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When is Menzerath-Altmann law 
mathematically trivial? A new approach

Abstract: Menzerath’s law, the tendency of Z (the mean size of the parts) to decrease as X (the number of 
parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence 
of the law in genomes is an inevitable consequence of the fact that Z = Y/X, which would imply that Z scales 
with X as Z∼1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by 
means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y 
its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that 
test and consider three non-parametric tests based upon different correlation metrics and one parametric 
test to evaluate if Z∼1/X in genomes. The most powerful test is a new non-parametric one based upon the cor-
relation ratio, which is able to reject Z∼1/X in nine out of 11 taxonomic groups and detect a borderline group. 
Rather than a fact, Z∼1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as 
inevitable is seriously flawed.
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Introduction
Consider that X and Y are two discrete random variables and that Z = Y/X with X≠0. For the particular case 
that Z is a mean, Menzerath’s law is the tendency of Z to decrease as X increases (Menzerath, 1954; Li, 2012): 
X stands for the number of parts of the construct (e.g., the number of clauses of a sentence), Y stands for the 
size of the whole in parts (e.g., the length in words of the sentence) and Z stands for the mean size of the con-
struct (e.g., the mean length of the clauses in words). The scaling of Z with X that Menzerath’s law describes 
qualitatively is typically modeled by means of Menzerath-Altmann law (Altmann, 1980; Cramer, 2005), i.e.,

	 ,b cXZ aX e= � (1)

*Corresponding author: Ramon Ferrer-i-Cancho, Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departa-
ment de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 
08034 Barcelona (Catalonia), Spain, e-mail: rferrericancho@cs.upc.edu
Jaume Baixeries: Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computa-
ció, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), 
Spain
Antoni Hernández-Fernández: Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències 
de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelo-
na (Catalonia), Spain; and Departament de Lingüística General, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 
08007 Barcelona (Catalonia), Spain
Łukasz Dębowski: Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Ján Mačutek: Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, 
Slovakia

Brought to you by | Univ Politecnica Cat
Authenticated | rferrericancho@cs.upc.edu author's copy

Download Date | 12/12/14 11:31 AM



634      R. Ferrer-i-Cancho et al.: When is Menzerath-Altmann law mathematically trivial?

where a, b and c are the parameters of the model. Menzerath’s law has been found in language (Menzerath, 
1954) and genomes (Ferrer-i-Cancho and Forns, 2009; Li, 2012) and also indirectly through a wide range of 
studies where Menzerath-Altmann law is fitted to human language [e.g., Altmann (1980), Teupenhayn and 
Altmann (1984)], music (Boroda and Altmann, 1991) and genomes (Wilde and Schwibbe, 1989; Li, 2012). 
Those studies have reported parameters a, b and c that support a negative correlation between Z and X at 
least for sufficiently large X [see Cramer (2005) for a review of parameter values]. Note that in our definition of 
these laws, Menzerath’s law is a light and model neutral law. In our view, the only constraint imposed by that 
law is that Z and X are negatively correlated (the dependency between Z and X might not be functional) while 
Menzerath-Altmann law is a strong assumption for two reasons: it assumes that the dependency between Z 
and X is functional and takes the form defined by Eq. 1.

Recently, it has been argued that Z = Y/X leads inevitably to a power-law of the form (Solé, 2010)

	
1 ,Z aX −= � (2)

