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Abstract—In neuro oncology, the accurate diagnostic iden-
tification and characterization of tumours is paramount for
determining their prognosis and the adequate course of treat-
ment. This is usually a difficult problem per se, due to the
localization of the tumour in an extremely sensitive and difficult
to reach organ such as the brain. The clinical analysis of brain
tumours often requires the use of non-invasive measurement
methods, the most common of which resort to imaging techniques.
The discrimination between high-grade malignant tumours of
different origin but similar characteristics, such as glioblastomas
and metastases, is a particularly difficult problem in this context.
This is because imaging techniques are often not sensitive enough
and their spectroscopic signal is overall too similar. In spite of
this, machine learning techniques, coupled with robust feature
selection procedures, have recently made substantial inroads into
the problem. In this study, magnetic resonance spectroscopy
data from an international, multi-centre database were used to
discriminate between these two types of malignant brain tumours
using ensemble learning techniques, with a focus on the definition
of a feature selection method specifically designed for ensembles.
This method, Breadth Ensemble Learning, takes advantage of the
fact that many of the frequencies of the available spectra convey
no relevant information for the discrimination of the tumours.
The potential of the proposed method is supported by some of
the best results reported to date for this problem.

I. INTRODUCTION

In oncology, the early diagnosis of a tumour and its char-
acterization are crucial for the provision of the most accurate
prognosis and the adequate treatment for the patient. Neuro
oncology faces an added difficulty: the risks of undergoing
surgery in such a sensitive organ as the brain. The need to
limit these risks has fuelled, over the last two decades, a
considerable amount of research in alternative non-invasive
measurement techniques based on Nuclear Magnetic Reso-
nance (NMR) in modality variants such as Magnetic Reso-
nance Imaging (MRI) and Magnetic Resonance Spectroscopy
(MRS), which could still provide accurate diagnosis from
indirect information.

Nevertheless, the interpretation of the NMR outcome is
often less than obvious in this context. MRI can be ambiguous
and imprecise in some cases (such as in the differentiation
of the high-grade tumours that are the subject of this study),
while MRS lacks spatial global information that MRI provides
and not all radiologists are trained to make sense of it. In
recent years, both modalities have been merged in the form of

MRSI [1] to overcome each other’s limitations. In any case,
computer-based methods for automated pattern recognition,
often stemming from the fields of computational intelligence
and machine learning can be used to ease the interpretation of
the NMR outcome and thus assist experts [2], [3].

In this paper, we investigate the problem of discriminating
between high-grade malignant tumours of different origin,
but similar biochemical signature, namely glioblastomas and
metastases (glioblastomas have their origin in the brain, while
metastases can have their origin elsewhere). Distinguishing
between them is paramount, given the fact that each of these
pathologies requires a completely different treatment. Previous
studies on this topic [4], [5], [6], based on Single-Voxel Proton
MRS (SV-1H-MRS), stress the complexity of the task at hand.
These studies have resorted to diverse approaches, including
subjective and automated feature selection, feature transforma-
tion and extraction, and mostly, simple linear classifiers.

We hypothesize that this problem can not be solved ad-
equately by a single classifier due to the complexity of the
available spectra, the intraclass variability and the high in-
terclass similarity. Thus, minor differences between instances
might be the key to a successful classification.

We propose the use of ensemble methods for the problem
of discriminating glioblastomas from metastases. As in other
ensemble methods [7], we aim at locally specializing the base
classifiers of the ensemble in different subsets of instances by
using different subspaces of features as predictors.

In this study, MR spectra from an international, multi-centre
database were used to build a specific method, namely Breadth
Ensemble Learning, able to differentiate among these two
types of malignant brain tumours. It makes the most of the
fact that many of the frequencies within the spectra contain
no relevant information for the current task by using a feature
selection strategy specifically designed for ensembles dealing
with these data. The suitability of the method is supported by
some of the best results reported to date for this problem.

