A Dynamic Estimation of Passenger OD Matrices based on space-state models

Authors: L. Montero and E. Codina
BarcelonaTech (UPC)

EURO 2013
(EURO-INFORMS Joint International Meeting)
Rome (Italy) July 1st-4th, 2013

PROMALS (DEIO)-BarcelonaTech UPC
Contents (I)

1. **Aim of this work**
 i. Macro, meso and micro approaches to traffic modeling ...
 ii. Static versus dynamic OD Matrices (by time-slices) for a period (peak morning, etc)
 iii. **Why Dynamic Estimation of OD Trip matrices?**
 v. New sources of data collection: Bluetooth devices

2. **A Linear State Space Model approach for OD matrix estimation**
 i. A State Space Model approach
 ii. Proposed state and measurement variables.

3. **Testing the Approach by Simulation for OD trip matrices**
 i. Experiment 1: Ronda de Dalt freeway.
 ii. Experiment 2: AMARA urban network
 iii. Importance of Detector Layout and Experiment 3: BARCELONA’s CBD urban network.

4. **A Linear State Space Model approach for dynamic passenger matrices**
 i. Definition of state variables and observation variables.
 ii. Statement of the equations of the KF linear formulation.
 iii. Time varying model parameters: travel time discrete distributions from BT data

5. **Conclusions and further research**
1. The aim of this work is ...(I)

To explore the design and implementation of efficient methods to support the short-term and real-time estimation of time dependent Origin-Destination Trip/Passenger matrices as long as new detection technologies complement the traditional ones.

- This is the case of the new sensors detecting vehicles equipped with Bluetooth mobile devices, i.e. hands free phones, Tom-Tom, Parrot and similar devices. AVI (Automatic vehicle identification) technologies.

- Since Real-time application in ATMS require efficient and robust estimation of dynamic OD matrices (time-sliced OD matrices).
1. The aim of this work is ...(II)

To explore the design and implementation of efficient methods for real-time estimation of time dependent Origin-Destination Trip/Passenger matrices as long as new detection technologies complement the traditional ones.

- Therefore, from a research standpoint this means starting to explore the potential of new technologies in simplifying traffic/transit models involved in matrix estimation.

- Additionally for practitioners, we provide sound applications, easy to implement, exploiting AVI technologies, as Bluetooth, given that penetration rates are increasing.
1-iii. Traffic state estimation at time τ from data fusion and traffic models accounting for traffic dynamics

- Traffic data from sensors
- Data filtering and fusion
- Dynamic traffic models
- Urban network: traffic state

Data profile for time-period τ

Kalman filter model for dynamic OD matrix estimation for time period τ

OD matrix for time period τ

Mesoscopic traffic simulator

Current TIS in BCN website (only measures): non complete
Advance ATIS in (measures + fusion + models): complete description

Author: Jaume Barceló
1.iv-EXAMPLES OF DATA COLLECTION: Travel time between RSUs

- Vehicle n reaches RSU k at time t_2
- Vehicle n reaches RSU m at time t_2
- Vehicle n reaches RSU p at time t_3
- Vehicle n sends AVL message at time $t_2 + \Delta t$
- Vehicle n leaves origin i at time t_0

Data (RSU Id, mobile device identity, time stamp) sent by GPRS to a Central Server

RSU-IDx

RSU-IDy

On-board unit of equipped vehicle n captured by RSU-IDx at time t_1

AVL Equipped vehicle sends message (id, position, speed) at time t

On-board unit of equipped vehicle n re-captured by RSU-IDy at time t_2

Average speed $\frac{Distance_{RSUx-RSUy}}{t_2 - t_1}$

Data collection from:
- ETD (loops, magnetometers)
- EQUIPPED VEHICLES (FCD)
- GPS/GPRS, AVL, TAG...
- CCTV/LPR
- MOBILE DEVICES (Bluetooth)
- V2I TECHNOLOGIES
- V2V TECHNOLOGIES

Generating consistent and homogeneous data:
- Identifying and filtering outliers
- Missing data models
- Data fusion from heterogeneous sources

