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Abstract

This work presents a two-scale homogenization procedure to analyze three
dimension composite structures by the finite element method. The theory
implemented is compared with other micro-structural formulations: micro
models and the serial-parallel mixing theory, in terms of result accuracy and
computational cost. The comparison shows that for linear analysis, the ho-
mogenization proposed is an excellent alternative to the other formulations
considered. Its computational cost is substantially lower than the one re-
quired by the micro-model and it is able to capture some micro-structural
phenomena that it is not automatically recorded by the serial-parallel mixing
theory. It will also be shown that the extension of the proposed theory to
the non-linear range stills represents a challenge. The major limitation is
its prohibitive computational cost because it requires solve the sub scale at
each gauss point and each load step. However the comparison shows that
this cost is in terms of CPU time but not in terms of memory. Based on
the results obtained, it can be concluded that the homogenization method is
an excellent alternative for the simulation of materials with complex micro
structures. The method is also very promising for non linear simulations,
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when coupled with a threshold criteria to decide whether it is necessary to
analyze the RVE or not.
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Composites; Homogenization; Mechanical properties; Finite element
method (FEM)

1. Introduction

The composites are non-homogeneous materials made of at least two dif-
ferent components. Generally, they are constituted by a matrix that embeds
reinforcement elements [1]. These can be particles, short fibers, long fibers,
etc. The different failure modes of a composite begin in its microstructure
and then propagate, becoming larger and causing the final material failure.
It is essential for a constitutive model to consider the microstructure, if its
objective is to predict the failure of the composite. Different methodolo-
gies have been proposed to obtain the behavior of the composite, taking
into account its internal configuration. The most commonly used are: Micro
models, the Mixing and the Homogenization approaches.

A micro model is the simplest way to consider the microstructure of a
composite because its internal structure is modeled explicitly. Currently
these models are used to study local effects such as the contact, stress and
strain produced by a steel ball sliding on the surface of a composite [2, 3],
or to analyse of the propagation of a matrix crack from a debonded fiber [4]
or to study the effect of the interface, for a particle reinforced metal matrix
composite, in the macro tensile stress/strain curve [5], etc. The problem with
this kind of models is that its use is limited by its computational cost.

The mixing theory was proposed initially by Truesdell and Toupin [6].
Later, Green and Adkins [7] presented a general non-lineal constitutive equa-
tions. Ortiz and Popov [8, 9] proposed a general constitutive equations for
unreinforced concrete idealized as a composite material. Then, the theory
was modified by Oller et al. [10] and Neamtu et al. [11] introducing the
serial-parallel concept. The mechanical characteristic of the composite are
obtained using the properties of each component and taking into account its
topological distribution. Oller generalizes the mixing theory to enable the
resolution of any composite with reinforced matrix, without the limitation
required by the compatibility equation [12]. The SP continuum approach
proposed by Rastellini et al. [13] assumes the behavior components of the
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composite as parallel materials in the fibers alignment direction and as serial
materials in the orthogonal direction. Recently, Otero et al. [14] presented
the extension of the mixing theory for the study of matrices reinforced with
nanotubes.

In the homogezation theory the problem is divided into two or more scales.
One of the most relevant methods was proposed and developed by Sanchez-
Palencia [15] and Bensoussan et al. [16], which is formulated in terms of
asymptotic expansion theory. On the other hand, Suquet [17, 18] uses the
method of averages to solve and extend the problem in two scales to the non-
linear case. Suquet laid the foundation of what today is known as first-order
homogenization [19]. The deformation gradient tensor is used to solve the
problem at the micro scale and then the macroscopic stress tensor is obtained
using the averaging equation. Over time the method was extended to large
deformations with arbitrary nonlinear material behaviour at the micro scale,
thanks to the work of Moulinec [20], Miehe [21, 22, 23], Terada [24, 25]. Geers
and Kouznetsova developed what is called second-order homogenization [26,
27, 28]; in this case the method uses the deformation gradient tensor and
its Lagrangian gradient to solve a boundary value problem at the micro
scale. The second-order approach allows solve the macro scale problem in
the presence of moderate localization, as macroscopic deformation gradients
(e.g. in bending) are passed to the RVE boundaries. To solve problems
involving damage and fracture, leading to intense localization, a continuous-
discontinuous homogenization has been developed [29]. It consists in the
definition of a localization band at the macro scale, and using the deformation
gradient tensor, in this band. In the last years, the homogenization has been
extended to coupled thermo-mechanical problems [30], and to problems with
cohesive zones [31], which can properly handle localization at the macroscopic
scale.

This paper compares the results provides by these three numerical mod-
els (Micro models, Mixing and Homogenization approaches), looking into the
strengths and weaknesses of each one of them. First, in the next section a
brief description of Micro models and the Serial-Parallel theory, is done. The
sections 3 and 4 describe the homogenization framework proposed and its
implementation for three dimension composite structures. In the section 5
it is described the numerical model used in the section 6 to compare the
results obtained with the different theories. The section 7 presents a compu-
tational cost comparative study considering all theories. Finally, the section
8 contains the conclusion of this work.
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2. Numerical Models Used to Simulate the Microstructural’s Be-
havior

This section briefly describes the numerical models that will be compared
with the homogenization framework.

2.1. Micro Models

In these models, the constituent materials forming the composite are
modeled explicitly. Therefore, the response of the composite arises naturally.
Each single material is modeled with its own constitutive law. These models
are very powerful because they do not need to take any hypothesis on the mi-
crostructural behavior. However, their biggest limitation is its computational
cost and in most cases their use is not practical.