The rest of the paper is structured as follows: The available
MRS data are first introduced. This is followed by a summary
description of the proposed method. In Section IV, this method
is evaluated and its results compared with other ensemble
and non-ensemble methods. Then, the generated solution is
interpreted and its results compared to those in previous
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Fig. 1. Mean spectra as a function of frequency (in ppm) of glioblastomas
(grey) and metastases (black) from the INTERPRET database, for both long
and short echo times (LET and SET, respectively).

investigations. The study wraps up with some conclusions and
an outline of future work.

II. MATERIALS

The data used in this study come from two different sources.
A total of 78 glioblastomas and 31 metastases were gathered
from the international, multi-centre INTERPRET European
project database [8]. An independent hold-out set consisting of
30 glioblastomas and 10 metastases was also used to evaluate
the proposed method. These were gathered from the eTumour
and HealthAgents research projects [9].

In more detail, each of the spectra in these datasets consists
of proton resonance signals at a finite number of equally
spaced frequencies. Many brain metabolites are known to
generate signals at specific frequencies in the MR signal [10].
A total of 195 of these frequencies, validated by experts
as corresponding to the most relevant frequency interval in
the spectrum, were used in the classification experiments.
Each tumour type is expected to have a characteristic spectral
signature (Fig. 1). A label indicating the type of tumour was
also available in the datasets. In the case of the hold-out set,
labels were only used a posteriori.

The time of echo is a parameter of signal acquisition. It
determines the presence and visibility of different metabolites
within the spectrum. According to [11], data acquired at short
echo time – SET (20 − 40ms) yield a better resolution for
certain metabolites (e.g. lipids, myo-inositol, glutamine and
glutamate) at the expense of overlapping some resonances (e.g.
glutamine/glutamate and N-acetylaspartate), which may make
the interpretation of the spectra difficult. Instead, data retrieved
at long echo time – LET (135 − 144ms) yield less baseline
distortion but also less clearly resolved metabolites.

Several studies [12], [13] have shown the differential advan-
tage for classification of using LET and SET in combination.
In this study, we employ both LET and SET by direct
concatenation of the spectra.

The available data show a number of challenges that hinder
the classification task. Among them, their high dimensionality
compared to the low number of instances available; the non-
informativeness of many features; the high correlation among
features given the spectral shape of the data; and, above all, the
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Fig. 2. The system is composed of 3 main modules: the feature search
(composed of different subsets of features φi), the ensemble induction (made
of several base classifiers Li) and the aggregation strategy.

class-unbalanced nature of the analysed data, which contain
many more glioblastomas than metastases.

III. METHODS

The core of any ensemble method is the block containing
several base classifiers. Its purpose is having different classi-
fiers which yield diverse predictions for a given data instance.
The final ensemble prediction is calculated by appropriately
combining the predictions of the base classifiers. Combining
the predictions is far from being a trivial matter, giving rise
to an active field of research within the ensemble methods
community [14].

Besides, the task of designing diverse classifiers in order
to predict differently can be accomplished using a variety
of techniques. Among the most widely used are those which
attempt to train every classifier using unequal sets of instances;
training classifiers which are distinct in nature (e.g. using
different classifiers or setting their parameters differently);
using a unequal subset of data features for every classifier;
or a combination thereof.

The coverage of the whole space of instances should be
ensured by stimulating the classifiers to disagree between
them, aiming towards a local specialization of each clas-
sifier. This fact might even lead individual components to
lose predictive ability if the whole ensemble benefits from
it. Individual inaccuracies are corrected by integrating the
individual outcomes in a global prediction.

A. Structure overview

The system introduced in this section (Fig. 2), even if being
composed of three basic modules (feature search, ensemble
induction and aggregation strategy), works in a wrapper-like
fashion, meaning that every module is not sufficient by itself,
but completely dependent on the others. Thus, every decision
made during the construction of the system is subject to the
performance of all components.



The workflow starts in the feature search module by se-
lecting a different subset of features associated to each base
classifier. In the ensemble induction module, each classifier
estimates the class membership for every instance according
to the information that it possesses. Then, every output from
the classifiers is aggregated for the whole ensemble to provide
a single estimation. Finally, the ensemble performance is as-
sessed and this value is used to provide feedback to the feature
search module again. Notice that at each iteration, updated
information regarding the performance of the ensemble is used
to properly refine the selection of features.

