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Abstract. We introduce a family of positive definite kernels specifically designed
for problems described by categorical information. The kernels are based on the
comparison of the probability mass function of the variables and have a clear inter-
pretation in terms of similarity computations between the modalities.

We report experimental results on two different problems in the life sciences
indicating that the proposed approach may markedly outperform standard kernels,
so it can be used as a good alternative to other common kernel functions (at least
for SVM classification) in order to obtain better accuracy.
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Introduction

Support Vector Machines (SVMs) are now standard kernel methods used for tasks such
as classification, regression and visualization [1]. When computational considerations are
put aside, perhaps the biggest limitation of these methods lies in the choice of a proper
kernel for a given problem. There is undoubtedly a growing interest in the introduction
of new and potentially useful kernels into the machine learning community. The kernel
function is a very flexible container under which to express knowledge about the problem
as well as to capture the meaningful relations in input space. Kernel methods involve
the use of positive semi-definite matrices as suitable data descriptors, providing a solid
framework in which to represent many types of data, as vectors in Rd , strings, trees,
graphs, and functional data, among others [2]. Surprisingly, there is a gap in the area
of kernel functions specifically devoted to handle datasets with qualitative variables. A
categorical variable can take some discrete and unordered values, which are commonly
known as modalities. While some symbolic values are naturally ordered, in many cases
no order should be defined, and the only meaningful relation is equality/non-equality.

We propose in this work a different approach grounded on the use of the probabilis-
tic structure of the data and introduce a new family of kernels especially designed for
categorical variables. We report experimental results on two different problems in the life

1Corresponding Author. E-mail: belanche@lsi.upc.edu



sciences that are naturally characterized by categorical predictors: the first one arises in
Microbiology, and the task is to identify the source of fecal pollution in waterbodies out
of a number of binary markers; the second one arises in Molecular Biology to classify
DNA sequences as corresponding to promoter or non-promoters.

This paper is organized as follows. A light introduction to kernels and categorical
information is provided in Section 1, followed by the definition of the categorical kernels
(Section 2). We then provide experimental results in Section 3 on a synthetic benchmark
as well as in two real-world classification tasks, which show that the proposed kernel im-
proves the performance of state-of-the art kernels. The paper ends with some additional
discussion and lines of current and future research.

1. Preliminaries

A kernel function implicitly defines a map φ : X →H from an input space of objects
X into some Hilbert space H (called the feature space). The “kernel trick” consists in
performing the mapping and the inner product simultaneously by defining its associated
kernel function [1]:

k(x,x′) =
〈
φ(x),φ(x′)

〉
H

, x,x′ ∈X , (1)

where 〈·, ·〉H denotes inner product in H . This way it is possible to perform compu-
tations (like distances or inner products) in H without using (or even knowing) the map-
ping function explicitly. Probably the simplest characterization for a symmetric function
k : X ×X → R being a kernel is via the matrix it generates on finite subsets:

Definition 1.1 (Positive semi-definite function). A symmetric function k is positive semi-
definite in X if for every N ∈ N, and every choice x1, . . . ,xN ∈X , the matrix KN×N =
(ki j), where ki j = k(xi,x j), is positive semi-definite (PSD).

Theorem 1.2 (Characterization of kernels). A symmetric function k : X ×X → R
admits the existence of a map φ : X → H such that H is a Hilbert space and
k(x,x′) = 〈φ(x),φ(x′)〉H if and only if k is a PSD symmetric function.

Let k be a kernel defined on the space of objects and consider a dataset D =
{x1, . . . ,xN}. All the information contained in D is represented as a symmetric positive
semi-definite kernel matrix KN×N = (ki j), where ki j = k(xi,x j).

