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Abstract

The paper addresses the optimal spectrum sensing detection based on the complete or partial

side-information on the signal and noise statistics. The use of the generalized likelihood ratio test

(GLRT) involves maximum likelihood (ML) estimation of the nuisances. ML estimation of the

unknowns is especially challenging for wideband cognitive radio because closed-form solutions

are often not available. Based on the equivalence between the wideband regime and the low-SNR

regime, the paper provides a general kernel framework for GLRT spectrum sensing. It is shown

that any GLRT detector exclusively depends on the projection of the sample covariance matrix

of the data onto a given underlying kernel that reflects the available side-information in the

problem. The kernels in several scenarios of interest are derived, including the widespread single

and multi-frequency channelization cases. Theoretical interpretations and numerical results

show the trade-off between detection performance and the degree of side-information on the

most informative statistics for detection, i.e., the modulation format and spectrum distribution

of the primary users.

1 Introduction

Today’s wireless networks are regulated by a fixed spectrum resource assignment. However, a

large portion of this assigned spectrum is used only sporadically by the primary services, while a

significant amount of the spectrum remains underutilized [1]. Cognitive radio is a new wireless com-

munication paradigm that utilizes advanced signal processing along with novel dynamic spectrum
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policies to support new users who wish to opportunistically communicate in the existing congested

spectrum without degrading the established users [2]. For that purpose, a cognitive radio is an

adaptive wireless communication system that takes advantage of side-information on the network,

e.g., the primary systems activity or channel conditions. Interweave cognitive radio [3] is motivated

by opportunistic transmission of secondary users over the available spectrum gaps or holes in given

time and geographical location conditions.

The primary function of interweave cognitive radios is to reliably identify the available spec-

trum resources temporally unused by primary users. This awareness can be obtained through a

database, using beacons, or by local spectrum sensing [4]. This paper focuses on spectrum sensing

performed at the cognitive radio receivers as it constitutes a broader solution and has less infras-

tructure requirements. The energy detector, cyclostationarity feature detection, and match-filtering

are the most commonly employed techniques for spectrum sensing. However, the performance of

such detectors is severely degraded when the side-information on the signal and noise features is

incomplete, e.g., the cyclic frequencies. Spectrum sensing detectors based on the generalized like-

lihood ratio test (GLRT) have received recent attention as the GLRT statistic is optimal in the

Neyman-Pearson sense [8] and natively incorporates joint parameter maximum likelihood (ML)

estimation for inaccurate model parameters [9]. The effect of side-information on the signal and

noise statistics has been reported in [10] in realistic scenarios.

Wideband spectrum sensing has gained recent attention [11]. It is recognized that ML estima-

tion in wideband cognitive radios is especially challenging because wideband regimes are charac-

terized by close to zero spectral efficiency and low signal-to-noise ratios (SNRs) [12]. Furthermore,

the method of ML, despite its theoretical appeal, is often difficult to implement, and analytical

solutions are not available in many circumstances [13]. However, we show the tractability of the

ML formulation in asymptotically low-SNR regimes, and identify that the second-order statistics of

the observations are sufficient statistics for the spectrum detection problem when the noise variance

is high. In this paper, we derive the optimal ML estimates for GLRT spectrum sensing detection

in the single-frequency scenario, and show through low-SNR approximations that any GLRT spec-

trum sensing detector exclusively depends on a kernel operator and the sample covariance matrix

of the observations, asymptotically as the SNR tends to zero. We further extend to cognitive ra-

dio networks operating over primary systems that employ multi-frequency communications, such

as the terrestrial digital video broadcasting (DVB-T). Simulation results assess the performance

comparison of the derived algorithms.
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1.1 Main Contribution

The motivation of this work is to reveal an unified structure of GLRT spectrum sensing detectors

for wideband cognitive radios, and discuss the application of the proposed framework to several

cases of practical interest. We identify that all the optimal wideband spectrum sensing detectors

follow, for asymptotically large data records, an underlying framework given by

T (X,Θ)
.
=

∫
B
K(ω,Θ)P (ω)dω ≥ λ (1)

where Θ represents the set of side-information parameters, P (ω) is the periodogram of the local

observations andB is the sensed bandwidth. Eq. (1) illustrates that any wideband spectrum sensing

detector is characterized by an associated kernel K(ω,Θ), which uncovers the fundamental factors

that determine the sensing performance. Important remarks on the frequency-domain asymptotic

framework (1) are listed below.

• It proves that in asymptotically low-SNR regimes, detection is exclusively based on the second-

order treatment of the observations, i.e., on the periodogram P (ω).

• The kernel has the role of shaping the spectral information contained in the periodogram.

As the SNR asymptotically increases, the kernel approaches to a constant and the GLRT

behaves as the energy detector. Contrarily, as the SNR asymptotically decreases, the kernel

is proportional to the signal power spectral density (PSD) and the GLRT performs a second-

order statistics matching between the observations and the model.

• When the signal model parameters are uncertain, the expression of the asymptotic kernel in

(1) depends on the ML estimates of the unknowns. As K(ω,Θ) identifies which is the relevant

side-information for detection, the degradation incurred by the estimation is related to the

performance of the detection.

1.2 Related Work

A numerous amount of spectrum sensing detectors based on the GLRT have been reported in the

last years. It is a well-known signal processing result that in the low-SNR regime, the second-order

statistics of the signal and noise involved in the detection are sufficient statistics for detection [14].

More precisely, the cross-correlation between signal and noise can be exploited in the frequency,

spatial, or temporal domains.
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Firstly, frequency correlation detectors are intended to uncover the spectral coherence of cy-

clostationary processes (see [15] and the references thereby). However, these detectors are very

sensitive to the signal and noise features, and require in general high computational complexity. A

spectral feature based detector has been reported in [16].