We must stress at this point the importance of the proposed
procedure followed to build the ensemble. According to most
of the existing literature, ensembles are built by initially
training the first base classifier with the target of improving
its individual performance. Once this has been achieved, the
procedure goes on constructing the rest of the classifiers either
independently w.r.t. the previous ones (as in Bagging [15]),
or driving the training towards those cases where the firsts
classifiers were weak at predicting (as in Boosting [16]).

Contrarily, our method seeks to improve the ensemble
performance by iteratively adding or removing one feature
to/from each classifier in such a way that leads to the greatest
improvement of the overall ensemble performance. For this
reason we have named our algorithm Breadth Ensemble Learn-
ing (BEL).

B. Feature selection

The process of selecting the proper subset of features
for each of the base classifiers is crucial in our method
because all the mandatory diversity introduced in the ensemble
depends only on the decisions made at this phase. A sequential
selection search properly adapted to deal with the proposed
ensemble method was chosen.

Let Θ be the full set of features and let n denote the number
of base classifiers (which is constant). We denote by Li(φ)
the i-th base classifier developed using the feature subset φ.
The ensemble at time (iteration) t can then be expressed as
L(t) = {L1(φ1(t)), . . . , Ln(φn(t))}, where φi(t) ⊆ Θ.

To form the next ensemble, L(t+1), from L(t), we proceed
as follows. For the i-th base classifier, three possibilities are
considered: add the best feature to φi(t), remove the worst
feature from φi(t), or leave φi(t) unchanged. The choice that
leads to the highest overall ensemble performance will be
selected. The best feature Bi(t+ 1) for Li is the feature that,
when added to φi(t), leads to the best ensemble performance:

Bi(t+1) = argmax
θ∈Θ\φi(t)

P ({L1(φ1(t)), . . . , Li(φi(t)∪{θ}), . . . , Ln(φn(t))})

where P is the ensemble performance measure, described in
Section III-D. Conversely, the worst feature Wi(t+ 1) for Li
is the feature that, when removed from φi(t), leads to the best
ensemble performance:

Wi(t+ 1) = argmax
θ∈φi(t)

P ({L1(φ1(t)), . . . , Li(φi(t) \ {θ}), . . . , Ln(φn(t))})

Then φi(t+ 1) is set to either φi(t) ∪ {Bi(t+ 1)},
φi(t) \ {Wi(t+ 1)} or φi(t), depending on which choice leads
to the best performance when Li(φi(t + 1)) is used. This
updating process is repeated for all the base classifiers to form
L(t+ 1).

Because we allow each classifier to add, remove or keep a
feature in every iteration, it might be the case that different
subsets have different number of features. This is not pre-
vented, since there is no reason to enforce feature subsets of
the same size.

C. Base classifiers

A sensitive decision when designing an ensemble is the
selection of the base classifiers. One of the requirements we
ask to our classifiers is the possibility to provide soft decisions
to their predictions in the form of posterior probabilities. By
providing those probabilities, each classifier is able to give
not only a crisp qualitative measure about which class a given
instance belongs to, but also a quantitative value regarding
the degree of membership of the instance w.r.t. the different
classes. This will be useful in the aggregation phase, since the
contribution of each classifier will be automatically weighted
according to the confidence expressed by the posterior proba-
bility.

According to this requirement, Bayesian classifiers were
chosen, which provide probabilities in a natural manner.
Specifically, we employ Naive Bayes (NB), Linear Discrim-
inant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA). Previous studies dealing with the same kind of data
[17] concluded that linear methods were better suited to
the classification task at hand than nonlinear ones, specially
emphasizing the results obtained by LDA. Therefore, our
priority will be using this last classifier.

Another classifier known for its versatility and which has
been shown to achieve high performance in many domains,
namely Support Vector Machines (SVM), is also considered.
More precisely, we use a linear least squares SVM (LS-SVM)
with the add-on proposed by Platt [18], whose output is able
to approximate posterior probabilities by fitting the distances
between support vectors and instances to a sigmoid function
previously trained using cross-validation.

