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Abstract

The use of discrete-state, continuous-time Markov processes (MP,
for short) has been shown useful for the modeling and evaluation
of Fault-Tolerant Computing Systems. The efficient application of
this approach to complex systems depends largely on the availability
of powerful software tools that provide “friendly” utilities to specify
and run the models, and that can deal with large size MPs. Both
aspects have been considered in the design and implementation of a
software tool called METFAC. This paper discusses the {framework
solutions on which the tool is based and presents some performance
metrics. In relation to the framework solutions, the following aspects
are considered: generative specification of the models by production
rules, and sparse analytical evaluation of the measures.

1 INTRODUCTION

The development of software tools for the modeling and eval-
uation of Fault-Tolerant Computing Systems has been an active
research area during the last years. ARIES 76 (NgAv80) uni-
fied previous, heuristically developed, models using MPs as the
mathematical framework. A later version—ARIES 81 (Mak82)—
included among other enhancements the ability to process user-
defined models specified through their transition matrices.
Higher level specification methodologies were provided in the
SURF (Cos 81) and the tool described in (Bey 81). In the for-
mer, a MP for the system is obtained by combining subsystem
models and merging the resulting states. In (Bey 81) the use of
Petri nets with inhibitor arcs is proposed. An advantage of this
approach is that the merged MP is directly obtained if the sym-
metries of the system are considered in the specification. However,
the constraints imposed by the Petri nets to the firing conditions,
and, specially to the “new state” functions (constant displacements
in the state variable space) may make difficult or non-natural the
modeling of some activities. It seems that more powerful specifi-
cation methodologies are necessary.

Modeling of current complex fault-tolerant systems presents
the problem of processing large MPs. Two approaches are avail-
able: a) to use approximations in order to reduce the number of
states, and b) to use efficient numerical methods. Good specifi-
cation methodologies should allow the introduction of approxima-
tions. In relation to the second approach, the sparseness of the
transition matrices should be exploited.
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This paper discuss some of the methodological solutions incor-
porated into METFAC. In the next section the model specification
methodology will be described and an example given. Next, the
sparse solutions for the numerical problems involved in the evalu-
ation of the measures will be discussed. Finally, the organization
of the tool will be briefly described and some performance metrics
presented.

2 MODEL SPECIFICATION AND
CONSTRUCTION

2.1 Methodology

The proposed specification methodology is based on produc-
tion rules (BaFe82). At a certain abstraction level the behavior
of a fault-tolerant computing system results from the combination
of random processes that manifest themselves in specific actions
(faults, maintenance operations, etc.) which change the system
state. In the proposed methodology each process (or group of ho-
mogeneous processes) is described by a production rule, that spee-
ifies when the process is active and the consequences that may be
derived from the execution of the associated action.

A high level behavioral description called generative specifi-
cation is used to construct the ultimate model called evaluated
transition digraph (transition digraph with numerical values for
transition rates and state indices). The process is illustrated in
Fig. 1. The generative specification includes the following items:
PE (set of integer variables called structural parameters), PF (set
of real variables called functional parameters, VE (set of integer
variables called state variables), R (set of production rules r3), A
(set of positive real functions A*(PE, PF, VE) called action rates),
C (set of positive real functions cf(PE, PF, VE) called response
probabilities) and I(PE, PF, VE) (positive real function called n-
dez). The structure of the production rules has been tailored to
provide naturalness and is shown below.

if ai(PE,VE) then

if of(PE,VE) then VE « s{(PE,VE)

if af(PE,VE) then VE « s&(PE, VE)

end
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Figure 1: Automatic construction of transition digraphs.