that is Menzerath-Altmann law with b = –1 and c = 0. If the argument were correct, Menzerath-Altmann law 
would be a trivial scaling law at least from a mathematical perspective. Being X the number of chromosomes 
of a species, Y the genome size in bases of that species and Z its mean chromosome size, agreement with 
Eq. 2 has been claimed simply by fitting Menzerath-Altmann law with c = 0 and obtaining b≈1 (Solé, 2010). 
However, more than a decade of statistical research on presumable power laws in biology indicates that 
looks can be deceiving (May and Stumpf, 2000; Stumpf and Ingram, 2005; Tanaka et al., 2005; Khanin and 
Wit, 2006). Sometimes, the divergence of the degree distribution of biological networks from a power-law is 
obvious upon visual inspection if a convenient representation of the data is employed (Tanaka et al., 2005). 
In general, the hypothesis of a power-law for the degree distribution of biological networks has been rejected 
for different kinds of biological networks even when an exponentially truncated power-law similar to Eq. 1 
was considered (Khanin and Wit, 2006). Modern model selection methods indicate that simple power-law 
models do not provide an adequate description of the degree distribution of protein interaction and meta-
bolic networks (Stumpf and Ingram, 2005; Stumpf et al., 2005). The same has happened to other hypothet-
ical power-laws after careful inspection (May and Stumpf, 2000; Tjørve, 2003). The dependency between 
the number of different species as a function of area is described more accurately by functions that are not 
power-laws (May and Stumpf, 2000). Interestingly, the power-law model (as well as the exponential model) 
is seen as lacking biological depth for describing the species-area relationship with regard to other possible 
functions (Tjørve, 2003). In a similar vein, Eq. 2 has been argued to imply assumptions that jeopardize chro-
mosome well-formedness in the context of the relationship between chromosome number and mean chromo-
some length (Baixeries et al., 2012, Ferrer-i-Cancho et al., 2013b). This suggests that rather than indicators of 
complexity, pure power laws (or pure power-laws with a certain exponent, e.g., –1 in Eq. 2) might play the role 
of baselines in certain circumstances.

The main goal of this article is to present a powerful and statistically rigorous methodological framework 
to test if a real sample follows the particular case of power-law defined by Eq. 2. Notice that this equation is a 
particular case of power-law for two reasons: the exponent of the power-law is –1 and, more importantly, the 
response variable Z is Z = Y/X, being X the predictor.

Whether Eq. 2 holds in genomes for the relationship between chromosome number and mean chromo-
some size, has been debated (Solé, 2010; Hernández-Fernández et al., 2011; Baixeries et al., 2012, 2013; Ferrer-
i-Cancho et al., 2013a,b). This is part of a long-running debate on the depth and importance of statistical 
laws of language in science [e.g., Miller and Chomsky (1963), Li (1992), McCowan et al. (2005), Suzuki et al. 
(2005), Solé (2010), Ferrer-i-Cancho et al. (2013b)]. These laws are seen by many as inevitable (Miller, 1968; 
Solé, 2010), useless (Suzuki et al., 2005) or lacking mechanistic sophistication (Li, 1992; Stumpf and Porter, 
2012). Here we aim to contribute to this general debate from the perspective of Menzerath-Altmann law with 
new theoretical insights and new experiments on genomes. In particular, we will provide some theoretical 
foundations for testing if Eq. 2 holds. It will be shown that rejecting Eq. 2 if X and Y are correlated (Hernández-
Fernández et al., 2011; Baixeries et al., 2012) is correct but conservative. Furthermore, a new test that rejects 
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Eq. 2 in all taxonomic groups considered so far except two (one being a borderline case) will be presented. 
The view of Menzerath-Altmann law as inevitable (Solé, 2010) is seriously flawed.

Statistical foundations

The meaning of Z = a/X

According to standard modeling, claiming that Z scales with X following Eq. 2 can be recast as (Ritz and 
Streibig, 2008: p. 1)

	 ( | ) / ,E Z X x a x= = � (3)
for any x, being E(Z|X = x) the conditional expectation of Z given x (a concrete value of X). Testing if Eq. 2 
holds reduces to testing if Y is mean independent of X (Poirier, 1995: p. 67), namely E(Y|X = x) = E(Y) for any x 
(Ferrer-i-Cancho et al., 2013a). Formally, this is supported by the following theorem (Ferrer-i-Cancho et al., 
2013a)

Theorem 2.1 Consider a constant a and two random natural variables, X and Y, and a third random number 
Z, such that X > 0 and Z = Y/X. Then, E(Z|X = x) = a/x if and only if Y is mean independent of X, i.e., E(Y|X = x) = E(Y) 
for any x.