2.2. Serial-Parallel Mixing Theory

The serial-parallel mixing theory could be defined as a phenomenological
homogenization, where the behavior of the composite is obtained from the
constitutive response of their materials components. This theory has been
developed by Rastellini et al. [13], and is a natural evolution of the parallel
mixing theory developed by Car et al. [32, 33]. The theory is based on the
compatibility conditions defined by Trusdell and Toupin [6], but introduces a
modification in the iso-strain hypothesis. The iso-strain condition is imposed
in the reinforcement direction (normally fiber) and a new iso-stress condition
is imposed in the transversal directions. The theory is based on the following
hypotheses:

1. The constituent materials of the composite are subjected to the same
strain in the parallel (fiber) direction.

2. Constituent materials are subjected to the same stress in the serial
direction.

3. The response of the composite material is directly related to the volume
fractions of its constituent materials.

4. The phases in the composite are considered to be homogeneously ditributed.

5. The constituent materials are considered to be perfectly bonded.

Taking only two composite components, the equations that define the
stress (σ) equilibrium and setting up the strain (ε) compatibility between
the individual components follow the hypothesis previously described are:
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Parallel behavior:
cεp = mεp = fεp
cσp = mkmσp + fkfσp

(1)

Serial behavior:
cεs = mkmεs + fkfεs
cσs = mσs = fσs

(2)

where the superscripts c, m and f stand for composite, matrix and fiber,
respectively and ik is the volume-fraction coeffiecient of each constituent in
the composite.

This theory can predict the linear and non linear behavior of structural
elements made of composite materials. Composite materials that can be
modelled are those formed of long fibers embedded in a matrix. The the-
ory predicts the different behavior of the composite, depending on the load
direction. The potential of this theory is to predict accurately the response
of composites in the linear and non linear range (i.e. delamination failure)
as has been proved in several papers [34, 13, 35, 36, 37, 38, 39, 14, 40]. On
the other hand, The theory of seriel-parallel mixtures is able to simulate the
delamination problem naturally, without having to define specific elements
or predefine the path of fracture.

3. Multi-Scale Homogenization Model

The first-order homogenization framework presented here takes knowl-
edge from the theory proposed by Zalamea [41] and later extended by Oller
et al. [42] and by Badillo and Oller [43]. An extension to tri-dimensional
framework of this theory is described in the following section.

The multi-scale homogenization is based on the use of an unit cell or
representative volume element (RVE). The RVE definition corresponds to
a microstructural subregion which is representative of the entire sub scale.
The RVE is employed to determine the corresponding effective properties for
the homogenized macro scale. For composites, it is assumed that it must
contain a sufficient number of inclusions, which makes the effective moduli
independent of assumed homogeneous forces or displacements on the RVE
boundary.

In general, a multi-scale formulation that follows the first-order homoge-
nization procedure can be identified as a “deformation driven” formulation.
This mean that, with a deformation at the macro scale level, expressed by
the strain tensor Ē, the homogenized stress tensor σ̄ and the homogenized
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constitutive tensor C̄ can be determined at the sub scale level based on the
interaction among the constituents at the RVE.

3.1. Homogenized variables

If the composite is periodic or quasi-periodic, its internal structure should
be generated by repetition of their components. This property allows divid-
ing the composite into a unit cell or RVEs in a way that each particle that
conforms the mean is related to other particles that are distributed recur-
rently following a periodicity ratio. Therefore, any point inside the RVE has
an equivalent point in each of neighboring RVE by periodicity. These points
are known as periodic points and the link that connects each periodic point
is known as a base vector of periodicity or periodicity vector.

When the unit cell suffers a change on its form, the periodic faces of
the unit cell remain “parallel” by means of the periodicity vectors. This
guarantees the compatibility of displacements in the upper scale, if not it
would produce an overlap or form voids or gaps, in the composite. By the
principle of action and reaction, something similar occurs with the forces
generated on the boundary of the unit cell. The forces acting on the face
of an unit cell are transmitted with the same magnitude but in opposite
direction to the neighbor unit cell. This principle is called as a field of anti-
periodic force.

The relative displacement between the periodic points in the sub scale
can be related to the deformation in the upper scale through of the homog-
enization of the strain and stress tensors, after this, it can be proposed and
solved the equation that dictates the balance of the composite structure.

3.1.1. Homogenized strain tensor

Consider a point P inside a periodic composite material body Ω, where
a reference coordinate system X̄ is associated to the upper scale. Assuming
that an amplification of the point P could be represented by the unit cell
domain Ωc, where a system of coordinates in the reference space X is defined,
in a way that the material components of the composite can be perfectly
identified. The space configuration at the unit cell domain Ωc is associated
with de periodicity vectors D in the space X the referential, meanwhile in the
updated configuration system x the same space is associated to the vectors
d as shown in the left scheme and the right scheme in Fig. 1, respectively.

The points P0, P1, P2 and P3, represent the periodic points in the reference
coordinate system, therefore the periodicity vectors D are defined by the
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Figure 1: Schematic representation of the relation of the periodicity vectors in the refer-
ential and updated configurations.

distance between these points, as follows:

Di = XPi
−XP0 ; i = 1 · · · 3 (3)

Moreover, a displacement field u generates a new position of the par-
ticles at the updated configuration as follows: x = X + u. The updated
displacement field u translates the position of the periodic points from the
material space coordinates X to the position p0, p1, p2 and p3 in the updated
configuration x. The hypothesis of local periodicity inposes that the mean is
deformed but its variables maintain the local periodicity. Then, the unit cell
is associated with a new periodicity vectors called the updated periodicity
vector d , defined as:

di = xpi − xp0 = Di + uPi
− uP0 ; i = 1 · · · 3 (4)

The transformation of the unit cell space is associated with the change of
periodicity vectors. The parcial derivative of these vectors is:

∂d

∂D
=

∂(xp − xp0)

∂(XP −XP0)
(5)

Now, on the upper scale level, the periodicity vectors are infinitesimally
small (|D| → 0). Then the change over these vectors tends toward a limit:
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lim
D→0