Several responses, with different response conditions a*

J
new state functions 3;-’, can be defined. For semantic convenience

a global action activetion condilion ap has been included also.
Each production rule r;, has an associated action rate function
k evaluat-

Ak, and each response 3, 7 = 1,...,qk, a tunction c;

ing the probability that the response occurs given that it is ac-
tive. This multiple-response scheme allows a natural modeling of
probabilistic reactions of the system (i.e., limited effectiveness of
fault-handling procedures) as well as reconfiguration strategies de-
pending upon the current system configuration. Finally, the index
function I associates weighting factors with states for the evalua-
tion of performance and cost-related measures.

and

The structural parameters include those parameters on which
the topology of the transition digraph depends. They are usually
structural characteristics of the system (e.g., number of proces-
sors). Setting this parameters and defining a generator stale sg
allows the construction of the symbolic transition digraph, which
is obtained by applying the active production rules in sg and the
states successively generated. During the process, the values of
the state variables and the identifiers of the pairs action/response
that were active are recorded in, respectively, the labellings SD
and TR. Some measures require the modification of the transition
digraph. For instance, to evaluate reliability-type measures, the
faulty states have to be merged into an absorbing state and tran-
sitions from it have to be suppressed. The result is the modified
symbolic transttton digraph. In the last stage, the user sets values
for the functional parameters, and the transition rates and state
indices are easily computed from the labellings SD' and TR, and
the functions Ay, cf’ and I.

The generality of the methodology depends on the syntax al-
lowed for the functions appearing in the generative specification.
In METFAC a high-level embedded language has been used. We
note that a great specification power i1s thus obtained. In par-
ticular, Petr1 net-based specifications are obtained as particular
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cases. Moreover, approximate models can be easily defined. Let
us consider, for instance, the method used in (Arl83) to avoid the
“combinatorial explosion” of the state space for repairable systems,
based on limiting the number of simultaneous faulty subsystems.
This approximation can be implemented by introducing state van-
ables counting the number of faulty subsystems of a given class,
and structural parameters establishing their maximum values. The

condition functions a; and a.? should be modified so that they dis-
able the production rule and the responses when their execution

would overflow a counter variable. Once such a generative specifi-
cation has been created, the size of the digraphs can be adjusted
by setting adequately the structural parameters.

2.2 An illustrative example

Let us consider an on-line repairable system with degradation
capability, composed of N identical modules. Inttially, all mod-
ules are active and degradation up to a configuration with X < N

modules is allowed. Active modules are subject to transient and
permanent faults with rates Ay and A, respectively. Recovery pro-
cedures have negligible durations and their effectiveness is modeled
by the following parameters:

p probability that a transient fault is considered permanent
and successfully recovered

u; probability that a transient fault leads to a catastrophic fail-
ure

Up pmbability that a permanent fault is not successfully recov-
ered and leads to a catastrophic failure

Two mutually exclusive maintenance actions are taken by one
repairman: reparation of a module in permanent fault (rate p) and
restart from catastrophic failure (rate g, ). The system state can be
represented using three state variables: NA (number of active mod-
ules), NPF (number of modules in—or considered in—permanent
fault), and CF (1 if catastrophic failure, 0 otherwise). Let us as-
sume that we were interested in evaluating the performance-related
measure: “expected number of active modules”. An applicable
generative specification follows:

Structural parameters PE = {N,K }
Functional paramneters PF = {X,, A, p, Up, Ug, [, fir }
State variables VE = {NA, NPF,CF}

Production rules R = {r{,79,73,74}

r1: Permanent fault

Q] = (NA > 0)
response 1: There are more than K active modules and the
recovery procedures are successful

a; = {NA > K)
st: NA « NA ~1, NPF — NPF +1

response 2: There are more than K active modules but the
recovery procedures fail

a%-—'—-(NA>K)
sl: NA — 0, NPF «— NPF +1, COF 1




response 3: There are K active modules
a; = (NA = K)
s3: NA « 0, NPF — NPF +1

r9: Transient fault

ay = (NA > 0)

response 1: The fault leads to a catastrophic failure

a% = true
si: NA«— 0, CF 1

response 2: The fault is considered permanent and there are
more than K active modules

aj = (NA > K)
s3: NA — NA -1, NPF « NPF +1

response §: The fault is considered permanent and there are
only K active modules |