Therefore, one condition for a trivial Menzerath-Altmann law is that Y is mean independent of X. Mean inde-
pendence is well-known in econometrics (Cameron and Trivedi, 2009; Wooldridge, 2010). Another more 
obvious mathematically trivial version of the law occurs when Z is mean independent of X, i.e.

	 ( | ) ( ),E Z X x E Z= = � (4)

which is equivalent to constant E(Z|X = x) (Ferrer-i-Cancho et al., 2013a). The analysis of the correlation between 
Z and X in genomes discarded this mean constancy of Z for nine out of 11 taxonomic groups (Ferrer-i-Cancho 
and Forns, 2009) and the result was confirmed with an updated dataset (Baixeries et al., 2012). Therefore, 
Menzerath-Altmann law as a model of E(Z|X = x) has two trivial versions:

–– b = c = 0, i.e. Z is mean independent of X.
–– b = –1 and c = 0, i.e. Y is mean independent of X.

Interestingly, b lies between 0 and –1 when c = 0 is assumed: e.g., b = –0.27 ± 0.11 in language, being Z the 
mean clause length in sentences and X the number of sentences (Teupenhayn and Altmann, 1984), and 
b = –0.44 ± 0.09 in music, being Z the mean F-motif length in tones and X the number of F-motifs (Boroda and 
Altmann, 1991). In both cases, we report b = μ ± σ, where b is the exponent of a sample while μ and σ are, the 
mean and the standard deviation of b in an ensemble of samples, respectively.

Three definitions of lack of association between X and Y

For the remainder of sections, it is important to bear in mind the definition of three statistical relations 
between X and Y (Poirier, 1995: pp. 67–68):

–– X and Y are independent, i.e., p(Y = y|X = x) = p(Y = y) for any x and y.
–– Y is mean independent of X, i.e., E(Y|X = x) = E(Y) for any x.
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–– X and Y are Pearson uncorrelated, i.e., COV(X, Y) = 0 where COV(X, Y) = E(XY)–E(X)E(Y) is the covariance 
between X and Y. Notice that Pearson uncorrelation, i.e., ρ(X, Y) = 0, being ρ(X, Y) the Pearson correlation 
coefficient, is equivalent to zero covariance as (DeGroot and Schervish, 2012)

	

( , )
( , )

( ) ( )
COV X Y

X Y
X Y

ρ
σ σ

=
� (5)

with σ(X) and σ(Y) as the standard deviation of X and Y, respectively.

As X and Y are Pearson uncorrelated if and only if ρ(X, Y) = 0 (or COV(X, Y) = 0), Y is mean independent of X if 
and only if η(Y, X) = 0, where η(Y, X) is a less-known association metric: the correlation ratio (Crathorne, 1922; 
Kruskal, 1958). η(Y, X) derives from the variance of E(Y|X = x), which is, by definition,

	
2( ( | )) ([ ( | ) ( ( | ))] ).Var E Y X x E E Y X x E E Y X x= = = − = � (6)

By the law of total probability for expectations (DeGroot and Schervish, 2012, p. 258), E(E(Y|X = x)) = E(Y) and 
thus

	
2( ( | )) ([ ( | ) ( )] ).Var E Y X x E E Y X x E Y= = = − � (7)

From this variance, the correlation ratio of Y on X is defined as (Kruskal, 1958)

	

1/ 2
( ( | )) ( ( | ))( , ) ,

( ) ( )
Var E Y X x E Y X xY X

Var Y Y
σ

η
σ

 = == = 
  �

(8)

where σ(…) indicates the standard deviation. Notice that 0  ≤  η(Y, X)  ≤  1 whereas –1  ≤  ρ(X, Y)  ≤  1 (Kruskal, 1958: 
pp. 816–817). As ρ(X, Y) is a normalized COV(X, Y), η(Y, X) is a normalized Var(E(Y|X = x)). Interestingly, the 
correlation ratio satisfies the following properties (Kruskal, 1958: pp. 816–817):

–– η(Y, X) = 1 if and only if Y is a perfect function of X.
–– |ρ(X, Y)|  ≤  η(Y, X) with equality if and only if Y is a linear function of X.
–– 0  ≤  η(Y, X)  ≤  1 (whereas –1  ≤  ρ(X, Y)  ≤  1). As ρ(X, Y) is a normalized COV(X, Y), η(Y, X) is a normalized 

Var(E(Y|X = x)).

