183.

SECOND ORDER ANALYSIS OF REINFORCED CONCRETE FRAMES

ANTONIO MARI JUAN MURCIA ANTONIO AGUADO
Assistant Professor Professor Associate Professor

Polytechnic University of Barcelona
Barcelona. Spain.

SUMMARY

In this paper we propose a second order method to analyse concrete frames based on
the imposed deformations method. The geometrical nonlinearity is introduced by -
using imposed curvatures associated to the "second order isostatic forces" defined
in this paper. In the same way material nonlinearity is introduced by means of im-
posed curvatures obtained from the axial force-moment-curvature diagram of each -
cross section by compatibility of material properties requirements. The proposed -
method can be considered to fall within the "General Method" proposed by the C.E.B.
Several structures are analysed comparing the results with those obtained by other
analytical methods and conclusions are down both relative to the method’s proper -
ties and the structural behaviour.
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1, INTRODUCTION

The continuing development in the field of concrete technology has made possible
to get high concrete strengths and also to build more slender structures inwhich
the presence of high compression loads can lead to instability problems.

In the treatment of this problems the displacements of the structure can not be-
neglected, and hence the deflection line of the element must be included in the-
computation of the bending moment at each section. This is known as "second or -
der analysis" and the increase in forces and displacements of the structure, rela-
tive to those obtained by linear theories, generated by the action of the axial-
force in the deflected line are called '"second order effects".

This Kind of analysis presents, in the case of concrete structures, serious dif

ficulties because of nonlinearity on the materials stress-strain relationships,
cracking of concrete when tensile stresses reach the concrete tensile strength,-
creep of concrete under sustained loads, and other ptenomena as tension stiffe -
ning, concrete confinement by reinforcement a.s.o.

The effect of material non linearity is twofold on reinforced concrete structu -
res: On the one hand it causes redistribution in the structure and its sections
forces.

On the other hand there is an important variation of the structural deforma
bility due to the larger rotation capacity of the concrete sections than in ca-
se of elastic linear materials which affect directly to a second-order analysis.

Obviously the analytical treatment of both ron-linearities presents serious diffi
culties and it is practically impossible even in the case of a simple member. On
the other hand the extraplation of the results obtained from the analysis of sim
ple members to the case of members included in frames, that in the case of  li-
near-elastic material, is performed by means of the effective length concept, is
much more problematic in the case of reinforced concrete and their results can -
be discussed.

Finally, in many codes of practice, starting from certain values of column slen-
derness and certain structural requirements it is recommended to use a general me
thod accounting for the plenomena above mentioned.

All this reasons lead to the need of having available general methods to be -
applied in certain specific conditions although  these methods must gather al
so simplicity, power and economy. This is the case ot the second order method -
of analysis presented herein.

2. PROPOSED METHOD.GENERAL CHARACTERISTICS

The propvosed method is aplicable to reinforced concrete plane frames, acted upon
by any kind of action (loads, end displacements, thermal effects sen)e It 1588
a nonlinear second order method of analysis which presents two well differenced-
stages:

I Elastic linear analysis of the structure, acted upon by the considered ac-
tions, assuming elastic rigidities EI, EA for the cross sections.

II Iterative procedure induced by the introduction in the structure of imposed-
deformations to account for the material an geometrical nonlinearities, who-
se values depend on the results of the previous iteration.

In this procedure the stiffness matrix of the structure remains unchanged -
being the same as that calculated in the first stage (linear analysis).




In addition to the material strensth'sown assumptions and those more usual in -
reinforced concrete, an specific assumption of this method is the following:

The variation of the axial force in a member from one iteration to other introdu
ces negligible variations on the axial force-berding moment-curvature diagram U -

of this member sections.

This assumption is verified in the examples shown in this paper and it allows to
use the same N-M-C diagram along all the iterative procedure.

2.1. Treatment of the second order effects

Let us consider an slender structure acted upon by axial and lateral loads as -
shown in figure 1. The structure will be assumed to be hyperestatic, laterally -
unbraced and made out of a linear elastic material.

Figure 2 shows a member (A,B) of the structure with the end forces and displace-
ments obtained from a linear first-order analysis.

If we assume that there are no lateral loads applied between joints in the mem -
ber, the first order forces acting on an arbitrary section of abscisa x (in local
coordinates)will be:

Ml (x) = - MAB +_PAB,y : X (Moment)
Vl (x) = PAB,Y (Shear force)
Nl (x) hPAB,X (Axial force) (L)

They will be designated together by El(x}.