a3 = (NA = K)
s3: NA — 0, NPF «— NPF +1

r3: Reparation of a module
a3 = (NPF > 0) A(CF = 0)
response 1: The system is reactivated with K active modules
a} = (NA = 0)
s3: NA — K, NPF — NPF -1

response 2: The repaired module is incorporated into the ac-
tive configuration

a3 = (NA > 0)
s3: NA — NA+ 1, NPF « NPF -1
r4: Restart
a4 = (CF =1) A (NPF < K)
response 1
ai" = true

s&: NA — N - NPF, CF « 0

Action rales

A= NAX,
/\QZNAAt
A3 = 1
Ay = Yy

Response probabilities

ci=1-u, cg=1u, cj=1
2 _ 2 2 _

€1 = Ut Co = C3=2p
e =1 cs =1

ci=1

Index I = NA

Fig. 2 shows the symbolic transition digraph and the evaluated
transition digraph for a system with N = 5 modules that admits
degradation up to K = 3 active modules. The generator state sg
was chosen (NA, NPF, CF) = (5,0,0) and the numbering of the

states indicates the order in which they were obtained.
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action/response

pairs

Figure 2: Symbolic transition digraph (left) and evaluated transition
digraph (right) obtained for N = 5, K = 3, and sg = (5,0,0).

Ind(s@v—

3 EVALUATION

3.1 Measures

Taking into account the wide spectrum of features, operating en-
vironments and objectives of fault-tolerant computing systems, a
widespread set of measures (see Table 1) has been incorporated
into METFAC. Besides all/nothing measures, suitable for systems
which fromn the user point of view are either working with full capa-
bility or failed, some performance and cost-related measures have
been included. Some directly derived measures such as unavailabil-
ity or unrehability, that have been included as evaluation options,
have not been shown in Table 1. Most of them are well-known.
Life-cycle measures have been used before (Arl83). Performance-
rclated measures result from assigning a performance index #(:)
to each operative state ;. When 7(i) has significance of service
rate (e.g., flops/sec, transactions processed/sec) serviceability S(u)
and the related measures CS(u), MSFF and M SO are applicable.
The definitions of these measures are obtained by replacing in those
of, respectively, R(t), CR(t), MTFF and MTU, the variable time
t by the variable service u: i.e., S(u) would be the probability that
the total service accomplished by the system until its first failure
is greater than u. Cost-related measures result from associating
a cost rate c(i) to each state 1 (operative or faulty). It has been
pointed out (Mor80) that constant costs c;(z,7) associated with
transitions should be considered also. These costs can be included
by adding the quantities A;;ce(%, 7)to the cost rate c(3).




a/n: all/nothing
PR: performance-related
CR: cost-related

Table 1: Measures incorporated into METFAC,

C: constant
VD: variable-dependent
*. applicable to non-repairable systems

Class Type Symbol Denomination
AE Steady-state availability
MTU Mean time up
MTF  Mean time in failure
C MTBF  Mean time between failures
MTFF* Mean time to first failure
a/n MTTO Mean time to operation
A(t) Availability
R(t)*  Reliability
VD M(¢) Maintainability
CR(t) Life-cycle reliability
CM(t) Life-cycle maintainability
PEE Steady-state expected performance
C MSFF* Mean service to first failure
MSO  Mean service during operation
PR PE(t)* Expected performance
VD S(u)*  Serviceability
CS(u)  Life-cycle serviceability
C TCE  Steady-state expected cost rate
CR | VD | TC(?)" J_E_}Epécted cost rate

3.2 Formulation

Notation:

subset of operative states
subset of faulty states
performance index in state i

cost rate in state 1
n X n transition rate matrix of the MP modeling the

system

matrix (a;j); €B,i€C

matrix (ﬂij/ﬂ(i))ie B,j€C

matrix obtained from A by setting a;, = 1, 1 =
1,2,...,n

restriction of some transition rate matrix to some set

of states
probability vector for the MP with matrix A

steady-state probability vector (p = lim;_, o p(¢))
permanence probability vector
average permanence time vector

restriction of vector x to states in B
n X 1 column vector with all elements equal to 0,
except the last one, equal to 1

vector with all its elements equal to 1

The formulation of the measures can be done compactly as showed
in Table 2.