For categorical variables, it is assumed that no partial order exists among the modal-
ities and the only possible comparison is equality. The basic similarity measure (which
is a valid kernel) for these variables is the overlap. Let xik,x jk be the modalities taken by
two examples xi,x j, then s(xik,x jk) = I{xik=x jk}, where

I{z} =
{

1 if z is true
0 if z is false

The similarity between two multivariate categorical vectors is then proportional to
the number of variables in which they match. The (multivariate) overlap kernel (also



known as the Dirac kernel) [1] for d-dimensional vectors of categorical descriptors can
be defined as:

Definition 1.3 (Overlap kernel k0).

k0(xi,x j) =
1
d

d

∑
i=1

I{xik=x jk}

Another kernel that can be used is the Gaussian Radial Basis Function (RBF) kernel,
known to be a safe default choice for kernel methods working on real vectors [3]:

kRBF(x,x′) = exp
(
−γ||x−x′||2

)
, (2)

where γ > 0 is the smoothing parameter, that has to be optimized as part of the
training of the classifier (see Section 3.1). In order to use this kernel, categorical variables
–say, with m modalities– are coded using a binary expansion representation (also known
as a 1-out-of-m code). This coding bears an important advantage, since it allows to use
distance-based kernel functions (because the coding is such that all distances between
different modalities are equal, and all distances between same modalities are 0). This
means, however, that all comparisons between two observations having the same number
of coincident values are constant. Note finally that both the Gaussian RBF (Eq. 2) and
the overlap/Dirac (Def. 1.3) kernels are known to be positive semi-definite [3].

2. Categorical Kernels

The overlap kernel in Def. 1.3 is mathematically valid but, given its simplicity, it may
not capture the non-trivial relations present in the data. However, it will be our starting
point to build a probabilistic version of it. In a nutshell, our idea is to express the intuition
that, if the modalities being compared coincide, then their similarity is higher the less
probable they are. On the other hand, if the modalities do not coincide, the similarity
remains zero. Let Z be a categorical variable with Probability Mass Function (PMF) PZ ,
and PZ(zi) the probability that Z takes the value zi. Define now the similarity function:

Definition 2.1 (Univariate kernel k(U)
1 ).

k(U)
1 (zi,z j) =

{
hα(PZ(zi)) if zi = z j

0 if zi 6= z j

When the values zi and z j coincide, we evaluate a new function hα(·) on the value
PZ(zi) (which is of course equal to PZ(z j)). In fact, the function k0 is a particular case of
k1, in which the function hα(·) always returns 1.

Thus, the equality between two values is a fact that is more or less important de-
pending on the probability PZ(zi): if PZ(zi) is relatively low, we are talking about an
unusual and possibly relevant event, because it is more difficult to find another similar
event z j. Conversely, if PZ(zi) is relatively high, we are in presence of a common event,
and therefore any coincidence has a certain lack of interest, inversely proportional to its
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Figure 1. The family of inverting functions hα (z) for different values of α .

probability. This way of thinking makes sense in many different scopes of human life.
For example, people catching a bad cold is a very common situation; if two people go to
the hospital with a common cold the same day, this is not a reason to raise alarms, and
is not enough to conclude that they are very similar, because everybody can catch a cold
(its relative incidence is high). On the other hand, if two people reach the hospital in the
same day having a really odd disease, this should become a relevant fact. This coinci-
dence tells us that these two persons are similar, or at least have something in common
(that caused them to develop the illness). We formulate the hypothesis that, if we have
a dataset in which the probabilistic structure is determinant for predicting the response
(class) variable, then the new family of kernels should perform better than others not
taking this information into account.

These arguments are encoded in the function hα , which should return a high value
when PZ(zi) is small, and a low value when it is large:

Definition 2.2 (Inverting function).

hα(z) = (1− zα)1/α , α > 0

The function hα(·) depends on the parameter α which determines its non-linear be-
haviour2. It is involutive, that is, hα(hα(z)) = z for all α > 0. It is concave for α ∈ (0,1]
and convex for α ∈ [1,∞). The reference behaviour corresponds to α = 1, in which
hα(z) = (1− z) –see Fig. 1. The range of the function hα(P(z)) is defined on the inter-

2This inverting family of functions is known as the Yager family of negations in fuzzy logic [4].



val (0,1), since the argument P(z) ∈ (0,1) 3 and α > 0. These different values for the
parameter α give rise to a family of kernel functions based on k1.