FORTHCOMING TECHNOLOGICAL PLATFORM

L.Montero and E. Codina
 consecnt

 \section{Objective of this work}
 \begin{itemize}
 \item Dynamic OD Trip Matrices (by time-slices) for a period (peak morning, etc)
 \item New sources of data collection: Wifi and Bluetooth
 \end{itemize}

 \section{A Linear State Space Model approach for auto matrices}
 \begin{itemize}
 \item A State Space Model approach
 \item Proposed state and measurement variables.
 \end{itemize}

 \section{Testing the Approach by Simulation for auto trip matrices}
 \begin{itemize}
 \item Experiment 1: Ronda de Dalt freeway.
 \item Experiment 2: AMARA urban network
 \item Importance of Detector Layout and Experiment 3: BARCELONA’s CBD urban network.
 \end{itemize}

 \section{A Linear State Space Model approach for dynamic passenger matrices}
 \begin{itemize}
 \item Definition of state variables and observation variables.
 \item Statement of the equations of the KF linear formulation.
 \item Time varying model parameters: travel time discrete distributions from BT data
 \end{itemize}

 \section{Conclusions and further research}
2.i- A State Space Model approach

Traditional Statistical Model

- The parameter vector θ determines the distribution of the observed vector Y.
- A sample y_1, \ldots, y_P is used to estimate θ.

\[Y \approx F(y \mid \theta) \]
\[\hat{\theta} = S(y_1, \ldots, y_n) \]

State Space Model

- The hyperparameter vector θ determines the distribution of the unobserved state vector X.
- The state vector X and the hyperparameter vector θ determine the distribution of the observed vector Y.
- A sample y_1, \ldots, y_P is used to estimate θ.
- The estimated value of θ and the sample y_1, \ldots, y_P are used to estimate \hat{X}.

\[X_i \approx g(x_i \mid \theta) \]
\[\hat{\theta} = S(y_1, \ldots, y_P) \]
\[Y_p \approx F(y_p \mid X, \theta) \]
\[\hat{X}_i = T(y_1, \ldots, y_P, \hat{\theta}) \]
2.i- Why A State Space Model?

State Space Model: hyperparameters
- Equipped passengers
- All passengers

Unobserved States
- OD Pattern/OD Flows of passengers
- OD Pattern/OD Flows of passengers

Observations
- Counts, travel times for equipped passengers
- Counts on entries for all passengers
2.i- Kalman Filtering: State variables and Observations

- **State variables** $g(k)$ constitute a stochastic non-white noise process (i.e., AR(r)) where time evolution is affected by a white Gaussian noise ($w(k)$, assumed with zero mean).

$$g(k+1) = \sum_{l=1}^{r} D(l) g(k-l+1) + w(k)$$

- **State variables cannot be measured**, however they are related to measurements $z(k)$, again affected by a white Gaussian noise (assumed with zero mean).

- **Measurements** $z(k)$ constitute a stochastic non-white sequence.

$$z(k) = F(k) g(k) + v(k)$$

- White noise in state $w(k)$ and observation $v(k')$ equations are statistically independent for any k, k'.
2.i- Linear Kalman Algorithm

![Diagram of Linear Kalman Algorithm]

Initialization

\[P_{k+1}^1 = (I - G_{k+1} F_{k+1}) P_k^k \]

Prediction

\[g_{k+1}^k = D g_k^k \quad P_{k+1} = DP_k^k D^T + W_k \]

KF recursive dynamics

What can be said before the observations are considered?

\[G_{k+1} = P_k^k F_{k+1}^T \left(F_{k+1} P_k^k F_{k+1}^T + R_k \right)^{-1} \]

Kalman Gain Computation

What can be improved after the observations are considered?

\[d_{k+1} = G_{k+1} \left(z(k+1) - F_{k+1} g_{k+1}^k \right) \]

Maximum Step

Innovations:

\[e_{k+1} = \left(z(k+1) - F_{k+1} g_{k+1}^k \right) \]
2.ii- Proposed state and measurement variables for OD passenger matrix estimation

- **State variables** $g(k)$ are Origin-Destination passenger flows in a subset of Most Likely OD paths in the transit network. Usually those represented by path-finder transit assignment solutions.

\[
g(k+1) = \sum_{l=1}^{r} D(l) g(k-l+1) + w(k)
\]

- **State variables can not be measured**, however they are related to measurements $z(k)$.