The vectors p and = are the solutions to the systems:

pTAn = OT (1)

n

D = —q"(0) (2)
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Table 2: Formulation of the measures.

Group 1 Group 2 3;
m =sTp | m(¢t) = s"p(t)
AL At TforieW, O foric P *
PEE PE(t) (i) forie W, 0 for ie F
TCE TC(t) (i)
MTBF~' Y.ierdij forieW,0forieF
Group 3 Group 4
m=1Tn | m(t) = 1T q(¢) D q(0)
MTFF R(t) Aww P (0)
MTTO 1-M(t) | Afr Pr(0)
MSFF $(u) - Pw (0)
MTU CR(¢) Aww (PFArwlw) 'pLArw
MTF 1 — CM(t) App (pﬂ.—A“rpllv)_lp%;;A.lvp
MSO CS(u) Aww (Pi-Awrlw) 'pl-Awr

The vectors p(t) and q(¢) can be obtained by integrating:

T

% = pT(t)A (3)
T

M~ q"(o)D (4

The sparse numerical methods incorporated in METFAC to solve
the problems (1), (2), (3), (4) will be bricfly discussed in the next

paragraphs. The reader interested in a more detailed exposition is

referred to (Carr86).

3.3 Evaluation of the steady-state probability and
average permanence time vectors

Two generic classes of numerical methods were considered
(Dahl74): a) direct methods (Gaussian elimination and variants),
b) iterative methods (Jacobi, Gauss-Seidel, SOR, etc.). Iterative
methods do not modify the matrix and have minimum memory
requirements. Their use is attractive when dealing with very large
matrices and have been successfully used to evaluate the steady-
state probability vector of MPs (Kauf81), (Nah84). However, the
efficiency of these methods (measured in number of arithmetic op-
erations) depends largely on the spectral properties of the iteration
matrix. Some results presented in (Jenn77, p. 220) indicate that
high stiffness ratios in the matrices of the systems produce very
slow convergence rates. Unfortunately matrix D has often a high
stiffness ratio. For instance, in evaluating the reliability of a re-
pairable system, the maximum eigenvalue module 1s of the order of
magnitude of the repair rates and the minimum eigenvalue module
is close (Pag80) to the steady-state failure rate. In fault-tolerant
computing systems the ratio between them may be as high as 10°.
Thercfore, we concentrated on sparse direct methods.

[t is known (Dhal74) that the triangular decomposition of diag-
onally dominant matrices with diagonal pivoting is numerically
stable. Moreover, a technique 7 is available that suppress the

cancellations when a;; < 0 and a;; > 0 for ¢ # j. The technique 1s
described in (Dow78).

For the problem (2) we obtain an optimal upper block-triangular
form for the matrix D using topological sorting (Gust76). Taking
advantage of this structure, it 1s only necessary to triangularize

the diagonal blocks D*. The technique 7 is directly applicable
to matrices D* and an algorithm without cancellations can be



obtained for solve the problem. Models for non-repairable systems
have usually acyclic digraphs. In this case the matrix obtained
after topological sorting is upper triangular and the sparse solution
to the problem is very efficient.