	 It is well-known that (Kolmogorov, 1956; Poirier, 1995):

 and  are independent

 is mean independent of    ( ( , ) 0)

 and  are Pearson uncorrelated  ( ( , ) 0).

X Y

Y X Y X

X Y X Y

η

ρ

⇓
=

⇓
=

Proofs of the top to bottom implications have been provided by Kolmogorov (1956: p. 60) or Poirier (1995: 
p. 67). Mean independence implies Pearson uncorrelation but the converse (Pearson uncorrelation implies 
mean independence) is not necessarily true. To see it, consider that

	

1/ 2 if  0 and 1
( , )= 1/ 4 if  1 and 1

1/ 4 if  1 and 1.

x y
p X x Y y x y

x y

 = =−
= = =− =
 = = � (9)

Thus E(X) = E(Y) = 0 and E(XY) = (1/4)(–1)+(1/2)0+(1/4)1 = 0. Therefore COV(X, Y) = 0 but Y is not mean independ-
ent of X because E(Y|X = –1) = 1≠E(Y|X = 0) = –1. Similarly, independence implies mean independence but the 
converse (mean independence implies independence) is not necessarily true (see Ferrer-i-Cancho et  al. 
(2013a) for a counterexample).
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In next section, it will be shown that the correlation ratio is indeed more powerful than a Pearson or 
Spearman correlation coefficient for testing whether Eq. 2 holds.

How to test that Z = a/X

Non-parametric tests

Here we consider three sample correlation statistics: the Pearson correlation ρ(X, Y), the Spearman correla-
tion ρS(X, Y) and the correlation ratio η(X, Y), and evaluate if they are significantly different from zero using 
a permutation test [a particular case of randomization test (Sokal and Rohlf, 1995: pp. 803–819)]. In a sample 
of size N, X and Y can be seen as vectors, i.e. X = {x1,…, xi, …, xN} and Y = {y1,…, yi, …, yN}, being (xi, yi) the infor-
mation associated to the i-th element of the sample. The p-value of ρ(X, Y) is the probability that X′, a random 
permutation of X, yields |ρ(X′, Y)|  ≥  |ρ(X, Y)|. The test is two-sided as both positive and negative values of the 
sample ρ(X, Y) that are significantly different from 0 are indicative of non-zero correlation [both ρ(X, Y) = 1 
and ρ(X, Y) = –1 are indicative of maximum correlation]. The p-value of ρS(X, Y) is calculated as that of ρ(X, Y). 
The p-value of η(Y, X) is the probability that X′ (a random permutation of X) yields η(Y, X′)  ≥  η(Y, X). The test 
is one-sided as only positive values of the sample η(X, Y) that are significantly large are indicative of non-zero 
correlation (η(X, Y) is indicative of maximum correlation only when η(X, Y) = 1). The p-values were estimated 
with a Monte Carlo method generating R = 107 uniformly random permutations. In the present article, we 
adopt a significance level of 0.05.

For the analyzes of this section, we used the same dataset of recent research (Hernández-Fernández 
et al., 2011; Baixeries et al., 2012, 2013; Ferrer-i-Cancho et al., 2013b). A summary of the statistical properties 
of the dataset is provided in Table 1. See Ferrer-i-Cancho and Forns (2009), Hernández-Fernández et al. (2011) 
for further details about the dataset. As the fact that Y is mean independent of X implies Pearson uncorrela-
tion, i.e. COV(X, Y) = 0 [or ρ(X, Y) = 0], Eq. 2 can be tested by means of the following procedure: if COV(X, Y) (or 
ρ(X, Y) = 0) is significantly different from 0 then reject Eq. 2, otherwise accept it. That procedure can be used 
to reject Eq. 2 in genomes, being Z the mean chromosome length in bases of a species and X being the number 
of chromosomes of that species (Hernández-Fernández et al., 2011).