[
∂d

∂D

]
= lim

D→0

[
∂(xp − xp0)

∂(XP −XP0)

]
=
∂x̄

∂X̄
= F̄ (6)

Therefore,
d = F̄ ·D (7)

where F̄ is the homogenized deformation gradient tensor. This change of
scale allows determinig the homogenized strain tensor using concepts of the
classical continuum mechanics. The square of the length of the updated
periodicity vector is:

|d|2 = dT · d = DT · F̄T · F̄ ·D (8)

And, the difference between the square of the length of the periodicity
vectors in the updated and in the reference configurations is:

|d|2 − |D|2 = DT · F̄T · F̄ ·D−DT ·D = DT · [F̄T · F̄− I] ·D (9)

The Green Lagrange tensor definition for a homogeneous material, is
given by E = 1

2
[FT ·F− I]. By analogy Eq. 9 can be expressed as a measure

of the strain in the upper scale Ē as:

|d|2 − |D|2 = 2DT · Ē ·D (10)

The Green Lagrange tensor of the strain in the upper scale can be called
the homogenized strain tensor. This tensor is fully associated with the change
of the periodicity vectors.

Ē =
1

2
[F̄

T · F̄− I] (11)

The homogenized strain tensor quantifies the overall change of the unit
cell’s space under a periodic displacement field and it is independent of the
patterns generated in the boundary of the cell. Moreover, it coincides with
the classic equation of the averages theory proposed by Suquet [17].

Ē = 〈E(X, t)〉Ωc =
1

Vc

∫
Ωc

E(X, t) dVc (12)

where E(X, t) is the sub scale strain tensor field at any instant t, defined
over the domian of the unit cell Ωc and Vc is the volume contained in the
cell’s domain.
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Kinematically admissible displacement fields in the unit cell.

Considering the linear kinematic hypothesis, the strain tensor in the sub
scale ε(x, t) can be obtained as:

ε(x, t) = ∇su(x, t) (13)

where∇su(x, t) denotes the symmetric gradient of the sub scale displacement
field u(x, t) of the unit cell. Without loss generality it is possible to split
u(x, t) into in the following sum:

u(x, t) = ε̄(t) · x︸ ︷︷ ︸
linear

+ ũ(x, t)︸ ︷︷ ︸
fluctuating

(14)

where the first term in the sum is linear at x and this also depends of the
upper scale deformation tensor and ũ(x, t) is a displacement fluctuation field
in the sub scale level.

Following the split of Eq. 14 and using Eq. 13 the sub scale strain tensor
can be expressed as the sum:

ε(x, t) = ε̄(t)︸︷︷︸
constant

+ ε̃(x, t)︸ ︷︷ ︸
fluctuating

(15)

of a homogeneous strain field (coinciding with the upper scale, average strain)
and a fied ε̃(x, t) = ∇sũ(x, t) that respresents a fluctuation about the aver-
age.

On the othe hand, if replaced Eq. 13 into Eq. 12 and making use of
Green’s theorem, it can be established that the averaging relation of Eq. 12
is equivalent to the following constraint on the displacement field of the unit
cell [44].

ε̄ =
1

Vc

∫
Ωc

∇su dVc =
1

Vc

∫
∂Ωc

u⊗s n dAc (16)

where n denotes the outward unit normal field on ∂Ωc and

a⊗s b ≡ 1

2
(a⊗ b + b⊗ a) (17)

for any vectors a and b. Eq. 16 imposes constraints over the displacement
field functions u(x, t) in the sub escale level. Only the functions that satis-
fying this constraint are kinematically admissible, mathematically this is:
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u ∈ K∗ ; K∗ =

{
u, sufficiently regular |

∫
∂Ωc

u⊗s n dAc = ĒVc

}
(18)

whereK∗ is the minimally constrained set of kinematically admissible subescale
displacements and with sufficiently regular meaning that the relevant func-
tions have the sufficient degree of regularity so that all operations in which
they are involved make sense.

Used Eq. 15, can easily be established that the constraint over the dis-
placement field u(X, t) are transferable to the displacement fluctuation field
ũ(X, t) as following:

u ∈ K∗ ⇔ ũ ∈ K̃∗ ; K̃∗ =

{
ũ, sufficiently regular |

∫
∂Ωc

ũ⊗s n dAc = 0

}
(19)

where K̃∗ is the minimally constrained space of kinematically admissible dis-
placement fluctuations.

The characterisation of a multi-scale model is completed with the choice
of a suitable space of kinematically admisible displacement fluctuations K̃,
which must satisfy: K̃ ⊆ K̃∗.

i) Taylor model (or zero fluctuations):

K̃ = K̃Taylor ≡ {ũ, sufficiently regular | ũ(x, t) = 0, ∀ x ∈ Ωc} (20)

This model gives homogeneous deformation in the sub escale level.
ii) Linear boundary displacements (or zero boundary fluctuations):

K̃ = K̃Lin ≡ {ũ, sufficiently regular | ũ(x, t) = 0, ∀ x ∈ ∂Ωc} (21)

The deformation of the boundary of the unit cell for this class are fully
prescribed as:

ε(x, t) = ε̄(t) ∀ x ∈ ∂Ωc (22)

iii) Periodic boundary fluctuations:
This assumption is typically associated with the description of media with

periodic microstructure [45]. The key kinematical constraint for this class of
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models is that the displacement fluctuatin must be periodic on the boundary
of the unit cell. That is, for each pair {x+,x−} of boundary points it has:

ũ(x+, t) = ũ(x−, t) (23)

Accordingly, the space K̃ is defined as:

K̃ = K̃Per ≡ {ũ, suff. reg. | ũ(x+, t) = ũ(x−, t), ∀ pairs {x+,x−} ∈ ∂Ωc}
(24)

iv) The minimally constrained (or uniform boundary traction):

K̃ ≡ K̃∗ (25)

It has been shown by de Souza Neto and Feijóo [46] that a distribution
of stress vector on the unit cell boundary as:

σ(x, t) · n(x) = σ̄(t) · n(x) ∀ x ∈ ∂Ωc (26)

obtains the minimal kinematic constraint.