Furthermore, we want to explore the use of tree classifiers,
since they are the most commonly employed in ensemble ar-
chitectures. This is because of their relatively fast computation
and their ability to provide high variance among the different
trees within the ensemble, which might end up generating
the desired diversity property. For instance, both Bagging and
Boosting, as well as Random Forest, were originally designed
to use trees as their component classifiers. In our study we use
the CART [19] classifier.

D. Aggregation strategy

A strategy to combine the results outputted by the base clas-
sifiers must be defined. Among the wide range of techniques to
compute a final ensemble decision, we have selected a simple
well-known arithmetic strategy [14]. Because the outputs of



the base classifiers provide a class membership probability,
the confidence that every classifier gives to each prediction
is already implicitly taken into consideration by the value
provided. Thus, a simple measure as the average among all
the predictions ρ(t) = 1

n

∑n
i=1 ψi(t), where ρ is the ensemble

prediction and ψi the prediction of the i-th base classifier at
time t, will suffice for our purpose. Moreover, it has the nice
property of being a soft output, meaning that the prediction of
an unknown sample can be interpreted as the class membership
probability, or confidence, that the whole ensemble assigns to
this prediction.

The performance measure P (e.g. Area Under the ROC
Curve), used in Section III-B, which evaluates how well
the ensemble is doing depending on the available data, is
calculated at this point and its value fed again to the system
in order to aid the feature search.

We are aware of the importance of the aggregation strategy
in the final ensemble performance, because the same outputs
from the base classifiers might lead to completely different
ensemble final predictions depending on the aggregation tech-
nique. However, we must keep in mind that averaging is used
over the whole ensemble construction, which will be optimized
for that measure. Comparing the performance of the breadth
ensemble learning algorithm as a function of the aggregation
strategy is out of the scope of the current study.

E. Initial conditions

Selecting the initial most appropriate features is not a crucial
matter in our method, given the possibility to remove a poor
feature at any step of the algorithm. However, it is advisable to
start the search from an already advantageous status, guiding
it towards a promising path.

Starting the algorithm with empty feature subsets would
lead the system to propose adding the same feature to each
one of the feature subsets, hence generating no diversity at all.

The random selection of features would also be a poor alter-
native in our domain, since the vast majority of the available
features are known to contain little relevant information.

The current implementation relies on the Relieved [20]
algorithm, which is a version of Relief-F that samples all the
instances exactly once in the task of choosing the initial most
informative features. More precisely, Relieved outputs a list of
features ranked according to their discrimination power for the
current task. Then, the n best positioned features are kept and
distributed such that every feature subset at t = 0 is composed
of only one feature, that is, φi(0) contains the i-th feature from
the list provided by Relieved.

IV. RESULTS

The INTERPRET dataset, after standardization, was used in
the training phase for feature selection and model fitting using
a leave-one-out cross-validation procedure. This was driven by
iteratively maximizing the Area Under the ROC Curve (AUC)
as a measure of performance [21]. The process was stopped
whenever it was not possible to improve the performance
measure in the next iteration. At the end of the execution, the

selection of features that achieved this maximum performance
were kept as solution.

Subsequently, the system was retrained using the whole
INTERPRET dataset with the best subsets of features selected
in the previous step. The system was tested against the stan-
dardized hold-out set to gauge the real system performance.

AUC was used as loss function due to its independence from
the classification threshold parameter.

The suitability of our method was assessed by calculating
not only the AUC, but also the Area Under the Convex
Hull of the ROC Curve (AUH) metric [22]. The AUC might
underestimate the quality of the prediction in small datasets
while AUH might slightly overestimate it. Thus, both metrics
were calculated.

Furthermore, and in order to allow comparison with pre-
vious studies, the accuracy (ACC), the F-measure (F), and
balanced error rate (BER) were also calculated. We took
advantage of the posterior probabilities provided by our system
which, by performing a ROC analysis on the validation set,
allowed us to select the most suitable threshold where to split
the data for classification purposes. This threshold was used in
the hold-out set to calculate these measures of performance.