Table 1 A summary of the statistical properties of each taxonomic group.

Taxonomic group  
 

N 
 

X  
 

Y  
 

Z

μ  σ μ  σ μ  σ

Fungi   56  9.4  4.2  33.3  23.7  3.8  1.9
Angiosperms   4706  14.2  9.6  5474.3  8902.5  515  847
Gymnosperms   170  12  2.3  17695.4  7436.9  1489.6  613.3
Insects   269  10.6  5  1240  1908.7  146  204.3
Reptiles   170  19.1  3.8  2364.2  742.6  126  39.9
Birds   99  38.8  31.8  1400.7  175  159.9  243.1
Mammals   371  23.3  8.8  3413.2  822.1  182.1  134.2
Cartilaginous fishes   52  36.7  8.2  5787.9  3100.4  166.5  95.1
Jawless fishes   13  44  33.7  2442.7  1090.4  140.7  174.7
Ray-finned fishes   647  27.6  10.7  1360.7  716.9  50.7  27.7
Amphibians   315  14.2  5.5  18029  19952.3  1285.3  1373.4

N is the number of species. The mean (μ) and sample standard deviation (σ) are provided for three variables: chromosome 
number (X), genome size (Y) in Million base pairs (Mb) and mean chromosome size (Z) in Mb per chromosome. The genome 
size in Mb is measured using the DNA C-value (1C). Accordingly, the number of chromosomes is measured using  1n. Mean and 
standard deviation were rounded to leave just one decimal digit.
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Table 2 summarizes the results of the analysis of the Pearson correlation between X (chromosome 
number) and Y (genome size in bases) in genomes. A significant correlation is found in six out of 11 taxo-
nomic groups. The test is conservative as it rejects Eq. 2 indirectly by means of a necessary condition for this 
equation to hold: COV(X, Y) = 0. Therefore, the five groups where Eq. 2 could not be rejected might be false 
negatives. Pearson’s correlation is a measure of linearity between variables and has difficulties for captur-
ing non-linear dependencies. A possible improvement is using a more powerful correlation metric such as 
ρS = (X, Y), the Spearman rank correlation coefficient, which is a measure of monotonic (linear or non-linear) 
dependency (Zou et al., 2003). The Spearman rank correlation is a Pearson correlation on a rank transforma-
tion of the original values (Conover, 1999). The Spearman rank correlation test revealed that the majority of 
taxonomic groups (nine out of 11) exhibit a significant correlation between X and Y that is incompatible with 
Eq. 2 (Table 2). The exceptions are birds and cartilaginous fishes. These findings confirm qualitatively the pre-
vious results with similar methods (Hernández-Fernández et al., 2011). Interestingly, there is a more powerful 
way of testing Eq. 2: testing directly if Y is mean independent of X from its definition, i.e., E(Y|X = x) = E(Y) for 
any x, which is equivalent to η(Y, X) = 0 (Kruskal, 1958). η(Y, X) was not significantly large in two taxonomic 
groups: cartilaginous fishes and jawless fishes but the case of jawless fishes is border line: the estimated p-
value is 0.054. The fact that this is the group with the smallest sample (N = 13), suggests that this might be a 
case of type II error.

Figures 1 and 2 show histograms of the value of three correlation statistics in randomizations of the 
original data. As expected, the distribution for the Pearson and Spearman correlation statistics is centered 
at zero and symmetric. Figure 2 reveals crucial information to understand the taxonomic groups where the 
correlation ratio fails to reject the null hypothesis: the density of probability is concentrated on high values of 
the statistic. The case of jawless fishes is particularly intriguing: why the null hypothesis cannot be rejected 
when the correlation ratio is almost maximum? Table 2 shows that η(Y, X) = 0.98 for jawless fishes while the 
maximum is η(Y, X) = 1. We believe that there is not a biological but a statistical reason for that: the test based 
on η(Y, X) loses power (capacity to reject the null hypothesis) when the diversity of values of X is high. If φ(X) 
is defined as the set of values of xi in the sample of a taxonomic group, i.e.