3.1.2. Homogenized stress tensor

The homogenized stress tensor σ̄(x, t) is defined as the average of the
forces acting on the unit cell’s sides:

σ̄(x̄, t) =

∫
∂Ωc

x⊗ σ(x, t) · n dAc∫
∂Ωc

x⊗ n dAc

(27)

Thus, if the effect of the volume forces is disregarded (σij,j = 0), and
using the divergence theorem gives the following average theory equation:

σ̄(x̄, t) =
1

Vc

∫
Ωc

σ(x, t) dVc (28)

The overall surface force t̄(n̂) is defined as the average of the forces on
the boundary of the unit cell ∂Ωc that is determined by the direction of the
upper scale unitary vector n̂.

t̄(n̂) =
1

Vc

∫
Ωc

σ(x, t) dVc · n̂ = σ̄ · n̂ (29)
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Eq. 29 is a linear function that depends on the direction of n̂. The
tensor σ̄ satisfies in the upper scale level the same requirements as the stress
tensor σ for the case of homogeneous materials. Consequently, the tensor σ̄
hereinafter called as the homogenized stress tensor.

3.1.3. Homogenized elastic constitutive tensor

Considering that all the constituents are elastic and assuming that there
is no relative displacement between these at the subscale, the homogenized
elastic constitutive law relates the homogenized variables as:

σ̄ = C̄ : ε̄ (30)

where C̄ is the tensor formed by the elastic constants of the homogenized
composite, called homogenized elastic constitutive tensor.

The constitutive tensor is determined according to the theory of averages
and the asymptotic expansion theory [16, 47, 48, 15, 19].

A possible procedure to obtain the homogenized constitutive tensor is by
applying a homogenized ε̄ strain on the cell domain in order to compute the
homogenized stress σ̄ as it is done to calculate the tangent stiffness tensor in
[35]. The homogenized strain can be applied in terms of small perturbations
to the unit cell, and a system of equations with different perturbations in
applied in each of the principal directions.

C̄ = σ̄ : ε̄−1 (31)

With this procedure the homogeneous constitutive tensor is obtained
component by component.

3.2. Linear-elastic homogenized formulation

The behaviour of the upper scale is obtained by considering the cell as
a structural unit and by considering the problem as a quasi-static problem
expressed in small strains. The variables of the problem are established and
the governing equations are formulated following this approach.

Equilibrium equations. The local stress field at the sub scale must satisfy an
equilibrium equation inside the entire volume of the unit cell Ωc. The Cauchy
equilibrium equation on the sub scale level may be written as∫

∂Ωc

σ · n dAc −
∫

Ωc

ρb dVc = 0 (32)
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where n is a unit normal vector of the surface, ρ is the mass, b is the force
associated with the mass. The domain of the unit cell is very small from the
upper scale point of view (Ωc → 0), Consequently, the value of the forces of
volume and inertia are also small and tend to zero. Therefore Eq. 32 can be
reformulated as:

lim
Ωc→0

[ ∫
∂Ωc

σ · n dAc

]
= 0 ; lim

Ωc→0

[ ∫
Ωc

ρb dVc

]
= 0 (33)

The first integral of the above expressions indicates the concept of the
balance in the microstruture, this is, the integral of the forces on the contour
of the unit cell domain must be zero. Using the Divergence theorem in Eq.
33, the static equilibrium can be expressed as:

∇ · σ = 0 (34)

Furthermore, if the entire domain of the periodic mean Ω is considered,
and is represented as a homogeous material composed of a large number of
alike unit cells, then it is possible to express the global balance equation as
the integral of the balance equation on each of these cells:

∫
∂Ω

[
1

Vc

∫
Ωc

σ(x, t) dVc

]
· n̂ dA+

∫
Ω

[
1

Vc

∫
Ωc

ρb dVc

]
dV = 0 (35)

The body forces per unit volume have been considered because since on
a upper scale level their magnitudes can be significant. This effect may be
assumed as the average of the volume forces b̄ inside the unit cell as:

b̄ =
1

Vc

∫
Ωc

ρb dVc (36)

Using the divergence theorem of Eq. 35 can be rewritten as:∫
Ω

∇ · σ̄ dV +

∫
Ω

b̄ dV = 0 (37)

Eq. 37 is valid for any region Ω, therefore it is also valid even when a very
small domain is chosen, being the limit the unit cell. Then, the homogenized
local equation of static equilibrium is obtained and it is expressed in the
following way:

∇ · σ̄ + b̄ = 0 (38)
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3.2.1. Linear formulation at the upper scale

A boundary value problem (BVP) is considered for the upper scale of
a domain Ω with a periodic sub structure. The kinematics of the problem
is related to a displacements field on the upper scale, which expresses the
displacement of each particle of the domain Ω. The BVP at the upper scale
level must satisfy the following set of equations:

∂σ̄(x̄)

∂x̄
+ b̄ = 0 equilibrium equation in Ω (39)

σ̄(x̄) =
1

Vc

∫
Ωc

σ(x) dVc = C̄ : ε̄(x̄) constitutive equation in Ω (40)

u(x̄) = ū(x̄) displacements in ∂Ωu (41)

σ̄(x̄) · n = t̄(x̄) forces in ∂Ωt (42)

where ∂Ωu is the boundary in which the displacement is known (Dirichlet
condition) and ∂Ωt is the boundary where the forces are known (Neumann
condition).