The k(U)
1 functions are univariate kernels, returning a value concerning a single cat-

egorical dimension. In consequence, to perform a multivariate comparison between the
d-dimensional data points xi and x j, we need to aggregate the univariate comparisons:

Definition 2.3 (Multivariate kernel k1).

k1(xi,x j) = exp

(
γ

d

d

∑
i=1

k(U)
1 (xik,x jk)

)
, γ > 0

Theorem 2.4. The kernel matrix generated by the multivariate kernel k1 in Def. (2.3) is
positive semi-definite (PSD).

PROOF. We shall prove a more general result. Let V a categorical variable and V =
{v1, . . . ,vm} the set of modalities of this variable. Let h : V → (0,1) any function; then
kh(x,x′) = h(x)I{x=x′}, x,x′ ∈ V is a kernel in V .

Indeed, for any v ∈ V , define φ : V −→ [0,1)m as v→ φ(v) = (0, . . . ,
√

h(v), . . . ,0)
of length m, with the non-zero value at position i when v = vi. Then

kh(x,x′) =
m

∑
i=1

φi(x)φi(x′)

and therefore kh is a kernel in V . The proof is completed by noting that the sum of a
number of kernels is a kernel, multiplication by a positive factor

γ

d
keeps the PSD prop-

erty, and the exponential of a kernel is also a kernel. �
Note that there is a close analogy between this categorical kernel and the Gaussian

RBF kernel, both being the exponential of the sum of partial (univariate) kernels. An
important difference between the Gaussian RBF and the categorical kernel lies in the
fact that the latter has a compact support, which means that it can be actually equal to 0,
resulting in important computational gains.

3. Experiments

We now turn to the experimental section. We analyse first a synthetic problem
(oneMonks) to show that the three kernels considered in the comparison (k0, k1 and the
RBF kernel with coded categories) behave properly for categorical data from the learning
point of view. We then tackle two real problems in the life sciences. The first one arises
in Microbiology, where it is known as the microbial source tracking problem. The task is
to identify the source of fecal pollution in waterbodies using a number of binary markers.
The second problem arises in Molecular Biology and consists in building a predictive
model to classify DNA sequences as corresponding to promoter or non-promoters. Both

3Without loss of generality, we assume that P(z)∈ (0,1) excluding the values {0,1}, because P(z) = 0 would
represent an impossible event, and P(z) = 1 a systematic one (with no randomness).



datasets are characterized by a very low number of samples, which makes overfitting
avoidance a delicate undertaking, and probably demands the most of the learning algo-
rithms and their ability to capture the non-trivial and true relations present in the training
data. These two problems are naturally formulated as supervised classification problems
that can be solved by SVMs.

3.1. Experimental Setup

All the experiments were developed using the freely available R programming language
[5]. We selected the kernlab package because it offers additional flexibility to accept
user-defined kernel functions and works directly with kernel matrices. We have devel-
oped efficient code for the computation of the kernel matrices introduced in this work.

For the oneMonks problem, we setup different configurations for training, testing
and validation, described below. For the two real problems, the datasets are randomly
split taking 2/3 of the data for training and the remaining for testing (these partitions
are taken preserving the class proportions). For each experiment, all kernel parameters
and the cost (soft-margin) parameter of the SVM were optimized over a grid of pos-
sible choices on the training set only, to maximize the mean accuracy over an internal
ten-fold cross-validation (10cv). After that, we refit the model on the whole training set
but using the optimized parameters. The results shown correspond to the performance
of these SVMs on the heldout test sets. This training/test splitting process was repeated
40 times. It should be noted that, with the standard kernel functions, the resulting kernel
matrix does not depend on the training/testing data partitions, because the kernel defi-
nition k(x,y) only involves the values x and y. However, the calculation of the new ker-
nels k1 require the knowledge of the PMF for each variable in the dataset. This PMF is
estimated using only the training data, because this knowledge influences the resulting
kernel matrix and the final performance. Actually, the PMFs are estimated anew for each
10cv fold to make it a honest resampling experiment.