	 1( ) { },N
i iX xφ ==∪

� (10)

then one can define a simple diversity index D(X) as the proportion of different values of X, i.e.

	

| ( ) |( ) .XD X
N

φ=
�

(11)

Table 2 Analysis of the correlation between Y (genome size in bases) and X (chromosome number).

Taxonomic group   D(X)  ρ(X, Y)  p-value  ρS(X, Y)  p-value  η(Y, X)  p-value

Fungi   0.25  0.41  0.002  0.28  0.037  0.74  0.026
Angiosperms   0.02  –0.0024  0.87  –0.039  0.008  0.27  0.0013
Gymnosperms   0.08  0.1  0.18  0.32  2.9·10–5  0.74   < 10–7

Insects   0.08  0.09  0.14  0.22  0.0003  0.46  0.017
Reptiles   0.11  0.31  3.6·10–5  0.24  0.0014  0.48  0.0031
Birds   0.36  –0.029  0.78  –0.033  0.74  0.78  0.0012
Mammals   0.11  0.3   < 10–7  0.3   < 10–7  0.68   < 10–7

Cartilaginous fishes  0.44  0.014  0.92  –0.13  0.36  0.76  0.11
Jawless fishes   0.77  –0.76  0.0033  –0.74  0.0049  0.98  0.054
Ray-finned fishes   0.07  0.47   < 10–7  0.49   < 10–7  0.69   < 10–7

Amphibians   0.07  0.13  0.02  0.45   < 10–7  0.58   < 10–7

D(X) is the proportion of different values of X. ρ(X, Y) is the sample Pearson correlation coefficient, ρS(X, Y) is the sample Spear-
man correlation coefficient and η(Y, X) is the sample correlation ratio of Y on X. The sample size corresponds to N in Table 1. The 
p -values were estimated using a Monte Carlo permutation test. The correlation statistics and the corresponding p-values were 
rounded to leave only two significant digits.
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Figure 1 Normalized histograms of the correlations statistics. The range of variation of every statistics is split into 20 bins. Left 
column: histograms of the Pearson (black) and Spearman (gray) rank correlation with a bin size of 0.1. Right column: histogram 
of the correlation ratio with a bin size of 0.05. 107 randomizations were used.

Interestingly, the two groups with the largest D(X) coincide with the two groups where the correlation 
ratio test fails to reject the null hypothesis (Table 2). It will shown that η(Y, X) is maximum, i.e. η(Y, X) = 1, 
when the diversity of X is maximum, i.e. D(X) = 1, regardless of the values of Y. Let us define φ(Y|w) as the set 
of values of yi such that xi = w, i.e.

Brought to you by | Univ Politecnica Cat
Authenticated | rferrericancho@cs.upc.edu author's copy

Download Date | 12/12/14 11:31 AM



640      R. Ferrer-i-Cancho et al.: When is Menzerath-Altmann law mathematically trivial?

Figure 2 The same as in Table 1 for other taxonomic groups.
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	 ,1( | ) { }
ix w i N iY w yφ = ≤ ≤=∪

�
(12)

and use Var(…) to refer (in this context) to the sample variance and μ(Y|w) as the mean of Y conditioned on w 
(μ(Y|w) is the mean value of yi for (xi, yi) pairs such that xi = w). The sample correlation ratio can be defined as 
function of means and sample variances as
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If D(X) = 1, i.e. |φ(X)| = N (Eq. 11), then |φ(Y|x) = 1 for every x in φ(X). This has a very important consequence, 
namely that μ(Y|xi) = yi, which yields Var(μ(Y|x)) = Var(Y) and therefore η(Y, X) = 1.

