifications of them as was

done for semivalues in [13]. The study of the ordinal equivalence of these extended

measures, topics which have [37] and [30] as seminal works, would also merit an

special attention.
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