- **Measurements** $z(k)$ are counts of equipped passengers at Wifi Bus-Stops

\[
z(k) = F(k) g(k) + v(k)
\]
1. **Objective of this work**
 i. Macro, meso and micro approaches to traffic modeling ...
 ii. Demand thru dynamic OD Trip Matrices (by time-slices) for a period (peak morning, etc)
 iv. New sources of data collection: Wifi and Bluetooth

2. **A Linear State Space Model approach for auto matrices**
 i. A State Space Model approach
 ii. Proposed state and measurement variables.

3. **Testing the Approach by Simulation for auto trip matrices**
 i. Experiment 1: Ronda de Dalt freeway.
 ii. Experiment 2: AMARA urban network
 iii. Importance of Detector Layout and Experiment 3: BARCELONA’s CBD urban network.

4. **A Linear State Space Model approach for dynamic passenger matrices**
 i. Definition of state variables and observation variables.
 ii. Statement of the equations of the KF linear formulation.
 iii. Time varying model parameters: travel time discrete distributions from BT data

5. **Conclusions and further research**
EXPERIMENT 3: BARCELONA’S CBD
MODEL - Example District

Aimsun is a transport modelling software for real-time traffic simulation

Model dimension parameters:
- OD PAIRS: 877
- Links: 2108
- Origin centroids: 120
- Destination centroids: 130
- 2954 Most likely OD paths
- Sensors: 281
 - Interior sensors: 151
 - Exit Gates: 130 (not used)
Contents

1. Objective of this work
 i. Macro, meso and micro approaches to traffic modeling …
 ii. Demand thru dynamic OD Trip Matrices (by time-slices) for a period (peak morning, etc)
 iv. New sources of data collection: Wifi and Bluetooth

2. A Linear State Space Model approach for auto matrices
 i. A State Space Model approach
 ii. Proposed state and measurement variables.

3. Testing the Approach by Simulation for auto trip matrices
 i. Experiment 1: Ronda de Dalt freeway.
 ii. Experiment 2: AMARA urban network
 iii. Importance of Detector Layout and Experiment 3: BARCELONA’s CBD urban network.

4. A Linear State Space Model approach for dynamic passenger matrices
 i. Definition of state variables and observation variables.
 ii. Statement of the equations of the KF linear formulation.
 iii. Time varying model parameters: travel time discrete distributions from BT data

5. Conclusions and further research
4. i- A Linear State Space Model approach for dynamic passenger matrices (I)

• “Public transport agencies have traditionally been hampered in planning, managing and evaluating their services by having to rely heavily on costly and unreliable manual data collection systems” ... (Zhao, Rahbee and Wilson, Computer-Aided Civil and Infrastructure Engineering 22 (2007) 376-387).

• The general types and characteristics of ADC (Automatic Data Collection) systems are classified as:
 - AVL (Automatic Vehicle Location) and tracking systems,
 - AFC (Automatic Fare Collection) systems,
 - and APC (Automatic Passenger Counting) systems

• AFC systems are not always suitable for OD matrix estimation (usually passengers’ exit points are not registered).

• APC does not differentiate between passengers, just counts, and it is expensive in terms of equipment when cameras are used.
4. i- A Linear State Space Model approach for dynamic passenger matrices (II)

- Recent static and non-real time applications are:

 - An OD matrix inference from origin-only data has been addressed in the analysis of the Chicago Rail System using Authomatic Payment Systems by Zhao et al. (2007), amongst other authors as Cui (2006), Trepanier et al. (2007), and Barry et al. (2008), all them use trip-chaining methods with similar assumptions:
 - There is no private transportation mode trip segment.
 - Passengers will not walk a long distance
 - Passengers end their last trip of the day where they began their first trip of the day.