Secondly, a bunch of signal detectors that exploit spatial correlation have been proposed in

the recent literature [17–28]. Addressing the GLRT problem in the multiple antenna framework

has allowed the formulation of well-known Gaussian detectors such as the arithmetic-to-geometric

(AGM) detector [17], rank-1 detectors [20, 24, 27], the rank-P detector [22], and the locally most

powerful invariant test (LMPIT) [26]. In the case of fading, the algorithms reported in [18, 19,

23] address blind detection with unknown channel parameters, whereas the works by [21, 25, 28]

investigate the use of prior information in the detection process. The common frawmework of

[17–28] is that the detectors are based on the eigenvalue decomposition of the spatial correlation

matrix. Therefore, these algorithms are only valid when the secondary users are equipped with

multiple antennas.

Thirdly, the exploitation of temporal correlation has gained little attention, even though tempo-

ral correlation matrices exhibit good properties of stability and computational complexity. Related

work involving GLRT detection include [29–31]. In [29], the sensitivity of oversampled temporal

correlation based detection to frequency offsets is investigated. In order to further improve effi-

ciency, [30] reports a detector based on the Cholesky factorization of the sample correlation matrix,

whereas the work by [31] is concerned in performing signal detection while communicating at the

same time. These works does not consider side-information on the primary signal correlation.

In this work, the temporal correlation of the primary users is exploited given the Toeplitz

structure of the correlation matrices when one single antenna is employed at the cognitive receiver.

An N × N Hermitian Toeplitz matrix has only N degrees of freedom. Therefore, the algorithms

derived in this paper will have good properties of stability and computational complexity. We

note that the detection of a stationary process with a single antenna constitutes a well-defined

fundamental problem by itself, which takes advantage of the second-order statistics distinctness

between hypotheses. Partial results of this paper have been originally presented in [33,34].

1.3 Paper Outline

The rest of the paper is organized as follows. Section 2 describes the spectrum sensing cognitive

radio problem and its asymptotic frequency-domain interpretation. The single-frequency GLRT

4



detectors with known and with unknown noise variance are derived in Section 3 and 4, respectively.

An extension to multi-frequency systems is discussed in Section 5. Section 6 provides performance

comparisons by means of numerical simulations, and Section 7 concludes the paper.

2 Signal Model and Problem Statement

We consider the spectrum sensing problem of a wideband cognitive radio network monitoring the

activity of the primary users’ signal, denoted by S(t), over the sensed spectrum of bandwidth B.

The sensed signal at the local cognitive radio is X(t) = S(t) + W (t), where W (t) is the double-

sided complex zero-mean additive white Gaussian noise with spectral density N0/2. In this paper,

a block processing of the signal is considered. On the one hand, the N -dimensional discrete-

time received signal is defined as x[m]
.
= [X(tm1 ), . . . , X(tmN )]T , where the sampling instants satisfy

Nyquist uniform sampling. On the other hand, each cognitive radio acquires M blocks given by

X
.
= (x[1], . . . ,x[M ]). Therefore, the block size N is a side-information parameter large enough

to cope with the temporal correlation of the primary signal, and M is a factor to improve the

performance of the detectors by averaging independent blocks. Matrices S and W are similarly

defined.

The spectrum sensing problem may be therefore cast as the binary hypothesis testing problem

H0 : X = W

H1 : X = S + W,
(2)

where H0 is the signal-free hypothesis, and H1 is the signal-present hypothesis. In (2), the column-

entries of the signal and noise observations are complex multivariate zero-mean Gaussian distributed

with correlation matrices Rs = γR0, and Rw = σ2I, respectively, with R0 the normalized signal

correlation matrix such that tr(R0) = N . We further define the detection SNR as ρ0
.
= γ

σ2 . In

the problem at hand, it is a valid assumption that both noise and signal are normally distributed.

While facilitating the analysis, this is reasonable because S(t) is the superposition of no-LOS sig-

nals (holding the the central limit theorem), but also because Gaussian ML estimation provides,

asymptotically as ρ0 → 0, the optimum second-order estimator [35]. As the size of the spectrum

portion taken into consideration increases, the relative overall occupation of primary systems be-

comes low, which motivates the derivation of robust spectrum sensing detectors focused on low-SNR

regimes. Therefore, throughout the paper we will assume that asymptotically ρ0 → 0, where ρ0 is

the nominal SNR at detection.
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We are interested in detecting the presence of the signal S based on the local observations X

in (2). It is known that the GLRT is asymptotically optimal in the Neyman-Pearson sense, i.e., to

maximize the probability of detection for a given probability of false alarm level [8]. Let Ψ0 and

Ψ1 denote the unknown model parameters under H0 and H1, respectively. The optimal test in the

Neyman-Pearson sense for deciding between hypotheses H0 and H1 is given by

L(X,Θ)
.
=
p(X|Ψ̂1,Θ1,H1)

p(X|Ψ̂0,Θ0,H0)
≥ λ, (3)

where the ML estimates of the unknown parameters are given by Ψ̂0 = arg maxΨ p(X|Ψ,Θ0,H0),

and Ψ̂1 = arg maxΨ p(X|Ψ,Θ1,H1), respectively. In (3), Θ denotes the set of side-information

parameters, and Θ1,Θ0 ⊆ Θ. The threshold λ sets the decision level for which the test L(X,Θ) ≥ λ

decides for H1, and for H0 otherwise, and is selected to satisfy the false alarm level P(H1|H0) =

P(L(X,Θ) ≥ λ|H0) = α. Despite its theoretical appeal, the ML estimation and GLRT detection in

(3) are often difficult to implement, and analytical solutions are not available in many circumstances

[13]. However, we show that GLRT spectrum sensing detection for wideband cognitive radio is

encompassed in a low-complex unified framework. In particular, it is shown that for asymptotically

ρ0 → 0, the GLRT (3) is of the form

T (X,Θ)
.
=

1

M
logL(X,Θ) ≈ tr

(
K(Θ)R̂x

)
≥ λ, (4)

where R̂x is the sample covariance matrix of X, K constitutes the kernel associated to the detector,

and λ is the detection threshold. By further resorting to large data records, i.e., for N → ∞, the

statistic (4) is asymptotically equivalent to the following expression in the frequency-domain

T (X,Θ)
.
=

∫
B
K(ω,Θ)P (ω)dω ≥ λ, (5)

where K(ω,Θ) is a kernel associated to each detector, P (ω) is the continuous-frequency periodogram

of X. Furthermore, any GLRT spectrum sensing detector only depends, asymptotically as ρ0 → 0,

on the second-order statistics of the observations. A sketch of the proof of (4) and (5) is reported

in Appendix A.