The only hyperparameter that our method requires is the
number of base classifiers n. In this study an educated choice
for n was made, setting the value to 50. The evaluation of the
performance depending on the number of classifiers n is out of
the scope of this study. The test bench included five different
base classifiers (NB, LDA, QDA, LS-SVM and CART).

Notice that our method is completely deterministic for
ensembles using NB, LDA, QDA and LS-SVM as base
classifiers for a given dataset. We have removed all sources
of randomness by using leave-one-out as the cross-validation
strategy every time a resampling was needed and none of these
algorithms generates a source of variation. For this reason,
only a point performance value is provided.

However, due to the computational cost of the experiments
with CART, 10-times 10-fold cross-validation was carried out
instead for the ensembles composed of these base classifiers.

According to the results shown in Table I for 50 classifiers,
the use of LDA as base classifiers seems the most adequate
choice, since the system built with them is able to achieve
an AUC of 0.88 and an AUH of 0.91 for the hold-out set,
clearly outperforming its competitors. Furthermore, the rest of
the calculated metrics support the previous statement, as they
reach their best values for LDA.

Second best is the system consisting of LS-SVM, achieving
a remarkable AUC of 0.84 and an AUH of 0.88.

For a variety of reasons, the ensembles composed by either
NB, QDA or CART achieve poor performance, with values
under 0.65 as AUC in all cases. QDA might fail due to the
fact that the system is overfitting the training data by trying
to fit quadratic functions. Also, CART and NB are unable
to model the structure of the data. The former may select a
wrong strategy to achieve its purpose and the latter might be
too simplistic.



TABLE I
BREADTH ENSEMBLE LEARNING PERFORMANCE USING DIFFERENT BASE CLASSIFIERS

# classifiers AUC AUH ACC F BER

NB
1 0.59 0.68 0.80 0.80 0.40

50 0.61 0.74 0.85 0.87 0.33

LDA
1 0.79 0.83 0.82 0.86 0.35

50 0.88 0.91 0.87 0.88 0.22

QDA
1 0.58 0.68 0.77 0.79 0.37

50 0.61 0.72 0.77 0.81 0.47

LS-SVM
1 0.68 0.76 0.80 0.86 0.35

50 0.84 0.88 0.82 0.88 0.22

CART
1 0.58± 0.07 0.58± 0.07 0.75± 0.00 0.78± 0.05 0.46± 0.10

50 0.65± 0.06 0.74± 0.04 0.81± 0.02 0.83± 0.02 0.37± 0.03

A. Setting the baseline

In order to validate the necessity of using an ensemble
architecture instead of a single classifier, results in the previous
section shall be compared with the results obtained when only
one base classifier (n=1) is used.

For these tests, the same procedure previously explained was
used to set up the initial conditions for the single classifier.

Table I summarizes the different measures of performance
obtained depending on the employed base classifier. CART
seems to be the worst performing one. The reason for this
low performance may be the way that features are selected: it
might pick irrelevant features to split the data.

QDA achieves, again, poor performance in the hold-out
set. The low number of available observations makes the
computation of the covariance matrices an unreliable process.

NB follows it in low rank performance. Its simplicity
when modelling the underlying data distribution might be the
probable reason for its failure.

LS-SVM, known to work reasonably well in many prob-
lems, also present an acceptable performance in the domain of
this study, outperforming the previously mentioned techniques,
and thus reinforcing the hypothesis that linear models are
suitable to approach our problem.

LDA is the classifier that performs best for our tests in
terms of AUC, AUH and accuracy. This result correlates with
previous studies [23] which prove the suitability of this tech-
nique to deal with the discrimination between glioblastomas
and metastases.

Nevertheless, the performance of all single classifiers was
improved when an ensemble strategy was applied. This gain
supports the comparative advantage of using an ensemble
setting. The most remarkable improvement was achieved pre-
cisely by LS-SVM and LDA. LDA, for instance, increased
its performance from an AUC of 0.79 in a non-ensemble
architecture to a 0.88 using the ensemble of 50 base classifiers.