3.2. A Synthetic Problem: the oneMonks

This problem is classic in benchmark classification problems [6]. In its original version,
three independent problems are applied to 6 symbolic variables (taking values as “1”,
“2”, etc). Here we have grouped the three problems into a single one, as follows:

• P1 : (x1 = x2)∨ x5 = 1
• P2 : two or more xi = 1 in x1, . . . ,x6
• P3 : (x5 = 3∧ x4 = 1)∨ (x5 6= 3∧ x2 6= 2)

In our oneMonks problem, the boolean condition P2∧¬(P1∧P3) is then checked. If
it is satisfied the class of the observation is 1; otherwise, it is 0. We define four configura-
tions by modifying a set of parameters in order to obtain the corresponding dataset –see
Table 1 for a summary. The first three columns define the sample sizes used for training,
validation and test. The next two columns concern the parameters of the kernels. The last
column details the values tested for the cost (soft-margin) C parameter of the SVMs.

Fig. 2 is a summary of the results grouped by the different configurations (A1, B1,

C1, D1) and kernel type (k0, k1 and RBF). The plots show the full distribution of classi-
fication results for the different kernel variants, in the form of a boxplot, as well as a sum-



Table 1. Configurations for the oneMonks experiments; (a : b) denotes all integers c such that a≤ c≤ b.

Train Val. Test γ α C

A1 20 10 500

2(−3:2)
{0.1, 0.2, 0.3,
0.5, 0.7, 0.9, 1,
1.5}

10(−1:2)B1 40 20 500
C1 80 40 800
D1 240 120 800
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Figure 2. Test error distributions on the oneMonks problems. Bottom right plot is a summary of mean results
across configurations.

mary plot of the mean accuracy across the configurations. We can observe how, for all
kernels, the testing error is decreased and is also less dispersed as the training set size is
increased, as one could reasonably expect. The results also express how the new kernels
slightly outperform the standard RBF in mean accuracy across all configurations. Con-
sidering the mean error, in experiment A1 k0 obtains 0.287, k1 0.281 and the RBF 0.323.
In all configurations, these relative positions are kept, widening a little bit in the more
informed experiment D1, where k0 obtains 0.0505, k1 0.0401 and the RBF 0.0852. If we
consider the standard deviation of the errors, both k0 and k1 show less dispersion (thus
more stability) than the RBF kernel (0.0157 for k0 and 0.0169 for k1, against 0.0220 for
the RBF kernel in configuration D1). Similar results are found in the other configurations.



3.3. Application to the Microbial Source Tracking Problem

The study of fecal source pollution in waterbodies is a major problem in ensuring the
welfare of human populations, given its incidence in a variety of diseases, specially in
under-developed countries. Microbial source tracking methods attempt to identify the
source of contamination, allowing for improved risk analysis and better water manage-
ment [7]. The available data includes a number of chemical, microbial, and eukaryotic
markers of fecal pollution in water. All variables (except the class) are binary, i.e., they
signal the presence or absence of a particular marker. The data set includes 9 binary vari-
ables, 138 observations and four classes, with 212 missing entries out of 1,242 (approx-
imately 17%). All variables have percentages of missing entries greater than 15%.

There are many proposals for modelling with missing values (see e.g. [8]). The in-
terest in the present work lies in the probabilistic information that their distribution may
bear. Therefore, in order to cope with the missing values a simple yet interesting ap-
proach is to treat them as a further modality. If the presence of a missing value says some-
thing about the class of the observation (because there is a pattern of missingness), then
there is a possibility that models show increased predictive performance. We therefore
model the predictors as categorical variables with three modalities: positive, negative and
missing (hence there are no true missing values in the data). At the very worst, the use
of the full dataset (with the information supplied by the 138 observations), will enable to
draw more significant results due to the increased sample size. It is worth to recall that
the data set is quite small, taking into account that we deal with a four-class problem.
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Figure 3. Test error distributions on the microbial source tracking problem.