From (5), we deduce that wideband spectrum sensing is strictly based on the second-order

statistics of the observations shaped by a kernel that highlights the signal and noise features which

are relevant for detection. Moreover, we show that frequency-domain asymptotic kernels have a

common inner structure that depends on the signal and interference plus noise statistics. Let φs(ω)

and φν(ω) denote the PSD of the signal to be detected and the interference plus noise, respectively.
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The detection kernel in (5) has an internal structure given by (see Appendix A):

K0 [φs(ω), φν(ω)]
.
=

1

φν(ω)

φs(ω)

φs(ω) + φν(ω)
, (6)

which will be used in subsequent sections to provide a unified perspective of different approaches

to the spectrum sensing problem. In the high-SNR regime, the kernel approaches to 1
φν(ω) and

the detector asymptotically behaves as the energy detector with noise PSD given by φν(ω). On

the other hand, we show that the kernel becomes proportional to φs(ω)
φ2ν(ω)

as the interference plus

noise increases, and the detector performs the spectral correlation between the periodogram of the

observations and the signal PSD weighted by the inverse of the squared spectrum of the interference

plus noise. This result corresponds to the locally optimum detector for the cognitive radio problem

(2), obtained through expanding the optimum quadratic statistic in the low-SNR limit [5].

3 Single-Frequency Wideband Spectrum Sensing with Known Noise

Variance

In this section, we derive the optimal single-frequency GLRT detectors based on the assumption

that noise variance present at the cognitive radio receiver is known. This is a valid assumption

in most cognitive radio networks, as the control layers set predetermined silent periods devoted to

threshold computation.

3.1 Estimator-Correlator

The optimal test with known parameters is the estimator-correlator, given by [14, Eq. (5.16)]

T1(X|Rs, σ
2) =

1

σ2
tr
(
Rs(Rs + σ2I)−1R̂x

)
≥ λ1, (7)

where R̂x stands for the sample covariance matrix, i.e., R̂x
.
= 1

M

∑
m xmxHm. The detector (7)

is a classical detection result, which correlates the observations with the output of the Wiener

filter or minimum mean square error (MMSE) estimate of the signal, i.e., with the term Rs(Rs +

σ2I)−1xm. The frequency-domain asymptotic interpretation of the estimator-correlator has recently

been studied in [32], from which we identify that the kernel associated to the estimator-correlator

is given by K1(ω, φs, σ
2) = K0

[
φs(ω), σ2

]
. We note that (7) and its associated kernel symbolize

an upper-bound on the sensing performance of GLRT spectrum sensing detectors, and therefore

provide a fundamental limit useful for performance assessments.
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3.2 Signal Level Detector

This assumption represents a more realistic scenario, as the power at which the primary users’ signal

reaches the cognitive radio receiver is an unknown parameter. Under the white noise assumption,

the presence of correlation in the observations can be further exploited by the spectrum sensing

algorithm to detect the presence of this signal. For a given normalized signal correlation matrix R0,

the optimal GLRT spectrum sensing detector in the wideband regime with known noise variance

is given by

T2(X|R0, σ
2) =

1

σ2
tr
(
γ̂R0(γ̂R0 + σ2I)−1R̂x

)
≥ λ2, (8)

where the ML estimate of the signal level, derived in Appendix B.1, is given by

γ̂ =

(
tr(R0R̂x)− σ2N

tr(R2
0)

)+

, (9)

where the operator (·)+ is defined as (x)+ .
= max(0, x).

The evaluation and comparison of (8) in front of (7) uncovers that the kernel K2(ω, φ0, σ
2) =

K0

[
γ̂φ0(ω), σ2

]
is based on the ML estimate of the signal level γ. From the frequency-domain

asymptotic interpretation of (9), we deduce that kernel exploits the correlated structure of R0 and

the side-information on the noise variance to recover γ. We emphasize that the correlated structure

of R0 is only required for unknown noise variance (c.f. Section 4.B), whereas the estimate (9) is

still valid even for white signal, i.e., R0 a diagonal matrix, when the noise variance is known.

3.3 Toeplitz Detector

We next discuss the spectrum sensing detection problem when the primary users’ signal correlation

matrix is unknown. According to the GLRT formulation, under H1 an estimate of Rs based on

the local observations is required to perform the detection. Because Rs represents the correlation

of a stationary signal, it is the solution to ML estimate problem with the additional constraints

Rs � 0 and complex Hermitian Toeplitz structure. Any complex Hermitian Toeplitz matrix of

order N is represented by a unique vector of length N containing, e.g., the element of the first row

of the matrix. A direct consequence of this property is that Rs has only N degrees of freedom and,

then, it can uniquely be represented by the N first correlation lags, (rs[0], . . . , rs[N −1]). However,

for the problem at hand, we propose the following decomposition for complex Hermitian Toeplitz

matrices

R[β] = β0T0 +
N−1∑
n=1

(
βnT

T
n + β∗nTn

)
, (10)

8



where β
.
= (β0, . . . , βN−1) are the N coefficients that uniquely represent the matrix R onto the

orthogonal basis T .
= {Tn} of the space of complex Hermitian Toeplitz matrices. We note that

tr(TiT
T
j ) ∝ δij , where δij is the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise.