 - Jang (2010) further examined the possibilities of using the ADCS archived data for public transport planning in Seoul, South Korea. One feature that distinguishes the Seoul ADCS from many other cities is that it records each trip’s entry and exit times and locations.
4. i- A Linear State Space Model approach for dynamic passenger matrices (III)

• (Cont.) Recent static and non-real time applications are:
 - Kostakos (2006, 2008) proposed a novel use of passengers’ smartphones and BT antennas in bus units as a mean of capturing OD matrices in a field test project in Madeira.
 - To capture passenger trips on buses onboard cameras have also been used and automated head detection applied. But it is expensive.

• We propose to use passengers’ smartphones and BT antennas in bus-stops to estimate dynamic passenger matrices from origin to destination transportation zones:
 - Expansion of BT data is not addressed in this work and a common expansion factor according to historical BT penetration rate in the population is considered for simplicity.
 - We are concerned with modeling passenger behavior based on the concept of strategy. At each possibly reached transit stop, the attractive line/s can be selected based on minimizing travel cost (path-finder strategies).
4. i- Formulation proposal for dynamic OD passenger matrices

- The demand matrix for the period of study is assumed to be divided into several time-slices, accounting for different proportions of the total number of passengers in the time horizon.

- The approach assumes an extended space state variable for M+1 sequential time intervals of equal length Δt (between 5 and 10 minutes for passenger’s matrices).

- The solution should provide estimations of the OD passenger matrices between network zones for each time interval up to the k-th interval once observations of BT equipped passengers upon to the k-th interval are available.
4. i- Formulation proposal for dynamic OD passenger matrices

State variable definition:

• We propose to use deviates of state variables to include a priori structural information, and simplify properties of space-state-models based on Kalman filtering: \[\Delta g_{ije} = g_{ije} - g^H_{ije} \]

• Wifi antennas are proposed to be located on bus-stops:
 - Only origin-destination trips for passengers in transit lines whose equipped stops, those covered with ICT sensors are observable.
 - Interferences with not covered transit-lines in some stops are not considered in this first approximation.
4. i- Formulation proposal for dynamic OD passenger matrices

- BT data is non-biased according to some studies as Rescott 2011 *Feasibility of Bluetooth Data as a Surrogate Analysis Measure of Traffic Degree* thesis on Civil Engineering, Univ of Kansas.

- Either historical profiles (for day-type and time-period) have to be used to expand BT samples of equipped passengers to the total number of passengers.

- Or to expand the BT sample a passenger counting system that records the comings and goings of passengers automatically, and precisely (less than 5% error according to Barcelona’s tests, FGC) has to be considered in transit-units:

 - The sensors are installed unobtrusively over the vehicle doors and deliver reliable passenger count data such as boarding/alighting passengers. One PCU (people counting unit) can have up to 16 connected elements and control up to 6 doors by means of a serial sensor link (cable).

 - Passenger count data are transmitted by cable or wirelessly to the data management system, via Ethernet, data bus, WLAN, GSM, GPRS or UMTS.
4. i- Expanded Network Model (Graph)

State variables are noted as Δg_{ije} and are defined as deviations of OD passenger flows on most-likely paths e from origin i to destination j for smartphone equipped passengers.

An optimal strategy is represented as an hyperpath (set of paths) in the expanded transit network for the transit line itineraries in a network.

A simplified subset of K-Shortest paths in the expanded network are stated as state variables (MLPaths, most-likely paths).
4. ii- KF Approach: simple path flow deviations on optimal strategy for OD as state variables (I)

Historical flow of equipped passengers on most-likely paths for i-j OD; i.e., first boarding on a transit-stop belonging to centroid i at time interval \(k \) and headed towards destination zone \(j \) (the trip might have several transfers). Equal share among simple paths.

Most likely paths are assumed to approximate optimal strategy transit assignment.

Proportions assigned to most-likely paths constitute an output of the linear KF proposal.