3.2.2. Linear formulation at the sub scale

To formulate the problem at the sub scale level it is necessary to es-
tablish special boundary conditions at the RVE domain Ωc. To ensure the
compatibility of displacements at the upper scale level, a periodic boundary
fluctuation displacements is used. Then, the relative displacement between
the RVE boundary’s periodic points or pair points {x+, x−} can be expressed
as shown Eq. 45. Furthermore, by the principle of action and reaction, the
sum of the forces generated on the RVE boundary ∂Ωc (at the periodic points
or pair points) must be zero. This condition ensures the periodicity of the
field of internal forces in the upper scale level. Under these considerations,
the problem is reduced to solve the following BVP in the domain of the RVE
Ωc:

∂σ(x)

∂x
= 0 equilibrium equation in Ωc (43)

σ(x) = C(x) : ε(x) constitutive equation in Ωc (44)

u(x+)− u(x−) = ε̄(x̄) ·D periodic displacements in ∂Ωc (45)

t(x+) + t(x−) = 0 periodic forces in ∂Ωc (46)
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Nodes a b c d e f g h

Table 1: Periodic vertices nodes.

where C(x) is the constitutive tensor corresponding to the respective com-
ponent at each point inside the domain.

4. Numerical Implementation

To solve the BVP in the sub scale it is necessary to verify the periodic
displacements and periodic forces over RVE’s boundary. Then, it is necessary
to satisfy the Eqs. 45 and 46. If the BVP is solved by Finite Element Method
(FEM) the unknowns are reduced to a finite degrees of freedom. The periodic
boundary conditions are applied to the nodes on the RVE’s boundary. A
general RVE with hexagonal form it is shown in Fig. 2. The RVE has a
coordinate system like the one shown in the left part of the Fig. 2, which
origin is defined in node “a”.

The restrictions of degrees of freedom on the boundary’s domain can be
accounted through several methods such as elimination of redundant un-
knowns, penalty methods and Lagrange multipliers [45]. The last two meth-
ods have the disadvantage that ill-conditioned stiffness matrix or increase
the number of degrees of freedom of the problem. To avoid these two disad-
vantages, here is proposed solving the RVE by an elimination of redundant
unknowns.

Eq. 45 shows the redundant unknowns of the problem. Using this equa-
tion it is possible identify master unknowns (the unknowns to resolve) and
slave unknowns. Finally, the equation system to solve is reduced with Eq.
46.

The eight periodic vertices nodes will have a forced displacement which
depends to the macro deformation (see left part of Fig. 2 and Table 1). If
a structured Finite Element (FE) Mesh is used, it is possible identify easily
master and slave nodes. The right part of Fig. 2 shows the chosen master
nodes (named with a letter) and the slave nodes (named with a letter and
number). The quantity of periodic nodes depends on the FE Mesh. Table 2
shows master nodes and the slave nodes located on the edges and surfaces of
the RVE shown in Fig. 2.

Eq. 47 shows the forced displacements on the periodic vertice nodes,
these only depend on the macro deformation, and RVE’s dimensions. On
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Figure 2: General hexagonal RVE.

Master nodes a b c d e f
Slave nodes a1, a2, a3 b1, b2, b3 c1, c2, c3 d1 e1 f1

Table 2: Master and slave periodic nodes denomination.

the other hand, Eq. 48 shows the displacement relations between master and
slave nodes. Finally, Eq. 49 gives the periodic forces relationship between
the master and slave nodes.

a

 ax = 0
ay = 0
az = 0

b

 bx = ExD1

by = Exy/2D1

bz = Exz/2D1

c

 cx = ExD1 + Exy/2D2

cy = EyD2 + Exy/2D1

cz = Exz/2D1 + Eyz/2D2

d

 dx = Exy/2D2

dy = EyD2

dz = Eyz/2D2

e

 ex = Exz/2D3

ey = Eyz/2D3

ez = EzD3

f

 fx = ExD1 + Exz/2D3

fy = Exy/2D1 + Eyz/2D3

fz = EzD3 + Exz/2D1

g

 gx = ExD1 + Exy/2D2 + Exz/2D3

gy = EyD2 + Exy/2D1 + Eyz/2D3

gz = EzD3 + Exz/2D1 + Eyz/2D2

h

 hx = Exy/2D2 + Exz/2D3

hy = EyD2 + Eyz/2D3

hz = EzD3 + Eyz/2D2

(47)
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a1

 a1x = ax + Exy/2D2

a1y = ay + EyD2

a1z = az + Eyz/2D2

a2

 a2x = ax + Exy/2D2 + Exz/2D3

a2y = ay + EyD2 + Eyz/2D3

a2z = az + EzD3 + Eyz/2D2

a3

 a3x = ax + Exz/2D3

a3y = ay + Eyz/2D3

a3z = az + EzD3

b1

 b1x = bx + ExD1

b1y = by + Exy/2D1

b1z = bz + Exz/2D1

b2

 b2x = bx + ExD1 + Exz/2D3

b2y = by+Exy/2D1 + Eyz/2D3

b2z = bz + EzD3 + Exz/2D1

b3

 b3x = bx + Exz/2D3

b3y = by + Eyz/2D3

b3z = bz + EzD3

c1

 c1x = cx + ExD1

c1y = cy + Exy/2D1

c1z = cz + Exz/2D1

c2

 c2x = cx + ExD1 + Exy/2D2

c2y = cy + EyD2 + Exy/2D1

c2z = cz + Exz/2D1 + Eyz/2D2

c3

 c3x = cx + Exy/2D2

c3y = cy + EyD2

c3z = cz + Eyz/2D2

d1

 d1x = dx + Exz/2D3

d1y = dy + Eyz/2D3

d1z = dz + EzD3

e1

 e1x = ex + ExD1

e1y = ey + Exy/2D1

e1z = ez + Exz/2D1

f1

 f1x = fx + Exy/2D2

f1y = fy + EyD2

f1z = fz + Eyz/2D2

(48)

ta1 + ta2 + ta3 + ta = 0 tb1 + tb2 + tb3 + tb = 0
tc1 + tc2 + tc3 + tc = 0 td1 + td = 0 te1 + te = 0 tf1 + tf = 0

(49)

Using FEM it is possible to express the BVP for the sub scale problem
as a discrete system of equations, which can be rewritten as following:

K · d = F (50)

where K is the global stiffness matrix, d is the nodal displacement vector
and F is the force vector on the RVE’s boundary domain which result from
applying the forced displacement on the periodic vertices nodes (see Eq. 47).
However, Eq. 50 must include the restrictions of the periodic displacements
and forces (Eqs. 48 and 49) as explained in the preceding paragraphs. The
AppendixA shows the elimination of the redundant unknowns proposed.
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Figure 3: Geometric of the beam studied.