For a given Toeplitz orthogonal basis T = {Tn}, the optimal GLRT spectrum sensing detector

in the wideband regime with known noise variance is given by

T3(X|T , σ2) =
1

σ2
tr
(
Rs[β̂](Rs[β̂] + σ2I)−1R̂x

)
≥ λ3, (11)

where the coefficients of R̂s onto T , derived in Appendix B.2, are given by

β̂0 =

(
1

N
tr(R̂x)− σ2

)+

(12a)

β̂n =
tr(TnR̂x)

tr(TnTT
n )
, 1 ≤ n ≤ N − 1. (12b)

It is noticed that when employing diagonal matrices, i.e., T0 = I, and Tn all-zeros ma-

trix with an all-ones semi-diagonal n-positions above the main diagonal, the coefficients βn have

the physical meaning of the correlation lags, i.e., β̂n = r̂s[n], for 0 ≤ n ≤ N − 1. There-

fore, the computation of the zero-lag β0 in (12a) is based on the detected energy and the side-

information on the noise variance. Conversely, because tr(Tn) = 0 for n > 0, each coeffi-

cient βn in (12b) uncovers the stationary part of the received observations, i.e., takes into ac-

count the off-diagonal information contained in R̂x. The kernel associated to (11) is given by

K3(ω, T , σ2) = K0

[(
β̂0 +

∑N−1
n=1 Re(β̂n)ψn(ω)

)+
, σ2

]
, where ψn(ω) is spectral density associated

to the correlation matrices (Tn + TT
n ), and Re(z) takes the real part of z ∈ C . The GLRT spec-

trum sensing detector (11) exploits the side-information on the noise variance to perform optimal

matching between the observations and the frequency patterns ψn. When noting that σ2 + β̂0 is

the energy detector, it is appreciated that the detection takes advantage of the frequency variations

of the periodogram. Hence, it is expected to achieve performance gain with respect to the energy

detector.

4 Single-Frequency Wideband Spectrum Sensing with Unknown

Noise Variance

Many detectors, including the energy detector, assume exact side-information on the noise variance

to properly perform the detection. Yet in practice, a mismatch on the noise variance may signifi-

cantly degrade the sensing performance of the detectors, as reported in [36]. For this purpose, we
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extend the single-frequency GLRT spectrum sensing detectors derived in Section 3 for unknown

noise variance. Under H0, the ML estimate of σ2 is given by [14, Eq. (9.10)] as σ̂2
0 = 1

N tr(R̂x).

4.1 Noise Variance Detector

We first assume perfect side-information on the signal correlation matrix Rs. The ML estimate of

σ2 under H1 is derived in [14, Section 9.4] for the low-SNR regime, and is given by

σ̂2
1 =

1

N

[
tr
(
R̂x −Rs

)]+
. (13)

For a given signal correlation matrix Rs, the optimal GLRT spectrum sensing detector in the

wideband regime with unknown noise variance is given by

T4(X|Rs) =
1

σ̂2
1

tr
(
Rs(σ̂

2
1I + Rs)

−1R̂x

)
≥ λ4, (14)

where the ML estimate of the noise variance under H1 is given by (13).

The side-information on Rs is twofold. On the one hand, recalling that the kernel associated

to (14) is K4(ω, φs) = K0

[
φs(ω), σ̂2

1

]
, it is noted that the side-information pattern for detecting

primary systems is supplied by φs(ω). On the other hand, the side-information on the energy of

φs(ω) diminishes the problem of noise mismatching, as the estimate of the noise variance is based

on both the received observations and φs(ω).

4.2 Signal Level and Noise Variance Detector

We next consider spectrum sensing problem when the cognitive radio receivers have perfect side-

information on the normalized signal correlation matrix, R0. Hence, based on the structure of

R0, the optimal GLRT spectrum sensing detector aims at recover both the signal level and noise

variance. For a given normalized signal correlation matrix R0, the optimal GLRT spectrum sensing

detector in the wideband regime with unknown noise variance is given by

T5(X|R0) =
1

σ̂2
1

tr
(
γ̂R0(σ̂2

1I + γ̂R0)−1R̂x

)
≥ λ5, (15)

where the ML estimates of the signal level and noise variance, derived in Appendix B.3, read

γ̂ =

tr
(
R̂x(R0 − I)

)
tr(R2

0)−N

+

(16a)

σ̂2
1 =

(
1

N
tr(R̂x)− γ̂

)+

. (16b)
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The ML estimates of γ and σ2 under H1 provide further insight on the sensing performance of

the test statistic (15). It is first observed that (16a) is proportional to tr(R̂xR
OFF
0 ), where ROFF

0 is

the diagonal off-loaded correlation matrix of the primary users’ signal, defined as ROFF
0

.
= R0 − I.

Under the stationarity assumption, we outline that (16a) is an energy detector that takes into

account solely the statistics of the received observations that are not affected by the noise, i.e., the

presence of non-zero correlation lags. Conversely, if the primary users’ signal is cyclostationary,

the main diagonal of R0 is not uniform, and (16a) evaluates the variability around the mean of

the main diagonal. In conclusion, the ML estimate of the signal level is a linear combination of a

measure of the instantaneous energetic variability and a measure of the degree of autocorrelation

present in the non-zero lags. Similar interpretations can be obtained in view of the asymptotic

associated kernel K5(ω, φ0) = K0

[
γ̂φ0(ω), σ̂2

1

]
.

4.3 Toeplitz and Noise Variance Detector

Finally, we discuss the optimal spectrum sensing detector when the signal correlation matrix is

fully unknown to the cognitive radio receivers with the additional constraint of complex Hermitian

Toeplitz structure. For a given Toeplitz orthogonal basis T , the optimal GLRT spectrum sensing

detector in the wideband regime with unknown noise variance is given by

T6(X|T ) =
1

σ̂2
1 + β̂0

tr
(
Rs[β̂1](σ̂2

1I + Rs[β̂1])−1R̂x

)
≥ λ6, (17)

where β1
.
= (0, β1, . . . , βN−1), and the ML estimates of the noise variance and the coefficients of

R̂s onto T , derived in Appendix B.4, are given by

β̂0 + σ̂2
1 =

1

N
tr(R̂x) (18a)

β̂n =
tr(TnR̂x)

tr(TnTn)
, 1 ≤ n ≤ N − 1. (18b)

The frequency-domain asymptotic interpretation of (17) can be outlined from its associated

kernel, which is given by K6(ω, T ) = K0

[(∑N−1
n=1 Re(β̂n)ψn(ω)

)+
, β̂0 + σ̂2

1

]
. When releasing the

structure of R0, we observe that the test statistic (17) cannot separate the signal and noise energy

contributions, because (18a) is treated as interference plus noise. As a consequence, the sensing

performance depends on the variability of the periodogram, i.e., the contributions of the patterns

ψn(ω), for n ≥ 1, with respect to the total received energy.
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5 Multi-Frequency Spectrum Sensing

We next consider the spectrum sensing problem for cognitive radio systems where the primary

users’ services employ frequency-division multiplexing (FDM) with predetermined channelization.