The fact that η(Y, X) = 1 when there are not repeated values of X means that η(Y, X) will keep being 
maximum for any randomization of the data and thus the p-value of η(Y, X) is 1. Put differently, the data 
might be showing a perfect correlation between X and Y but the absence of repeated values of X can lead to 
a type II error (false negative) when D(X) = 1. We believe that this can also happen when D(X) < 1 but D(X) is 
sufficiently large. Not surprisingly, the only two groups where the correlation ratio test fails to reject the null 
hypothesis at a significance level of 0.05, i.e., cartilaginous fishes and jawless fishes, are the two groups with 
the largest D(X) (D(X) = 0.44 and D(X) = 0.77, respectively; Table 2). D(X) allows one to solve the puzzle of why 
the density of probability of the correlation ratio is concentrated on high values of η(Y, X), specially for carti-
laginous fishes and jawless fishes (Figure 2): their high value of D(X) is biasing η(Y, X) towards high values in 
randomizations of the original data, no matter how the values of X and Y combine under the null hypothesis.

A parametric test

The hypothesis of Z = a/X has been accepted with the only support that the fit of Z = a/Xb yields b≈–1 (Solé, 
2010). This procedure is very prone to type II error (accepting a false null hypothesis) as it needs that Z = aXb 
holds first (Baixeries et al., 2013; Ferrer-i-Cancho et al., 2013b). Our analysis shows that for Z = a/X to hold, it 
is not only necessary that b≈–1 is retrieved but also a≈μ(Y), where μ(Y) is the mean of Y, an estimate of E(Y) 
[recall Theorem 2.1; see also (Ferrer-i-Cancho et al., 2013a)]. Even if a≈μ(Y) and b≈–1, type II errors are not 
excluded and minimizing them needs evidence that Z = aXb is well-supported by data.

Discussion
We have argued that claiming that Z scales with X following a very particular form of Menzerath-Altmann law, 
i.e., Eq. 2, is indeed equivalent to claiming that E(Z|X) = E(Y)/X, which is in turn equivalent to claiming that Y 
is mean independent of X. We have also presented a new correlation ratio test revealing that Eq. 2 could only 
hold in cartilaginous fishes and maybe in jawless fishes, too. The two major conclusion of our article are that

–– The trivial scaling defined by Eq. 2 is the exception, not the rule.
–– The correlation ratio is at least one of the correlation statistics to consider for testing the null hypothesis 

that Z = a/X.

While the Pearson correlation test rejects Eq. 2 in 6 taxonomic groups, the Spearman correlation and the cor-
relation ratio tests do it in 9 taxonomic groups (Table 2). The two most powerful tests might be failing because 
of type II errors. This possibility is apparently easier to defend for the correlation ratio from the perspective 
of insufficient sampling: the correlation ratio test fails to reject the null hypothesis exactly for the two groups 
having the smallest sample size (jawless fishes and cartilaginous fishes). In contrast, the Spearman correla-
tion test fails with the second and fourth taxonomic groups with the smallest sample size, i.e., jawless fishes 
and birds (recall Table 1). D(X) offers a deeper explanation of the failure of the correlation ratio.
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We have shown that the power of the correlation ratio test depends on the diversity of values of X, losing 
power completely if that diversity is maximum. The two groups where that statistic fails to reject the null 
hypothesis are not only the two groups with maximum D(X) but also the two groups with the smallest N 
(Tables 1 and 2). The latter suggests that the true reason for the failure is that the samples of these two groups 
are not large enough for significance to emerge. Indeed, D(X) is a function of N. However, if a small sample 
size was the only reason for the failure to reject the null hypothesis, one would also expect that fungi (with 
N = 56) were also problematic, but their p-values are about half the significance level of 0.05. While the values 
of N in cartilaginous fishes and fungi are very similar (the value of N of cartilaginous fishes is about 92% of 
the value of N of fungi; Table 1), the differences between both groups in terms of D(X) are much larger (the 
value of D(X) of cartilaginous fishes is about 176% the value of D(X) of fungi; Table 2). Therefore, a high D(X) 
is more likely to be the primary reason for the failures of the correlation ratio tests [notice that N could be very 
large but the sample η(Y, X) may not be significantly large because D(X) = 1)].

Whether the correlation ratio is a more powerful statistic than the Spearman rank correlation must be 
investigated further. If the significant level is raised to 0.01, then it turns out that the Spearman rank correla-
tion allows one to reject the null hypothesis in eight taxonomic groups while the correlation ratio does it in 
seven groups (Table 2). However, the difference is small and both statistics may need to be used jointly.