B. Comparing against classical ensemble methods

Our method, specifically designed to deal with the dis-
crimination of gioblastomas from metastases using 1H-MRS
data, has been compared to three of the most commonly used

general-purpose ensemble methods, namely Random Forest
[7], Bagging [15] and Boosting (Adaboost.M1 [16]).

The parameters have been optimized according to the advice
provided by the authors. The best settings were actively sought
to achieve the highest average AUC in a battery of 100
executions for each setting:
• For Random Forest, 500 trees were grown, each one of

them randomly picking 20 features (the square root of
the total number of features) per node.

• In the case of Bagging, 100 trees were grown, whose
nodes were split after accumulating 20 instances and
increasing its fit by 0.5.

• Boosting was tuned with the same values as Bagging but
the parameter controlling the fit increment was set to 0.4.

The system was constructed using the INTERPRET dataset
and the performance was assessed on the hold-out. For those
algorithms not providing a posterior probability, the quotient
between the number of trees voting the positive class over the
total number of votes was used as posterior probability.

As seen in Table II, the majority of ensemble methods evalu-
ated in our testing environment achieve quite low performance
results. When no feature selection was applied beforehand,
Random Forest was only able to reach an AUC of 0.67±0.01
in the hold-out set. The method seems to fail in fitting the data,
possibly due to the selection of the wrong features leading to
a poor performance in test.

Similarly, Bagging obtained an AUC of 0.69±0.04. As with
Random Forest, it seems that the algorithm is not capable of
modelling the data.

Finally, Adaboost.M1 reached a slightly higher AUC value
of 0.71± 0.02. This algorithm achieves the best performance
within the general-purpose ensemble methods assessed in this
study. However, these results are significantly poorer than
those obtained by our technique.

The inability of these classical ensemble methods to model
the data might be attributed to the lack of a wise feature selec-
tion. Therefore, we have performed another set of experiments
where the most informative features have been selected prior
to the ensemble execution in order to reduce the disadvantage
of these methods against our BEL strategy, which does embed
feature selection.



TABLE II
PERFORMANCE OF DIFFERENT ENSEMBLE METHODS ON 1H-MRS DATA

Feature Selection Ensemble Technique AUC AUH ACC F BER

None
Random Forest (CART) 0.67± 0.01 0.77± 0.01 0.77± 0.02 0.86± 0.01 0.44± 0.07

Bagging (CART) 0.69± 0.04 0.72± 0.04 0.75± 0.05 0.83± 0.04 0.35± 0.04

Boosting (Adaboost.M1, CART) 0.71± 0.02 0.78± 0.02 0.74± 0.04 0.83± 0.03 0.36± 0.03

Filter (Relieved)(m=14)

Random Forest (CART) 0.59± 0.02 0.68± 0.02 0.75± 0.00 0.86± 0.00 0.50± 0.00

Bagging (CART) 0.62± 0.03 0.70± 0.03 0.73± 0.03 0.83± 0.02 0.39± 0.03

Boosting (Adaboost.M1, CART) 0.62± 0.04 0.68± 0.03 0.76± 0.03 0.85± 0.02 0.40± 0.05

Filter (Random Forest)(m=23)

Random Forest (CART) 0.67± 0.01 0.74± 0.01 0.78± 0.02 0.86± 0.01 0.35± 0.02

Bagging (CART) 0.71± 0.04 0.73± 0.04 0.75± 0.06 0.83± 0.05 0.34± 0.04

Boosting (Adaboost.M1, CART) 0.72± 0.02 0.77± 0.02 0.72± 0.04 0.81± 0.03 0.38± 0.03

Embedded Breadth Ensemble Learning (LDA) 0.88 0.91 0.87 0.88 0.22

More precisely, Random Forest itself was used to select
the best features. That is, we launched this method using
the parameters already described, and sorted the features
according to the average Gini index [19] in a sequence of
100 runs. A second strategy consisting in applying Relieved
[20] was also applied to sort the features.