The sensed multi-frequency system is characterized by K adjacent channels, and hence the sampled

baseband observations admit the multi-frequency structure

x[m] =
K∑
k=1

sk[m] + w[m], (19)

for 1 ≤ m ≤ M , where sk denotes the received signal located at the k-th channel, and w is

the complex zero-mean additive white Gaussian noise with variance σ2. The statistics of sk are

modeled as complex zero-mean Gaussian with correlation matrix γkRk, where γk stands for the

received power level on the k-th channel, and Rk is the normalized Toeplitz correlation matrix of the

primary users’ signal on the k-th channel, with tr(Rk) = N . If the sensed multi-frequency system

employs homogeneous services, the signal statistics across channels further accomplish Rk = R0 �

(e(ωk)e
H(ωk)), where R0 is the baseband basic modulation format, and e(ω) is the frequency vector

at ω, i.e., eH(ω)
.
=
[
1 eω . . . eω(N−1)

]
. Let Rs[γ]

.
=
∑K

k=1 γkRk. For notation purposes, we define

M = {Rk} as the set of normalized multi-frequency correlation matrices, and γ
.
= (γ1, . . . , γK)T .

5.1 Nuisance-Hypothesis Testing

The spectrum sensing problem for multi-frequency signals involves a joint multiple-hypotheses

test [14], which evaluates the 2K − 1 possible combinatorial occupation of occupations. Hence,

the complexity of multiple-hypotheses testing grows exponentially with the number of channels

and becomes an impractical approach. It is noticed that spectrum sensing on the k-th channel is

governed by the signal level γk. Therefore, we can treat (19) as a nuisance-hypotheses testing prob-

lem. Let H1,k and H0,k denote the hypotheses representing the primary system transmitting or not

transmitting over the k-th channel, respectively. We define γ k̄
.
= (γ1, . . . , γk−1, 0, γk+1, . . . , γK)T ,

for 1 ≤ k ≤ K. The nuisance-hypotheses testing problem at the k-th channel is then given by

Lk(X,Θ) =
p(X|γ̂,Θ1,H1,k)

p(X|γ̂ k̄,Θ0,H0,k)
≥ λk, (20)

for 1 ≤ k ≤ K. The complexity has been reduced to a set of K binary tests.
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5.2 Multi-Frequency Detector

Assume that each cognitive radio device has perfect side-information on the noise variance σ2, as

well as the primary system multi-frequency structure M. For a given multi-frequency system M,

the optimal GLRT spectrum sensing detector at the k-th channel in the wideband regime with

known noise variance is given by

T7,k(X|M, σ2) = tr
(
γ̂kΞ

−1
k Rk(γ̂kRk + Ξk)

−1R̂x

)
≥ λ7,k, (21)

where Ξk
.
=
∑

l 6=k γ̂lRl + σ2I, and the ML estimates of the signal levels, derived in [33, Appendix

B], are given by the solution to 1


tr(R2

1) . . . tr(R1RK)
...

...

tr(RKR1) . . . tr(R2
K)

×


γ1

...

γK

 =


tr(R1R̂x)

...

tr(RKR̂x)

− σ2N1, (22)

where 1 is the all-ones column vector.

We note that when the number of available samples is small, the orthogonality between channels

is not preserved and, in general, the system of equations (22) is coupled because tr(RkRl) 6= 0,

for l 6= k. However, for large data records, the system matrix in (22) becomes nearly diagonal,

and the ML estimates at each channel are independent on the other channels, giving tr(R2
k)γ̂k =

tr(RkR̂x) − σ2N . In both cases, the coefficients tr(RkRl) in (22) can be computed off-line. The

frequency-domain asymptotic kernel for the spectrum sensing detection at the k-th channel is

given by K7,k(ω,M, σ2) = K0

[
γ̂kφk(ω),

∑
l 6=k γ̂lφl(ω) + σ2

]
. We see that the detector employs the

relative occupation on the remaining frequencies as interference for sensing the k-th channel. As

expected, the performance of (21) is affected by the signal-to-interference-plus-noise ratio (SINR)

based on the cross-correlation that arises from the adjacent channels. We finally highlight that (21)

and (22) are a generalization of the wideband signal level detector (8) and the estimate (9).

5.3 Multi-Frequency and Noise Variance Detector

We finally consider the detection of multi-frequency systems with unknown noise variance. For a

given multi-frequency systemM, the optimal GLRT spectrum sensing detector at the k-th channel

1Solving for γ in (22) requires either solving the system of equations or computing the inverse of the system

matrix. In both cases, the cognitive radio user can make use of efficient algorithms given the symmetry properties of

the problem.
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Table 1: Summary of GLRT Spectrum Sensing Detectors’ Kernels and ML Estimates

Detector Test Statistic Equation No. Asymptotic Kernel ML Estimates

Estimator-Correlator T1(X|Rs, σ
2) (7) K0

[
φs(ω), σ2

]
-

Signal Level T2(X|R0, σ
2) (8) K0

[
γ̂φ0(ω), σ2

]
(9)

Toeplitz T3(X|T , σ2) (11) K0

[
β̂0 +

∑N−1
n=1 Re(β̂n)ψn(ω), σ2

]
(12)

Noise Level T4(X|Rs) (14) K0

[
φs(ω), σ̂2

1

]
(13)

Signal and Noise Levels T5(X|R0) (15) K0

[
γ̂φ0(ω), σ̂2

1

]
(16)

Toeplitz and Noise Level T6(X|T ) (17) K0

[∑N−1
n=1 Re(β̂n)ψn(ω), β̂0 + σ̂2

1

]
(18)

Multi-Frequency T7,k(X|M, σ2) (21) K0

[
γ̂kφk(ω),

∑
l 6=k γ̂lφl(ω) + σ2

]
(22)

Multi-Frequency Noise T8,k(X|M) (23) K0

[
γ̂kφk(ω),

∑
l 6=k γ̂lφl(ω) + σ̂2

1

]
(24)

in the wideband regime with unknown noise variance is given by

T8,k(X|M) = tr
(
Ξ−1
k γ̂kRk(γ̂kRk + Ξk)

−1R̂x

)
≥ λ8,k, (23)

where Ξk
.
=
∑

l 6=k γ̂lRl + σ̂2
1I, and the ML estimates of the signal levels and noise variance, derived

in [33, Appendix C], are given by
tr(R2

1) . . . tr(R1RK) N
...