The technique 7 is not directly applicable to the matrix A, in (1).
Instead, we apply it to A, that satisfies the required properties, and
we obtain the triangular decomposition A = LU. Let A, = LU,
Considering how the triangularization is made it is easy to see that
L' = L and that U’ only differs from U in the column n. The last
column of U’ is evaluated by solving the triangular system that
results from comparing the columns n in A, = LU’ . After that,
we get vector p by forward elimination and backward substitution.
laking into account the structure of o,, the following algorithm
results:

1. Triangular decomposition of A

2. Evaluation on p of column n of U’

p1 — 1
for : =2 ton step 1 do
begin
Pi — 1 -3 i liip;
3. Forward elimination and backward substitu-
tion
Pn & I/Pn
for:=n-—1to1step —~1do
begin
Di & — E,‘H lji'Pj
end

Theorem  No cancellations ezist in the algorithm (5)

Proof The matriz A is diagonally dominant and vertfiesay;; < 0
and a;; > 0 for i # j. Then, using diagonal pivoting and the

technique T no cancellations occur in the step 1 of the algorithm
(Dow78). Moreover, it can be seen that l;; < 0. The absence of
cancellations in steps 2 and 3 follows from an analysis of the al-
gorithm.

The memory and time complexities of the sparse implementation of
the problems (1), (2) largely depend on the fill-in produced in the
c¢valuation of the LU decompositions. One well-known technique
used to reduce this fill-in is heuristic ordering of states (Tar76).
The matrix manipulations involved in this technique do not mod-
ify the properties of the matrix on which the methods are based.
An adaptation of the “minimum-degree” algorithm (Rose72) to
asymmetric matrices was selected to be used in a compact stor-
age scheme. This scheme only reserves space for the non-zeroes
clements in the triangular factors. The efficiency of the heuristic
can be estimated looking at Table 3. The fill-in factor F (ratio
between total number of non-zeroes after and before the triangu-
larization) increases with the digraph size but remains low even
for large sizes.

We note that the complexities of the algorithms that prepare the
sparse solution of the system are similar to those of the solution
itself. Topological sorting has been implemented in O(n,nd) time
and memory with an algorithm similar to the one presented in
(Gust76). Heuristic ordering, fill-in evaluation and secondary stor-
age construction have been implemented in O(n(Fd)?,nFdlogn)
time and O(n,nFd) memory.

3.4  Evaluation of the transient regime

Integration of systems (3), (4) can be carried out using several
methods: spectral analysis, randomization, numerical integration,
etc. Two factors were considered. First, sparseness was to be
exploited. Second, as discussed in 3.3, D may have a very high
stiffness ratio. Consideration of these two factors led us to select a
sparse implementation of a stiff numerical integration method. In
METFAC a well-known stifly-stable implicit integration method:
multiple-order, multiple-step Gear (Gear71) has been used. The
method requires the solution of linear systems whose matrices can
be proved to verify the same properties as D in problem (2). Then,
the method described in the previous section can be applied. This
eiminates cancellations in the evaluation of the LU decomposi-
tions. Cancellations are still possible in the forward elimination
and backward substitution steps, but, if important, they will be
detected and eliminated by changing locally the step or order of
the integration formula. We have found that only about 20 or 40
LU factorizations and 200 or 400 integration steps are usually nec-
essary to obtain the full transient regime with 6 or 7 significant
digits for transition matrices with stiffness ratios as high as 107,
This mmplies times for the evaluation of variable-dependent mea-
sures about 20 or 40 times greater that those required for constant
measures, when n is large. For very large digraphs (n ~ 1000)
the evaluation of variable-dependent measures may be quite slow.
In order to solve this problem a technique called state dissolution
has been developed and implemented. In this technique states
with low occupation probabilities are “dissolved” among their “fa-
thers”. Transition rates from fathers are modified so that sojourn
times in them after dissolution equal the average times since the
entry in the father to the exit from the pair father-dissolved state.
Also, indices in measures PE(t) and TC(t) (see Table 2) are mod-
ified. By respecting some rules, the measures in group 2 maintain
thetr limit values (e.g., AE for A(t)), and the measures in group
4 maintain their integrals (e.g., MTFF for R(t)). The technique
reduces the number of states and is applied using an algorithm
similar to the LU factorization with similar complexities. Then,
the savings in time are significant.