Considering the effect of axial forces in the equilibrium of the deformed member,
assumed isostatically supported, it must appear at the ends A and B force incre -
ments relative to those obtained from a linear analysis of value: (see figure 3)

A MA -Nl. 51
AVy= Ny By
/:LNA = 0 (2)

In an arbitrary section of deflection: Yl(x} (with the axis shown in figure 3)
the forces increments are:

11
A MH{X) = -NpLY (XD 4N 51(1_></L)
PRV (x) = Nl.fsl/L
= 11
AN (x)= O (3)

This forc?s will be called "second order isostatic forces", and will be designa-
ted by AE. , where I stays for the initial os "isostatic" and J the number of -
the itcragion considered.

If we neglect the effects of shear deformations and being the flexural elastic -
rigidity EI, this moment increments can be associated to some deformations (cur-
vatures) of value:
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I
) 1T :
AY() = _AvE () = W ( = Wl Aoy TlieX ) (4)
This deformations will be designated by Z&Q?I , having I an J the same meaning as

" g s J ” ;
above. Knowing the second order isostatic forces and their associated curvatures,
they can be introduced in the structure as actions (geometrical actions or impos-

sed deformations) performing an analysis of the structure (with known characteris

tics) subjected to these actions. From a matrix point of view this is equivalent-
to a variation of the force vector, keeping constant the stiffness matrix of the-
structure.

The results of this calculation  will be the forces axdisplacements called "second-
order hyperestatic effects" (AE and Ay ) that appear to make compatible the-
imposed deformtions, and which must be added to the "second order isostatic -
effects" to close the loop. That is to say, at the end of this first iteration -
the so-called second order forces are:

I H
O e, =AE] +OE]

and the displacements:
1 H
NS\ R AN o (5)
wich must be superimposed to the results of a first order analysis

From here on it must be repeated the cycle because, although the obtained solu -
tion up to now is compatible, forces and displacements of the structure have -
been altered and so it must be reestablished the equilibrium in a second order -
treatment.

This should be made in spite of the structure being isostatic because of the na-
ture of the second order forces.

With the final forces and displacements obtained from the first cycle we can ini-
ciate the 29"d jteration, obtaining the new deflection line on each member -
(Y2 (x)) and hence the new second order isostatic forces will be:

A () = N Y, (04N, .8, (L-X/L)
I ’
L\v% x) = N, .2

“rom here on we would obtain the associated curvatures to this forces and after
a structural analysis under this imposed deformations, the superposition of isos
tatic and hyperestatic second order effects over the results of the 15t order -
analysis provide the final forces and displcacements of the second cycle:

. -1 H
- I H
AT “H'“O? (8)

The iterative procedure must continue until the results of two consecutive itera
tions be sufficiently similar (in case of converqgence of the proccedure). In this
case one can ensure that it has been achieved an equilibrated in second order and




compatible solution of forces and displacements of the structure.

The critical system of loads (that produces the structural instability) can be -
obtained by increasing the compression load system step by step and keeping cons
tant a perturbing load leading to the lst. buckling mode. For each load step it-
must be performed the iterative procedure described above until its convergence-
in which case it has been found a point on the load-displacement curve that re -
presents the structural equilibrium.

Instability raises, in this method,by the divergence of the iterative procedure,
giving rise to a monotonic series of values of the studied parameters. That is -
different from other kinds of divergence.

The proposed method is applicable both to laterally braced and umbraced frames.-
In practice the first case is a particular case of the second one, since in equa
tion (3) making ¢= 0

T
A My (x) = - Ny . Y (%)

2.3. Unified treatment of material and geometrical nonlinearities

If the considered structure is made out of reinforced concrete we must include -
in the analysis the effects of material nonlinearity. For this purpose it will -
be used, as working tool the N-M-C diagram of each cross section (9) and (12). -
Let figure 4 represent the N-M-C-diagram of an arbitrary cross section. The treat
ment of material nonlinearity alone by the imposed deformtions method has been -
performed in (1) and (2). In this case we include also the second order effects-
by the procedure presental above.

Let us suppose that the structure has been analysed using a linear flexural rigi
dity E.I = K, for this cross section (straight line passing throuwh the origin -
with slope K; ). The linear solution leads, in this section, to a Moment M, not
equilibrated in second order which violates the material properties (it is not -
on the N-M-C curye, point 0 in figure #).The introduction of the isostatic second
order moments AM; an its associated curvatures can be graphically seen in figu
re 4, which is equivalent to displace point 0 to 0°. To fulfil the material con-
ditions it must be introduced and imposed curvature:.C; equal to the difference -
between the curvature corresponding to Moment M, according to elastic rigidity -
K, and that following the N-M-C diagram. The analysis of the structure under the
combined action of the second order isostatic cyrvatures (C;) and those due to -
material, leads to the hyperestatic response .M, (straight }ine 0°- 1) so thaﬁ -
the final moment in this iteration will be the algebraic sum of M, ,AM , AM; .
Continuing the iterative procedure we would find the final solution F which besi
de being equilibrated in second order and compatible fulfils material conditions.