Finally, each ensemble method evaluated in this section was
run 100 times using a subset of the best m features returned
by our feature selection strategies, were m was set according
to the elbow criterion [24].

In light of the results shown in Table II, applying Relieved
in our domain as the feature selection strategy is not a good
choice, since all the models perform worse than using no
feature selection. This might be due to the inability of Relieved
to take into account the redundancies between nearby features.

On the other hand, the use of Random Forest as a feature
selection might slightly improve the performance of some
models, but not much difference is appreciated.

C. Comparing to previous studies

In the tests using the hold-out set, an AUC of 0.88 and
a quite coherent AUH of 0.91 were obtained. The overall
accuracy was 87.5%. These results compare favourably with
those recently reported in [6], where an AUC of 0.86 and an
AUH of 0.91 were achieved using the same data, and therefore
rank with the best obtained to date, according to the authors’
knowledge.

D. Calculating diversity

In this section we use three different measures of diversity to
assess the level of discrepancy among the different classifiers
conforming the ensemble.

The first measure is the Disagreement Measure [14], which
computes the average number of instances that are classified
differently for every pair of base learners.

The second measure is the Q-statistic [14], a pairways
measure that evaluates the dependency between two pairs
of classifiers. Its values range between −1 and 1, being 0
whenever the two classifiers are independent.

Finally, we have also computed the Entropy measure [14], as
an unpaired measure to assess the overall ensemble diversity.

TABLE III
DIVERSITY ON BREADTH ENSEMBLE LEARNING

Dataset Disagreement Q-statistic Entropy

INTERPRET 0.32 0.47 0.47
Hold-out 0.31 0.46 0.47

The scores obtained by these measures of diversity on the
INTERPRET and Hold-out set, shown in Table III, confirm the
existence of a certain degree of diversity in our algorithm, even
though each measure rates it differently. They demonstrate the
variability on measuring diversity and the difficulty of a useful
empirical evaluation [14].

E. Using a synthetic dataset

Apart from evaluating the performance of the BEL tech-
nique in the domain of brain tumour diagnosis, we have also
performed several tests on a set of synthetic data, specifically
generated to have subgroups of highly correlated features, as in
our domain of application, without the sample size limitation.

A set of 1, 000 training instances and 100, 000 testing
samples were generated. Each instance was composed of 500
features of which only the firsts 50 were informative for
the binary classification task at hand and the remaining 450
were noise. The 50 valuable features consist of 5 independent
groups of 10 highly correlated features. A thorough explana-
tion about the generating process can be found in [25].

The construction of the BEL system, made of LDA base
classifiers, has been carried out by a 10-times 10-fold cross-
validation strategy on the training instances and has been
evaluated over the whole testing set.

The results obtained can be seen in Table IV, which show
the suitability of our method for this kind of data. Despite the
already good performance of BEL using a single base classi-
fier, when using a larger number of classifiers its classification
ability is even better.

Focusing on the percentage of features picked by each
model (Fig. 3), the system mainly selects the firsts 50 features
as expected, even if selecting some uninformative features due
to the very unfavourable ratio between number of observations
and number of features. Notice that when using only 1 base



TABLE IV
PERFORMANCE OF BREADTH ENSEMBLE LEARNING ON SYNTHETIC DATA

# classifiers AUC AUH ACC F BER

Breadth Ensemble Learning (LDA)
1 0.993± 0.001 0.993± 0.001 0.952± 0.003 0.950± 0.004 0.051± 0.004

50 0.995± 0.002 0.995± 0.002 0.960± 0.007 0.958± 0.007 0.042± 0.007

Fig. 3. Percentage of features selected after 10 runs of Breadth Ensemble Learning for classifying the synthetic dataset. The figure on the left corresponds
to the ensemble using only 1 base classifier and the figure on the right to the ensemble made of 50 classifiers.

classifier, many correlated features that are partly represented
by their neighbours are not selected, while when using 50
learners, all the features are selected in more or less proportion,
a fact that contributes to its slight improvement.