4 IMPLEMENTATION

METFAC is organized in tasks implementing different levels:
Model Specification, Transition Digraph (zeneration, Evaluation
Preparation and Evaluation. Communication among tasks is es-
tablished via files. The third level includes all the processing
preparing the sparse numerical algorithins executed in the Evalu-
ation level: state ordering, secondary storage pattern generation,
etc. The generative specification is given in a file. This has sev-
eral advantages: first, it allows the creation of a library of models;
second, small modifications to the model can be done with little
effort.

Special attention was paid to the use of low complexity algorithms

428

) T O e . . .
) : - FER - .. = . - om o R .
o e R T AT Ll . . .. . . . . . . B i .. " I SR A Ol
. - = T . - R o L . . . . - . . : .. e . e e e 1. A s i lEpa ! -
. . . . . - i ._ o T T e e TR A P, . e . Lo e . . - . . - _l..-\. A .:’..l_'\- P I s .-_._:.'. e s |”" n Fepme s et . _".;,:':n.'.lni PR L |'l"':'-l"+-'| _I_.__'i_-..l'-|-c_| ..:"._I. 3
. .. ' .. L T N . . . . - L . 4 R Tt e I A e g T ""..:"I- 4 R R T T Tt LR o PR I AP '_,,__.,.._"T' .l:l-'” N R Lt e Ll P e R e L it i b o g s T i 3 Mkl A R T e K
ot 1.*._.:. .T,.r. RIS T _.=.-:.. J_f.- Lt Wy e o LA T L '|.|: e .:'..".- T 2 _'- . g - T o . ’ etk il £ B Caraaib g 'r_"':_:_ g 5z I__' a ¥ ' Rl e A :._..,_'__._ Rl TR b e k-2 g TR ek VD | T 2 i e b T o et w8 = it e T ) Loty bl o . 3
et e, TR oS- A P - L i g ot KT ey o YT E L s R g 0 B T N = AT . it . - R R At A Ty R b R . s i
L TR :}-fﬂ:ﬁ-ﬂqﬁ“‘l—!b A o .Z'j' [ 5 H _‘f‘.i‘ __':"'_'!.'-"""'u' . Ly e = __;-'1'1 o by ""ﬂ Lo FE =i, et . . . h

RS
s




Table 3: Influence of the size of the transition digraphs in the processing
times.

n: number of states

d: average degree
F: fill-in factor

CPU times in seconds

-

Transition  Evaluation
n d F Digraph  Preparation Evaluation
Generation
7 2.857 1.250 0.49 0.43 0.68
24 4.041 1.784 0.80 0.68 0.78
53 4.415 2.291 2.19 1.50 0.97
94 4.585 2.842 5.43 3.47 1.32
147 4.680 3.188 12.1 6.57 1.82
249 4.763 3.829 | 32.6 15.7 3.05
479 4.835 4.775 118. 46.6 6.68
653 4.861 5.656 |  213. 88.8 11.0

in all levels. This was mandatory for the large size of the MPs
for which the tool was intended. The code was written in Fortran
77 and Pascal, and about 6000 lines were necessary for the whole
system.,

Table 3 shows CPU times in VAX 750 for a series of transition di-
graphs obtained using the generalized model presented in (Cif82).
The values for the evaluation level are for constant measures.

8 CONCLUSIONS

In this paper we have presented a tool for the modeling and evalu-
ation of complex fault-tolerant computing systems. These systems
require powerful specification methodologies. By choosing a high
abstraction level, simplicity and wide scope of application have

been obtained. Production rules have two advantages. First, they
are easily derived from the knowledge of the system to be mod-
eled; second, by tailoring their structure and using an embedded
high level language, powerful and natural syntax is achieved. This
is not only important to specify models for complex systems, but

also to introduce approximations.

Sparse solutions to numerical problems are mandatory to process
large size models. By taking advantage of the properties of the
matrices safe numerical methods have been implemented that are
efficient for medium and large size transition digraphs and can
deal with high stiffness ratios, usually encountered in the practice.
For the evaluation of constant measures, cancellations have been

eliminated.
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