...
...

tr(RKR1) . . . tr(R2
K) N

N
... N N

×


γ1

...

γK

σ2
1

 =


tr(R1R̂x)

...

tr(RKR̂x)

tr(R̂x)

 . (24)

The main advantage of the test statistic (20) is that all the information on the sensed band-

width is exploited for joint detection and estimation at a given band. Whereas filter-bank based

detectors may suffer from adjacent channel leakage, the nuisance parameter formulation allows

the detector to take advantage of the multi-frequency structure M for estimating both signal lev-

els and noise variance. The frequency-domain asymptotic interpretation of the associated kernel

K8,k(ω,M) = K0

[
γ̂kφk(ω),

∑
l 6=k γ̂lφl(ω) + σ̂2

1

]
shows that the ML estimate of the noise variance

flourishes together with the remaining bands as interference. We also note that for K = 1, (23)

and (24) reduce to (15) and (16), respectively.

6 Numerical Results

The sensing performance is assessed by means of experimental simulations modeling practical wide-

band cognitive radio scenarios. The GLRT spectrum sensing detectors derived in this work, which
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Figure 1: Receiver operating characteristics (ROC) of the wideband spectrum sensing detectors at

ρ0 = −15 dB.

are summarized in Table 6, are evaluated along with the energy detector [5], and the arithmetic-

geometric mean (AGM) detector [17] based on the eigenvalues of the temporal correlation matrix.

In the sequel, the noise component is generated as i.d.d. zero-mean Gaussian vectors of length

N = 32 and variance σ2, whereas the signal component consists of N = 32 samples following the

terrestrial digital video broadcasting (DVB-T) standard in the 2k-mode [37] of K = 8 channels,

with a total power of γ. The sampling depth is set to M = 2N = 64, and 100,000 MonteCarlo

trials are employed for averaging.

6.1 Sensing Performance

We first simulate the cognitive radio model (2) consisting of a secondary user equipped with a

single sensing antenna. In this scenario, the relative occupation of the primary signal S(t) is 25%

of the sensing band, i.e., the spectral support of φs(ω) is 1
4B. Fig. 1 depicts the receiver operating

characteristics (ROC) of the wideband GLRT spectrum sensing detectors derived in Sections 3

and 4, along with the energy detector and the AGM detector when the noise variance is perfectly

calibrated by the secondary device, at a nominal ρ0 = −15 dB.

It is noticed that the detectors with side-information on the second-order statistics of the pri-
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Figure 2: Probability of detection of the wideband spectrum sensing detectors versus average ρ0

with false alarm level α = 0.1.

mary systems signal, i.e., Rs or R0, provide sensing performance close the estimator-correlator

upper-bound. It is observed that estimating the signal level incurs no performance loss. This is a

known result, as the signal power, contrary to the noise power, is not a sufficient statistic [14]. As a

result, the performance equivalence between the estimator-correlator and the signal level detector is

common in the sequel. The accuracy in estimating the noise variance is reflected in maximum loss

of 0.1 points in probability of detection along a wide range of probability of false alarm constraints.

It is interesting to observe that the signal and noise levels detector outperform the noise level

detector. This behavior is due to the fact that the side-information on the signal power is an

averaged statistics, therefore the true signal power of the observations may be inaccurate. Because

the signal and noise levels detector performs ML estimation with two degrees of freedom, i.e., γ

and σ2, it shows a slight robustness in front of the noise level detector, which only exhibits ML

estimation with one degree of freedom.

We further observe that the Toeplitz detector shows a slight gain with respect to the energy

detector, because it exploits the correlation lags present in the off-diagonal of the sample correlation

matrix, in addition to the energy computation of the main diagonal. Finally, as expected, the

AGM detector’s ROC curve is below that of the Toeplitz and noise variance detector, since the test
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Figure 3: Receiver operating characteristics (ROC) of the wideband spectrum sensing detectors at

ρ0 = −15 dB with noise uncertainty κ = 0.1 dB.

statistic is less informative, e.g., does not exploit the Toeplitz structure of Rs. Fig. 2 plots the

probability of detection of the wideband GLRT spectrum sensing detectors versus average nominal

ρ0, at a fixed false alarm level of α = 0.1. For a probability of detection requirement of 0.9, we see

that the sensitivity of the detectors with known signal statistics is approximately 3 dB above the

Toeplitz and energy detectors, and up to 10 dB with respect to the AGM detector.

6.2 Effect of Noise Uncertainty

In this work, the noise uncertainty level κ is modeled as the ratio between the a side-information

noise variance σ2
ap and the true noise variance σ2, i.e., κ

.
=

σ2
ap

σ2 . In the sequel, we set κ = 0.1 dB. The

ROC at ρ0 = −15 dB, and the probability of detection with false alarm level α = 0.1 of the GLRT

spectrum sensing detectors are drawn in Fig. 3 and Fig. 4, respectively. A simple comparison

between Fig. 1 and Fig. 3, and Fig. 2 and 4, respectively, outlines that the test statistics that

assume perfect noise variance side-information suffer from performance degradation, whereas the

rest of the detectors which incorporate noise variance ML estimation remain unaltered. This is a

well-known result [36], and becomes the main motivation for the spectrum sensing detectors derived
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Figure 4: Probability of detection of the wideband spectrum sensing detectors versus average ρ0

with false alarm level α = 0.1 and noise uncertainty κ = 0.1 dB.

in Section 4. As appreciated in both figures, the performance curves of the estimator-correlator

and the signal level detectors are displaced below the signal level and noise variance, and noise

variance detectors. Likewise, the Toeplitz and energy detectors incur a penalty of approximately

2-3 dB of SNR sensibility, as seen by comparing Fig. 2 and Fig. 4.