5. Model Description

A clamped beam with a vertical load at mid-span is the structure used
to compare the theories presented previously: micro model, serial-parallel
mixing theory and homogenization. Fig. 3 shows the beam’s geometry,
supports and loads. A macro numerical model will be used to simutale the
behavior of the structure with the diffrent theories. In the special case of the
homogenization theory another micro numerical model it is necessary. The
micro numerical model will have the internal composite’s structure.

5.1. Macro and micro numerical model

The macro FEM model used is the half of the beam because the symmetry
of the structure (see Fig. 3). Fig. 4 shows the macro numerical model with
one of the meshes used. The finite element used is a first order hexahedra
element. In order to obtain the real behaviour of the structure with the
FE model it is necessary to impose symmetric boundary conditions. The
symmetry plane, the right face of Fig. 4, normal to X-axis, and the X
displacement is set to zero in this face. To simulate the fixed support, the
nodes’ movements in the left cross section are also restricted. The applied
load is a Z direction fixed displacement of -0.1 mm in the rigth cross section
nodes (symmetry plane).

As said before, to simulate the RVE in the homogenization theory a micro
numerical model is used. The RVE’s geometry chosen is a cube with unit
length sides. The finite element used is the same than the macro numerical
model. The different RVE models that will be used are shown in the Figs. 5
and 8.
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Figure 4: Beam numerical model

Simple mat. Color ref. E (GPa) G (GPa) ν
Lamina 1 Black 210 80.76 0.3
Lamina 2 Grey 3.5 1.46 0.2
Lamina 3 White 3.5 0.146 0.2

Table 3: Mechanical properties of the simple materials

5.2. Simple materials and composite description

The simple materials in all studied cases are isotropic elastic materials.
The composite material is a laminate. And, the laminate consists of several
layers of material 1, called lamina 1 henceforth, and a conbination of layers of
material 2 (lamina 2) or material 3 (lamina 3). The volumetric participation
of lamina 1 is always a 50%.

Table 3 contains the mechanical properties of all the materials considered
in the composite. In this table, E is the Young’s modulus, G is the Shear
modulus and ν is the poisson’s ratio. The “Color ref.” is the color used to
represent the material in the RVEs, as it is shown in Figs. 5 and 8. The
lamina 3 has the same properties as lamina 2, with the only difference of the
shear moduluss, which is reduced by 10. This is done to emulate the effect
of a degradated lamina 2.
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Figure 5: RVE used for the undamaged case.

6. Comparison of the results obtained with the different formula-
tions, for several material configurations

In this section, several examples are presented to compare the behavior
of the different theories. The result used to compare them is the reaction
force, in Z direction, at the fixed support obtained for a fixed Z displacement
applied at the symmetry plane (See Fig. 3) .

6.1. Undamaged case

The undamaged case is the first one used to compare all theories. In
this case the laminate contains 50% of lamina 1 and 50% of lamina 2, which
properties are defined in Table 3.

The model using the SP mixing theory defines the composite material
assuming that the parallel behavior is obtained in X and Y direction, while
the rest of directions have a serial behavior. The homogenization theory
uses a RVE made with 8 elements that also contains 50% of lamina 1 and
50% of lamina 2. The RVE is shown in the following Fig. 5. Finally, the
micro-model is defined discretizing the different layers in which the laminate
is divided.

A convergence analysis of SP and Homogenization theories has been
made. The quantity of finite elements in the macro-model FE mesh has
increased until the difference, between two consecutive results, is negligible.
Fig. 6 presents the results obtained for the different meshes analysed. The
micro-model used to compare the results obtained with the different theories
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Figure 6: Convergence analysis results.

has been made with 196608 hexahedron elements, which results in 648999
degrees of freedom.

The reaction force obtained with the SP theory is 905.9 N, with the ho-
mogenization is 908.3 N and with the micro-model is 919.0 N. It can be
concluded that the three theories provide almost the same result, as the dif-
ference between the reaction force value is lower than a 1% which is really
good result. Besides, all theories allow knowing not only the global perfor-
mance of the beam analyzed, but also the specific response of each lamina
to the loads applied.

6.2. Global damage case

The objective for this example is to compare the responses obtained when
one of the laminate materials suffers some sort of degradation. To analyze
this problem, five different simulations have been performed in which the
mechanical properties of one of the laminates is reduced. More specifically,
the degradation is applied on the shear strength of lamina 2, which is reduced
progressively until reaching the value of lamina 3 (see Table 3). Therefore,
the new laminate consists 50% of lamina 1 and 50% of a new lamina that
can be completely undamaged (properties of lamina 2) or with properties
corresponding to 12.5%, 25%, 50% and 100% of damage (this last case, cor-
responds to lamina 3). The specific mechanical values considered are shown
in Table 4.
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Property 12.5% 25% 50% 100%
G (GPa) 1.295 1.131 0.803 0.146
E (GPa) 3.5 3.5 3.5 3.5

Table 4: Mechanical properties of the degradated Lamina 2
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Figure 7: Reaction force obtained in the global damage case.