V. DISCUSSION

The proposed method performed a parsimonious selection
of subsets of features, giving raise to solutions where multiple
features appeared several times in different subsets. Fig. 4
shows the relative percentage of appearances for each fre-
quency in the MRS spectrum for the algorithm using 50 LDA.

The most frequently selected features are in consonance
with those found in the literature. For example, those located
at the interval between 3.30 − 3.45ppm might correspond to
taurine and are consistent with those found by [13] regarding
LET. Also in line with this study, the features located at
3.58−3.60ppm might correspond to glycine. Those located at
2.36ppm and 2.42ppm in LET might correspond to glutamine
and glutamate (Glx) metabolites. Another frequently selected
interval of the spectrum is located at both LET and SET, at
2.90−3.07ppm, with the creatine peak at 3.03ppm. NAA also
plays a relevant role around 2.05ppm, as mentioned by [6].

As also reported in [6], our method found more relevant
features in the LET dataset than in the SET one, when spectra
are used in concatenation.

It is interesting to compare this chart with the mean spectral
signature for glioblastomas and metastases in Fig. 1, as it gives
an indication that this central measure can be misleading in
terms of inferring feature relevance. In the spectra for LET,
two peaks of high amplitude correspond to choline (3.20ppm)
and lipids/macromolecules (1.40ppm), which is especially
clear for SET. Our method barely ever selects these frequencies
despite they could be thought as relevant for the task, given
the great difference in the main values between glioblastomas
and metastases that they (especially the second) show.

Fig. 4. Relative percentage of appearances for each feature (frequencies in
ppm) from the 1H-MRS spectrum using a BEL ensemble of 50 LDA. Black
columns represent appearances in the Long Echo Time spectrum whilst white
columns are the appearances in the Short Echo Time.

Interestingly, there are two close groups of frequencies that
are highly selected, which, to date, have not been reported
to contain any important information. They occur around
4.20ppm and 3.95ppm and might correspond to choline and
either creatine or alanine, respectively. Further research should
be done to elucidate this phenomenon.

VI. CONCLUSIONS

Glioblastomas and metastases are two types of high-grade
brain tumours that are difficult to distinguish from NMR
information. Their correct diagnosis is critical for the choice of
adequate treatment. Individual classifiers have been shown to
struggle in this task. Thus, in this study, we have investigated
the alternative ensemble learning approach.

A parsimonious sequential feature selection technique was
employed to feed each probabilistic classifier within the en-
semble. Contrarily to many ensemble building techniques,
the system was constructed in breadth, seeking to directly
maximize the overall performance and not as a by-product of
maximizing the performance of each of the component parts.



The classification decision was made according to the
confidence expressed by each local classifier. Moreover, the
ensemble outputs not only the crisp classification for a given
instance, but also the probability that this instance belongs to
a particular tumour type.

Although considering non-trivial low-relevant features as
predictors might contribute to the success of ensemble meth-
ods, using too many of them can produce the opposite effect
and mislead the whole system. Therefore, in our system, the
feature selection strategy is tightly coupled with the way the
ensemble is built.

We conjecture that the inability of general-purpose ensemble
methods to cope with the problem posed in this study is
precisely due to the lack of a wise feature selection strategy.
Such strategy should be able to skip the high number of
uninformative redundant features that the spectral data is
composed of, picking only the most informative ones.

Despite most ensemble systems perform better using weak
classifiers as their component parts, our system uses stable
classifiers (e.g. LDA and SVM). An explanation for this is
that the diversity required by the ensemble is introduced by
means of a specific feature selection.

The excellent results obtained with the proposed method
match the best ones reported so far in the literature [6], and
reinforce the thesis that an adequate feature selection is key to
solve this kind of problems. Importantly, the feature selection
process also improves the interpretability of the diagnostic
discrimination decision, which is a necessary requirement for
the practical implementation of the method.

These results have been achieved using a combination of
spectra acquired at different echo times. A natural extension
of the current study would entail reproducing the experiments
using only either LET or SET data. Future research could also
extend the study of the performance of this technique with
other tumour types (e.g., discriminating high grade malignant
tumours from low grade gliomas) or different problems dealing
with data of similar characteristics as the ones studied here.
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