The results are summarized in Fig. 3. The kernels k0 and k1 are quite similar in ac-
curacy (the median values are actually equal) and both are better than the RBF kernel.
However, the k1 kernel is preferable to k0. This is apparent in the first quartile of the
distribution of test errors (which is lower for k1, thus showing a better downwards ten-



dency); moreover, the distribution of test errors for k1 is more stable (standard deviation
of 0.0517 against 0.0579 for k1 and 0.0747 for the RBF kernel).

A recent study using this same data set investigated the development of predictive
models using all the available data and categorical predictors (exactly as in this paper)
and also using the complete data only (78 observations out of 138, thus loosing 43%
of the dataset) [9]. The best result was achieved by a Naı̈ve Bayes classifier, yielding a
leave-one-out (and probably optimistic) prediction error of 22.1% with the categorical
variables. Our results are 21.7% for the SVM with the k0 kernel and 20.7% for the SVM
with the k1 kernel. Using the complete data only, the best result was achieved by a LDA
classifier, yielding a leave-one-out prediction error of 20.5%.

3.4. Application to the Promoter Gene Problem

The PromoterGene dataset contains DNA sequences of promoter and non-promoters,
which it is available from the UCI repository [10]. Transcription factors are the proteins
that mediate transcriptional regulation and bind to specific short DNA sequences called
binding sites (BS). These BSs are mainly located in a region upstream to the regulated
gene, called a promoter. Promoters have a region where a protein (RNA polymerase)
must make contact and their helical DNA sequence must have a valid conformation so
that the two pieces of the contact region spatially align. The dataset consists of 106
observations and 57 categorical variables describing the DNA sequence, represented as
the nucleotide at each position: [A] adenine, [C] cytosine, [G] guanine, [T] thymine. The
response is a binary class: “+” for a promoter gene and “−” for a non-promoter gene.
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Figure 4. Test error distributions on the PromoterGene problem.

The results are summarized in Fig. 4. The performance of k0 and k1 clearly outper-
form the one obtained by the RBF kernel. In fact, the plot presents strong evidence that
k1 (with a mean test error of 0.0382) solves this problem markedly better than both the
RBF kernel (0.2125) or k0 (0.0618). Additionally, the kernel k1 also shows a lower dis-
persion than all other kernels, having a standard deviation of 0.0299, while the RBF has
0.1119 and k0 has 0.0364.



This is a problem for which there is a probalistic structure linked to motifs. The
protein structure of the binding region of a transcription factor dictates the length and
the base composition of the sequences it can bind. The BS sequence pattern is called a
motif. A common way of representing a motif is by aligning the BS sequences and then
building a profile matrix, which holds the frequencies of each nucleotide at each position.

4. Conclusions

This paper has dealt with the development of new kernels for categorical variables. The
results confirm the relevance of probabilistic information for the problem of learning
with categorical predictors, that motivated this work. Specifically, we note that on the
Promoter Gene problem (the one for which the assumption of a probabilistic structure
seems more tenable), the categorical kernel outperforms the others by a wider margin,
confirming the competitiveness of our method. This means, first, that there is an infor-
mation that is not used by any of k0 or the RBF kernel and second, that there are ways of
profiting this information. In particular, where the results (mean errors and their variance)
in standard kernels are already good, k1 improves a little with respect to k0, and both of
them outperform the RBF kernel. The poor performance exhibited by the latter kernel
may be explained in that it easily overfits the small-sample data in the high-dimensional
representation where it works. Where the results have still margin of improvement (as in
the PromoterGene dataset), then the benefit of using k1 is higher.

Our aim is to develop kernel functions for categorical variables that admit an inter-
pretation in terms of a similarity, that are provably valid kernels, capture some intuitive
semantics and extract non-trivial information from the data (in the sense that are not re-
duced to equality comparisons). Future work will consider problems characterized by
mixtures of continuous and categorical variables, even with different sets and numbers of
modalities (given our construction of the kernel, this is quite straightforward), and devise
truly multivariate kernels (not build by simply aggregating the univariate comparisons)
that are able to capture higher-order relations.
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