The composite is simulated with the SP mixing theory and with the
homogenization theory, using the same material characterization and RVE
that were used in the undamaged case. Fig. 7 shows the results obtained
for the conducted simulations. This figure shows that, as it is expected, the
results obtained for both theories are again exactly the same. The results
obtained also show that as the shear stiffness of one of the layers is reduced,
the global stiffness of the beam decreases. This effect can be understood
as a delamination failure, as has been previously shown by Martinez et al.
[36, 39]. Results also show that the reduction of global stiffness of the beam
is not linear with the reduction of the shear strength of one of the laminas,
being larger as the layer stiffness gets smaller.

6.3. Local damage case

In this example, the objective is to compare the responses obtained when
material damage takes place, not in all layers, but just in some of them.
The composite considered has always 50% of lamina 1, and a 50% of lam-
ina 2 (undamaged and damaged). It is assumed, like in the previous case,
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a) b) c)

Figure 8: RVEs containing 50%, 25% and 12.5% of damaged layers.

that a totally damaged lamina 2 is numerally represented by the lamina 3.
The comparison is made for the cases in which there are 0%, 12.5%, 25%,
50% and 100% of layers damaged. The simulation corresponding to 0% and
100% damaged have been already conducted in two previous simulations.
The simulations corresponding to intermediate cases have been studied with
the three methods being compared in this work: homogenization, SP and a
micro-model.

For SP theory, the composite is obtained combining two different lami-
nates with the SP formulation. One laminate has 50% of lamina 1 and 50%
of lamina 2 and the other laminate has 50% of lamina 1 and 50% of lamina
3. The volume fraction of these laminates in the composite depend in the
amount of layers assumed to be damaged. For the homogenization theory,
the amount of layers damaged is represented with the RVE. Fig. 8 shows
the RVEs considered to account for 50%, 25% and 12.5% of damaged layers,
respectively. In this figure, the darker elements correspond to lamina 1, the
light-grey elements correspond to lamina 2 (undamaged) and the white ele-
ments correspond to lamina 3 (damaged). Finally, the micro-model has been
simulated discretizing each one of the lamina of the beam.

Fig. 9 presents the results obtained with different simulations performed.
This figure shows that for the extreme cases, this is for 0% or 100% of lamina
3, the results obtained with differents theories are almost equal. However,
the results obtained when there are some layers damaged do not have the
same agreement, especially when comparing the results obtained with the
SP theory with the ones obtained with the homogenization method or the
micro-model. While the decrease in the resultant reaction force with the
SP theory is equal to the one obtained in the case of considering global
damage (Fig. 7), this decrease is substantially larger when considering the
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Figure 9: Reaction force obtained in the local damage case.

homogenization method or a micro-model. These two theories provide nearly
the same results.

The explanation for the difference in the response obtained for the dif-
ferent models is obtained from the models themselves. The serial-parallel
theory obtains the response of the composite assuming certain iso-stress and
iso-strain boundary conditions that regularizes the response of the material if
it is defined with several laminates. Therefore, the response of the structure
and the result obtained is similar to the one obtained when this damage was
present in the whole structure. On the other hand, with the homogenization
and the micro-model theories, the damaged layer is discretized specifically
and it is possible for the simulation to capture the dislocation that takes
place, as it is shown in Fig. 10 for the three cases considered. This disloca-
tion is the responsible for the drop of the stiffness and the fast decrement on
the value of the reaction obtained.

6.4. Local damage case in a localized region of the beam

At the light of previous results one may think that the SP theory is not
capable of representing delamination processes. In this example it is shown
that under some circumstances this simulation is possible. Here, the beam
has been simulated with two diffent laminates. The central band contains
50% of lamina 1 and 50% of lamina 3 (damaged); while the rest of the beam
is simulated with 50% of lamina 1 and 50% of lamina 2. Fig. 11 shows the
FE mesh of the beam macro-model. This example is simulated with the SP
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a) b) c)

Figure 10: RVEs with 50%, 25% and 12.5% of damaged layers under load.

Figure 11: FE mesh of the macro-model of the beam with two laminates.

and the homogenization theory. The homogenization theory uses the RVE
shown in Fig. 5.

In this case, the reaction force obtained is exactly the same for both, the
SP and the homogenization models: 663.9 N and 666.4 N, respectively. This
example shows that the SP theory is capable of providing the same results
as the homogenization theory when the response of the RVE fulfills the pa-
rameters in which is based the SP theory: iso-strain and iso-stress behavior.
On the other hand, if the RVE does not fulfill this behavior (i.e. there is a
dislocation in it), the SP theory is not capable of predicting accurately the
material response, as it was shown in previous example.
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7. Run Times and Memory Used

One of the main drawbacks that has a homogenization formulation nowa-
days is its computational cost. Therefore, in order to know the performance
of this formulation it is necessary not only to compare the results obtained
with it, but also to compare the computational cost in terms of time and
memory requirements.

To do these comparisons, in the case of the homogenization theory, two
different strategies have been considered. In the first one, the mechanical
properties of the composite (stiffness matrix) are calculated at the beginning
of the analysis, and these porperties are used afterwards during the complete
of the simulation. This case is named H-OneRVE. The other case corresponds
to analyze the RVE each time that it is necessary to know the stress provided
by the RVE for a given strain value. This case is named H-AllRVE. If the
problem is linear, the results obtained in both cases are the same. However,
in a non linear case, it is necessary to simulate the problem with an H-AllRVE
strategy in order to capture properly the non linear response of the material.