6.3 Occupation

We now study the ROC interpretation of the wideband GLRT spectrum sensing detectors with fixed

ρ0 = −15 dB, in two opposite conditions of primary systems’ relative occupation. As depicted in

Fig. 5, the relative occupations of 12.5%, and 62.5% have been considered. By comparing both

situations, it can be concluded that for a fixed noise and signal powers, spectrum sensing is a

more challenging task when the primary users’ signal is more spread over the sensed bandwidth.

This effect is more remarkable for the detectors that exploit temporal correlation (e.g., the signal

level, noise level, signal and noise levels, and toeplitz and noise level detectors) because temporal

correlation decays with frequency occupation.
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Figure 5: Receiver operating characteristics (ROC) of the wideband spectrum sensing detectors at

ρ0 = −15 dB with low (12.5%) and high (62.5%) primary systems relative occupation.

6.4 Multi-Frequency Systems

Finally, we evaluate the performance of the GLRT spectrum sensing detectors for multi-frequency

systems. We consider a cognitive radio network with primary systems based on the terrestrial

digital video broadcasting (DVB-T) standard in the 2k-mode in an example with K = 8 channels

when sensing an arbitrary channel. For comparison reasons, we also add the nuisance estimator-

correlator, i.e., the test statistic (21) with perfect side-information on (γ1, . . . , γK). We define the

SNR at the k-th channel as ρ0,k
.
= γk

σ2 , with
∑K

k=1 ρ0,k = ρ0. On the one hand, the sensing perfor-

mance of the multi-frequency GLRT spectrum sensing detectors derived in Section 5 is depicted in

Fig. 6. It can be highlighted that, analogous to the wideband detectors, the side-information on the

normalized correlation matrices Rk is the most informative statistic on the primary users’ signal as

the multi-frequency detector (21) incurs roughly no sensing loss in estimating the signal levels when

the noise variance is perfectly known. However, the degradation of the multi-frequency detector

due to noise variance estimation can be clearly appreciated in both figures. Whereas in terms of

sensitivity the performance loss is roughly only 1-2 dB in SNR, the ROC for very restrictive false

alarm levels incurs a large penalty. The main reason for this last appreciation is that the prob-
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Figure 6: Sensing performance of multi-frequency systems.

ability of false alarm depends on the remaining frequency contributions, whose estimates become

highly sensitive to the noise variance computation. We further show in Fig. 7 how the kernels

actuate over the periodogram of the observations in the multi-frequency detector when sensing the

3rd band with γ1 = γ3 = γ7, γ2 = γ4 = γ6 = γ8 = 0 and γ5 with slightly more power As it can be

appreciated, the kernel K7,k(ω,M) at k = 3 keeps the spectral shape of the estimator-correlator

detector with a small shift and scaling. Both kernels show how they are affected by the spectral

information outside the sensing frequency, because they are incorporated in φν(ω) of K7,k(ω,M),

along with the additive thermal noise. Hence, as an example, we can observe the effort of the

kernels in diminishing the contribution of the signals around ω5 and ω7 while augmenting the focus

on the detected channel, i.e., on ω3.

7 Conclusions

In this paper, we have investigated the problem of spectrum sensing in wideband cognitive radios.

Under the low-SNR assumption, we have derived a unified framework based on the frequency-

domain asymptotic interpretation of the optimal GLRT spectrum sensing detectors. This unified

framework uniquely consists of a kernel inherent to the detector, and the periodogram of the obser-

vations. We have further obtained the corresponding kernels for a variety of scenarios of practical
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Figure 7: Frequency-domain interpretation of the kernels in multi-frequency spectrum sensing

detectors at average ρ0,k = −15 dB.

interest by obtaining closed-form ML estimates of the unknown parameters, including the signal

level and noise variance, and multi-frequency systems. Theoretical interpretations and simulation

results show that the primary signal’s second order statistics constitute the most informative statis-

tics for detection. Finally, we have seen that while noise variance estimation guarantees robustness

in front of noise uncertainty, the detection kernel takes advantage of the spectral information con-

tained over all the sensed bandwidth.
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A Proof of Main Contribution

First, we proof that for asymptotically ρ0 → 0, the GLRT (3) is of the form T (X,Θ) = tr(KR̂x).

Consider the GLRT (3) for the spectrum sensing problem (2) under the Gaussian assumption, i.e.,

L(X) =
p(X|R̂s, σ̂

2
1,H1)

p(X|σ̂2
0,H0)

=
det(σ̂2

0I)M

det(R̂s + σ̂2
1I)M

× exp tr(−XH(R̂s + σ̂2
1I)−1X)

exp tr(−XH(σ̂2
0I)−1X)

.

Taking the logarithm and defining R̂x
.
= 1

MXXH , after grouping terms we obtain

1

M
logL(X) = tr

((
1

σ̂2
0

I− (R̂s + σ̂2
1I)−1

)
R̂x

)
+ log

(
σ̂2

0

σ̂2
1

)
− log det

(
I +

1

σ̂2
1

Rs

)
. (25)

Approximating σ̂2
0 ≈ σ̂2

1 and log det
(
I + 1

σ̂2
1
R̂s

)
≈ ρ0tr(R̂s) ≈ 0, asymptotically as ρ0 → 0, and

applying the inversion lemma (R̂s + σ̂2
1I)−1 = 1

σ̂2
1
I− 1

σ̂4
1
R̂s(

1
σ̂2
1
R̂s + I)−1 = 1

σ̂2
1
I− 1

σ̂2
1
R̂s(R̂s + σ̂2

1I)−1,

we obtain
1

M
logL(X) ≈ tr

(
1

σ̂2
1

R̂s(σ̂
2
1I + R̂s)

−1R̂x

)
.
= tr

(
KR̂x

)
. (26)

For the second part of the proof, we recall that for large data records (i.e., as N →∞) in (2), it

is established in [14, Ch. 5, Sec. 5] though approximating the probability density function (PDF)

of X that log-likelihood decision statistic (26) can be approximated as (5), where K(ω,Θ) is the

asymptotic continuous-frequency transform of the second-order statistic K given by (6), and P (ω)

is the continuous-frequency periodogram of X.