3. APPLICATION EXAMPLES

Two examples will be presented. The first one is a reinforced concrete cantile -
ver column. The object of this example is to compare the results obtained using-
the proposed method with those obtained by simplified methods of analysis. The -
second example is a simple reinforced concrete portic frame with fixed ends who-
se results can be compared with those obtained using other general methods.

This latter example is the same presented in C.E.B. Butlletin n? 103 (5)
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Figure n? 5 shows geometrical, mechanical and loading characteristics of the struc
ture. Two loading systems have been considered. System 1 correponds to an axial -
load F and lateral load H. System 2 substitues the lateral load H by an a applied-
moment M.

Structural instability has been achieved using a step by step procedure, increa -
sing the perturbing load keeping constant the axial load.

Figure n? 6 shows the N-M-C diagram of the column cross section. The results of -
the analysis are shown in figure n2 7, where the top deflection (&) is plotted -
versus the adimensional 15t order moment on the base of column, for the two loa -
ding systems. In both cases instability failure is reached before material failure,
although the 20nd loading system is more unfavorable than the 1St one.(due to the-
influence of the 1St order moment distribution). In table 1 are compared these -
results with those coming from other methods (3), (5) and (15).

3.2. Example n2 2

Figure n2 8 shows schematically the analysed structure. The results of the analysis
by the proposed method are compared with those obtained by General Frame Analysis-
(5), with those obtained by the method proposed by GRELAT(11) and with those obtai
ned by the Model Column Method (6) and the simplified method of GRELAT (11).

The structure is a simple fixed feet portical frame (sway permitted) subjected to-
vertical and lateral loads. The columns cross sections is constant and the beam -
presents the same N-M-C diagram in its full lenght.

Cross sectional analysis provides the N-M-C diagrams of the columns and beam sec -
tions, shwon in figure n2 9.

The ultimate lateral load has been found keeping unchanged the vertical loads and-
increasing lateral loads. The results are shown in figure 10 where the lateral -
load are plotted versus the lateral top deflection of frame.

Instability failure is reached for a value of the lateral load of 6,26 T. In the -
same figure are shown the results coming from other methods of analysis. The value
of ultimate lateral load is in good agreement in all cases, including those obtai-
ned by simplified methods, although these latter remain conservative.

4. FINAL CONSIDERATIONS. CONCLUSIONS

The proposed method of analysis presents the following remarkable characteristics:

1.- It is a general method of analysis of reinforced concrete pah frames. It canbe
applicable both manually and automatically and it includes, in a compact form,
the material and geometrical nonlinearities.

It is valid both in service states and ultimate states. Between the ultimate -
states it can detect both the instability failure (of the whole structure or -
locals failures) and the material failure at any cross section of it.

2.- It can be considered an exact method because of the treatment of the material-
and geometrical nonlinearities. The plastic rotations are accounted for in all-
sections whenever they appear and are not concentrated in plastic hinges.
With respect to second order effects, the actual deflection line of each mem -

= ber is calculated using the finite difference method, thus making no assump -

. tions relative to the shape of the deflection line.
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3.- Because of the invariability of the stiffness matrix of the structure along
the iterative procedure the C.P.U. time is considerable reduced, which -
affects the economy of the analysis. Furthermore it is possible to analyze-
very complicated frames without introducing supplementary joints on members
and hence without increasing the matrix stiffness size.

4.- To improve convergence of the iterative procedure the matrix stiffness used
for linear-elastic analysis can be obtained including the effect of an assu
med axial force in each member by means of stability functions ¢ and s. -
This axial forces, in usual common structures are easy to compute by means-
of an isostatic distribution of vertical loads, with little error. In this-
case, the second order isostatic forces and curvatures to be introduced -
will be those generated by the variation of axial forces relative to the -
assumed ones N, , so that in the expressions 2, 3, 4 and 7 N. must be subs
tituted by AN = N:J - NU , being N3 the axial force computed dn iteration J.

5.- The obtained results are in good agreement with those coming from other ge-
neral methods, yet the proposed method giving a greater conceptual simplici
ty and a very simple adaptation to any standard computer program of matrix-
analysis.
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2. Load System n2 2
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Figure n2 7, Results obtained from the analysis of example

ne 1,
LOAD MODEL DEFORM,
SYSTEM . | COLUMN SINUS.. GENERAL |PRCPOSED .
A
0.104 0.0918& 0.130 Q131
o~
0.084 0.,0918 0.0943 0.0943

Table 1. Compariéon of the results 6?Qexample 1
whith those obtained by other methods.
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Figure n2 10, Results obtained from the analysis of example n2 2.