The fact that Z = a/X does not hold in many taxonomic groups must be interpreted with care. The taxo-
nomic groups are not totally independent and thus the number of groups in which a statistic rejects the 
null hypothesis might be uninformative: it may simply reflect the existence of a common ancestor in their 
evolutionary history (the same argument could be applied to the groups where the null hypothesis could not 
be rejected: their number might be uninformative). However, the hypothesis of a common ancestor is incom-
plete at present because

–– A demonstration of the existence of such ancestor is necessary. That demonstration would require a 
careful analysis of the transmission of traits throughout phylogeny [e.g., Dunn et al. (2011)] and this is 
beyond the scope of this article.

–– An explanation of why the common ancestor group adopted that property would still be required.

However, the many rejections of the null hypothesis might be due to the convergence of distinct taxonomic 
groups to the same statistical pattern by some general constraints, maybe physical or biological principles. 
This alternative to the common ancestor is supported by our suspect that the reason why the correlation ratio 
has failed in two groups are not biological but rather statistical (type II errors). The possibility that one of 
those general constraints is the viability and well-formedness of chromosomes is reviewed next.

The random breakage model where X and Y are independent and uniformly distributed (Solé, 2010) 
fails to fit the majority of taxonomic groups because independence is a particular case of mean independ-
ence (Ferrer-i-Cancho et al., 2013a) and mean independence fails in at least nine out of 11 taxonomic groups 
(Table 2). Interestingly, it has been argued that independence between X and Y is problematic as it can lead to 
organisms with empty chromosomes or empty chromosome parts (Baixeries et al., 2012). Notice that Y does 
not need to be the size of genome in bases. It could be the size in units between the base and the chromosome.

The problem of empty components also concerns mean independence. The condition for not expecting 
empty chromosomes for a given x (a concrete value of X) is 

E(Z|X = x)  ≥  1

	

1 ( | ) 1.E Y X x
x

= ≥
�

(14)

For that x, the condition in Eq. 14 becomes E(Y)  ≥  x when Y is mean independent of X as E(Y|X = x) = E(Y) in that 
case. Thus, under mean independence, empty chromosomes are expected in an organism of x chromosomes 
if E(Y) < x. Notice that expecting that Eq. 14 holds on average for any x, leads to 

E(E(Y|X = x))  ≥  E(X)
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thanks to the law of total probability for expectations (DeGroot and Schervish, 2012: pp. 258). The restrictions 
defined by Eqs. 14 and 15 are perhaps very simple but Baixeries et al. (2012) considered more elaborated con-
straints for the viability of an organism based upon the parts making an ideal chromosome: a centromere, 
two telomeres and a couple of intermediate regions. Those viability constraints lead to a deviation from 
Menzerath-Altmann law with b = –1 and c = 0 [see fig. 3 of Baixeries et al. (2012)], which Theorem 2.1 allows 
one to interpret unequivocally as a departure from mean independence. Therefore, the viability and well-
formedness of chromosomes is not compatible with mean independence either. This suggests that a common 
ancestor might not be the only reason for the recurrent failure of Z = a/X in taxonomic groups. Indeed, the 
existence of general and lineage independent constraints is a more parsimonious hypothesis that has to be 
investigated further.

The negative Spearman rank correlation between Z and X, known as Menzerath’s law, defies a trivial 
explanation in genomes (Wilde and Schwibbe, 1989; Ferrer-i-Cancho and Forns, 2009). Claiming that the 
scaling defined by Eq. 2 is inevitable (Solé, 2010) is equivalent to claiming that Y must be mean independent 
of X in any circumstance, a very strong requirement for real language, music and genomes. Eq. 2 should be 
regarded as a baseline instead of a fact for the relationship between chromosome number and mean chromo-
some length. Rather than signs of complexity, certain power laws (the value of the exponent can be crucial) 
might indicate the control that must be considered before any claim of “sufficient biological complexity” can 
be made.
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