Table 5 shows the computational times and memory required to conduct
the simulations with a localized damage of a 50%. The real time and cpu time
are discriminated because part of the FE code used is in parallel. The results
show that the CPU time in the Micro model and H-AllRVE are comparable.
But, the CPU time of the H-OneRVE and SP theory are significantly better.
Therefore, in terms of computational time, it is feasible to conduct a simula-
tion with a homogenization theory, as well as with the SP theory. However,
this simulation must be kept in the linear range. If the simulation is non
linear, the H-AllRVE strategy must be used, which makes the SP theory the
only feasible option in terms of computational time.

The main difference between the micro-model and the homogenized model
is found in the memory requirements. While the computational time of the H-
AllRVE and the micro-model are equivalent, the amount of memory required
by this last one is substantially larger (360 times larger). This difference
is found because the memory used is proportional to the FE mesh size of
the numerical model and, while the micro-model has to solve a problem
with a very small discretization, the homogenization theory only requires
memory for the macro-problem and the RVE that is being solved. This
difference makes unbearable solving large problems with micro-models and
makes feasible using homogenization methods, even if the problem is in non
linear range.
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Item Micro Model H-OneRVE H-AllRVE SP Theory
Real Time [Min:Seg] 6:46 0:01 2:27 0:02
CPU Time [Min:Seg] 8:44 0:03 9:31 0:17
Memory [Mbytes] 2690,00 7,45 7,45 15,82
Reaction Force [N] 236,09 224,69 224,69 576,68

Table 5: Times and memory used to 50% located damage case.

8. Conclusion

The two-scale homogenization framework proposed in this work, and de-
scribed in detail in sections 3 and 4, has been proved a competitive alter-
native to model three dimension composite structures. The elimination of
redundant unknowns implemented to a cubic RVE is an efficiency opcion to
satisfy the periodic boundary conditions. And, as the convergence analysis
has shown, the method implemented has a good convergence behavior. Be-
sides, for linear analysis, the comparison shows that the homogenization has
many advantages over the other theories, such as micro-models or the SP
theory, as it is capable of capturing complex responses of the material (such
as dislocations) with an affordable computational cost.

The homogenization can represent accurately effects such as a local dam-
aged lamina because the composite micro-structure is physically modeled in
the RVE. The SP theory cannot account automatically for such effects, unless
they are present in the whole finite element, as has been shown in the ex-
amples presented in subsection 6.2 and 6.4. However, the main advantage of
the SP theory is that it is capable of conducting non linear analysis without
increasing substantially the computational cost of the simulation.

The comparison of the computational cost presented by the different for-
mulations has shown that, in terms of computational time, the cost of the
H-OneRVE and the SP Theory is comparable, and it is substantially lower
than the one required by a Micro Model or the H-AllRVE. The main dif-
ference between the H-AllRVE model and the micro-model is found in the
memory required by the simulation, being the cost of this last one 360 times
larger.

Therefore, this work has shown that the homogenization procedures are,
nowadays, a real alternative for the linear analysis of composite structures.
However, the extension of the homogenization methods to the non-linear
range still represents a major challenge due to the computational cost in
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terms of CPU time. This is the main advantage of the SP mixing theory
with respect to homogenization.
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AppendixA. Elimination of the slave degrees of freedom

Introducing the concept of master nodes and slave nodes into Eq. 50, the
equation is rewritten as following: Kuu Kum Kus

Kmu Kmm Kms

Ksu Ksm Kss


du
dm
ds

 =


Fu

Fm

Fs

 (A.1)

where the subscripts u, m, and s refer to the degrees of freedom of the internal
nodes, master nodes and slave nodes, recpectively.

If the contribution of each type of degree of freedom is separated, this is:

 Kuu

Kmu

Ksu

 {du}+

 Kum

Kmm

Ksm

 {dm}+

 Kus

Kms

Kss

 {ds} =


Fu

Fm

Fs

 (A.2)

Writing the Eq. 48 in matrix form is obtained:

{ds} = [Ssm] {dm}+ {4d} (A.3)

Introducing Eq. A.3 in Eq. A.2.

 Kuu

Kmu

Ksu

 {du}+

 Kum

Kmm

Ksm

 {dm}+

 Kus

Kms

Kss

 [Ssm] {dm}+

 Kus

Kms

Kss

 {4d} =


Fu

Fm

Fs

 (A.4)

and rewriting the equation in an orderly.
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 Kuu

Kmu

Ksu

 {du}+

 Kum + KusSsm

Kmm + KmsSsm

Ksm + KssSsm

 {dm}+

 Kus

Kms

Kss

 {4d} =


Fu

Fm

Fs

 (A.5)

Writing the Eq. 49 in matrix form is obtained:

{Fm}+ [Sms] {Fs} = 0 (A.6)

With Eq. A.6 it is possible to reduce the system of equations shown in
Eq. A.5, which is:

[
Kuu

Kmu + SmsKsu

]
{du}+

+

[
Kum +KusSsm

Kmm +KmsSsm + SmsKsm + SmsKssSsm

]
{dm}+

+

[
Kus

Kms + SmsKss

]
{4d} =

{
Fu

Fm + SmsFs

} (A.7)

If the last equation is ordered and it is defined the reduced stiffness matrix,
the reduced force vector and the reduced displacement vector as:

[Kr] =

[
Kuu Kum + KusSsm

Kmu + SmsKsu Kmm + KmsSsm + SmsKsm + SmsKssSsm

]
(A.8)

[dr] =

{
du
dm

}
(A.9)

[Fr] =

{
Fu −Kus {4d}

(Kms + SmsKss) {4d}

}
(A.10)

the original problem to solve (Eq. 50) is reduced to:

Kr · dr = Fr (A.11)

The Eq. A.11 shows that the degrees of freedom of the slave nodes are
not included in the displacement vector. The new equation system has less
degrees of freedom than the original one and it also satisfies automatically
the boudary conditions.
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genieŕıa - CIMNE, 2003.

[13] F. Rastellini, S. Oller, O. Salomón, E. Oñate, Composite materials
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