B Derivation of ML Estimates

This Appendix reports a sketch on the derivation of the ML estimates employed in this paper. An

important result required in the following derivations is the low-SNR approximation

(
Rs + σ2I

)−1 ≈ 1

σ2

(
I− 1

σ2
Rs

)
. (27)

B.1 Derivation of (9)

The ML estimate of γ under H1 for the spectrum sensing problem (2) is given by

γ̂ = arg min
γ

log det(γR0 + σ2I) + tr
(

(γR0 + σ2I)−1R̂x

)
subject to γ ≥ 0. By taking the derivative with respect to γ and set it to zero we obtain and

equation whose solution is equivalent to (22), proved in [33, Appendix B] for K = 1, i.e., tr(R2)γ =

tr(R1R̂x)− σ2N , which results in (9).
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B.2 Derivation of (12)

Let Rs[β] be the decomposition of Rs given by (10). The ML estimate of the coefficients if given

by

β̂ = arg min
β

log det
(
Rs[β] + σ2I

)
+ tr

((
Rs[β] + σ2I

)−1
R̂x

)
,

with the additional constraint β0 ∈ R+. By making use of the derivative properties, we take the

derivative of the objective with respect to β∗n′ , which leads to the equation

tr
((

Rs[β] + σ2I
)−1

Tn′

)
− tr

((
Rs[β] + σ2I

)−1
Tn′

(
Rs[β] + σ2I

)−1
R̂x

)
= 0,

for 0 ≤ n ≤ N − 1. In the wideband regime, we further make use of Approximation (27) to

approximate the following terms

tr
((

Rs[β] + σ2I
)−1

Tn′

)
≈ 1

σ2
tr(Tn′)−

1

σ4
tr (Rs[β]Tn′) ,

and

tr
((

Rs[β] + σ2I
)−1

Tn′
(
Rs[β] + σ2I

)−1
R̂x

)
≈ 1

σ4
tr(Tn′R̂x)− 2

σ6
tr
(
Rs[β]Tn′R̂x

)
.

Applying the former approximations, we obtain that the ML estimate of Rs accomplishes

2

σ6
tr
(
Rs[β]Tn′R̂x

)
− 1

σ4
tr (Rs[β]Tn′) =

1

σ4
tr(Tn′R̂x)− 1

σ2
tr(Tn′).

We further make use of the low-SNR approximation with the left-hand side of the former equation.

Noting that tr(2R̂x− σ2I) ≈ σ2I, it reduces, after multiplying both sides by σ2, to tr(Rs[β]Tn′) =

tr(Tn′R̂x) − σ2tr(Tn′). Now, we make use of the orthogonality of T , to note that the term

tr(Rs[β]Tn′), using the decomposition (10), equals to βntr(TT
nTn), i.e., only the term n = n′

survives. Finally, we get the equations βntr(TT
nTn) = tr(TnR̂x) − σ2tr(Tn), which for n = 0 as

T0 = I gives β0 in (12a), and for n ≥ 1 as tr(Tn) = 0 gives βn in (12b).

B.3 Derivation of (16)

The ML estimates of γ and σ2 are given by the convex optimization problem

γ̂, σ̂2
1 = arg min

γ,σ2
log det(γR0 + σ2I) + tr

(
(γR0 + σ2I)−1R̂x

)
.

The solution is equivalent to (24) for K = 1, proved in [33, Appendix C], i.e., the system of equations

formed by γtr(R2
0) + σ2N = tr(R0R̂x), and γN + σ2N = tr(R̂x). After some mathematical

manipulations, we obtain that the solutions are given by (16).
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B.4 Derivation of (18)

The ML estimate of the coefficients and the noise variance are given by the optimization problem

β̂, σ̂2
1 = arg min

β,σ2
log det

(
Rs[β] + σ2I

)
+ tr

((
Rs[β] + σ2I

)−1
R̂x

)
,

with the additional constraint β0 ∈ R+. As the problem is convex on β and σ2, we take the

derivative of the objective with respect to β∗n and σ2. On the one hand, the derivative with

respect to β∗n has been derived in Appendix B.2 and, after some mathematical manipulations

and making use of Approximation (27) and the orthogonality of T , reduces to βntr(TT
nTn) +

σ2tr(Tn) = tr(TnR̂x), for 0 ≤ n ≤ N − 1. Hence, for n ≥ 1, we proof (18b) because tr(Tn) = 0.

For n = 0, we have β0 + σ2 = 1
N tr(R̂x), together with the derivative with respect to σ2, i.e.,

tr
((

Rs[β] + σ2I
)−1
)
− tr

((
Rs[β] + σ2I

)−2
R̂x

)
= 0. After applying Approximation (27), we

obtain the following approximations tr
((

Rs[β] + σ2I
)−1
)
≈ 1

σ2N − 1
σ4 tr (Rs[β]), and

tr
((

Rs[β] + σ2I
)−1

Tn′
(
Rs[β] + σ2I

)−1
R̂x

)
≈ 1

σ4
tr(R̂x)− 2

σ6
tr
(
Rs[β]R̂x

)
.

Finally, noting that at the low-SNR regime we can further approximate tr(2R̂x − σ2I) ≈ σ2I, we

obtain tr(Rs[β]) + σ2N = tr(R̂x). As tr(Rs[β]) = β0N , we obtain, again, β0 + σ2 = 1
N tr(R̂x).

Hence, employing the matrix decomposition T , we note that both β0 and σ2 account for the

white component of the received observations, and the ML estimates cannot be found further than

β̂0 + σ̂2
1 = 1

N tr(R̂x), proving (18b).
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