Deviates of OD flows on most-likely paths as state variables and deviates of counts on ICT sensors as observation equations

The historic observation variables during interval \(k \) on passenger counts on transit-stops for time interval length \(\Delta t \); according to current time-varying model parameters, i.e. a column vector of dimension \(Q + I \), whose structure is

\[
\Delta z(k) = z(k) - \tilde{z}(k) = F(k) \begin{pmatrix} g(k) - \tilde{g}(k) \\ \Delta g(k) \end{pmatrix} + v(k)
\]
4. ii- KF Approach: simple path flow deviations on optimal strategy for OD as state variables (II)

State vector equations AR(r) on deviates:
\[
\Delta g(k+1) = \sum_{l=1}^{r} D(l) \Delta g(k-l+1) + w(k)
\]

Observation vector equations:
\[
\Delta z(k) = \begin{pmatrix} H(k) \\ E \end{pmatrix} \Delta g(k) + \begin{pmatrix} v_1(k) \\ v_2(k) \end{pmatrix} = F(k) \Delta g(k) + v(k)
\]

First block: deviates of counts on sensor points
\[
H(k) \Delta g(k) = AU(k)^T (g(k) - \tilde{g}(k)) \approx (y(k) - \tilde{y}(k))
\]

Second block: conservation flows for each entry and time interval k

- Most-likely paths are considered to approximate the optimal strategy for each selected OD pair and OD path flows are assumed to change smoothly.
- H(t) BT Travel Times
- Time-varying model parameters
- Several \(\Delta t_s \) (between 5 and 15 min) are to be considered: time lag effect is explicitly included in the formulation.
- Depends on experienced traffic state

Networks

* Networks
* Most-likely paths are considered to approximate the optimal strategy for each selected OD pair and OD path flows are assumed to change smoothly.
* H(t) BT Travel Times
* Time-varying model parameters

Depends on experienced traffic state

Travel times to be considered

* Networks
* Most-likely paths are considered to approximate the optimal strategy for each selected OD pair and OD path flows are assumed to change smoothly.
* H(t) BT Travel Times
* Time-varying model parameters

Travel times to be considered

• Several \(\Delta t_s \) (between 5 and 15 min) are to be considered: time lag effect is explicitly included in the formulation.

Networks

• Most-likely paths are considered to approximate the optimal strategy for each selected OD pair and OD path flows are assumed to change smoothly.
• H(t) BT Travel Times
• Time-varying model parameters

Depends on experienced traffic state

Travel times to be considered
4. iii- KF Approach: Time varying model parameters from ICT data - Travel times from equipped passengers (III)

- Travel time distribution of T_{iq} of passengers first boarding at any transit-stop at origin zone i in time interval k are headed during their journey through sensor q.

- **Approximate travel times distribution by discrete distribution with interval proportions updated according to online ICT data.**

- **Interval proportions** are considered time-varying model parameters: structural constraints to sum 1 are required.

 - Fraction of passengers that require h time intervals to reach sensor q at time interval k first boarding at centroid (transport zone) i.

\[
\sum_{h=1}^{H} u_{iq}^{h}(k) = 1 \quad i = 1...I, \quad q = 1...Q, \quad h = 1...H
\]

\[
u_{iq}^{h}(k) \geq 0 \quad i = 1...I, \quad q = 1...Q, \quad h = 1...H
\]
5. Conclusions and further research (I)

• A **linear KF formulation** for the dynamic estimation of OD passenger matrices for urban transit networks is being implemented in MatLab and tested by simulation.

• Further research **points to** decision methods to define detection layout to be suitable to dynamic OD estimation in multimodal urban transit networks.

• For railway networks a strategy-based transit assignment is not realistic since passengers do not arrive randomly at time to the stations. The formulation should be revised to deal with **fixed scheduled transit services**.

• Formulation takes into account deviates of passenger flows on most likely paths as state variables and it is suitable for application to urban and regional transit networks.

• The **availability of ICT based measurements** allows a problem’s formulation as a linear Kalman Filter that incorporate travel times and thus general traffic state and dynamics.
Thank you very much for your attention!

This research is funded by project TRA2011-27791-C03-02 of the Spanish R+D National Program.