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Abstract We provide a comprehensible introduction to RSA-related problems in flexgrid networks. 
Starting from its formulation, we analyze network live cycle and indicate different solving methods for 
the kind of problems that arise at each network phase: from the initial network planning to network re-
optimization, going through network operation. 

Introduction 
Flexgrid optical networks 1 are attracting huge 
interest due to their higher spectrum efficiency 
and flexibility compared to wavelength switched 
optical networks (WSON). To properly analyze, 
design, plan, and operate flexgrid networks, 
efficient methods are required for the routing 
and spectrum allocation (RSA) problem. 
The RSA problem is similar to the routing and 
wavelength assignment (RWA) problem in 
WSON. The allocated spectral resources must 
be, in absence of spectrum converters, the 
same along the links in the route (the continuity 
constraint). However, the RSA problem adds 
new constraints to guarantee that spectrum is 
also contiguous in the spectrum (the contiguity 
constraint). The contiguity constraint adds huge 
complexity to the RSA problem, which was 
proved to be NP-complete in 2; as a 
consequence, it is crucial that efficient methods 
are available to allow solving realistic problem 
instances in practical times. 
In this paper, we review different RSA-related 
optimization problems that arise along the live 
cycle of flexgrid networks. Different methods to 
solve those optimization problems are reviewed 
along with the different requirements where 
those problems need to be solved. 
RSA-related problems 
In the context of flexgrid optical networks, the 
majority of optimization problems are extensions 
of the basic RSA problem. An example of 
optimization problem involving the RSA problem 
is the typical network planning problem, which 
can be stated as: 
Given: i) a set N of locations and a set of optical 
fibers E connecting those locations; ii) the 
characteristics of the optical spectrum (i.e., 
spectrum width, frequency slot width) and the 
set of modulation formats; iii) a traffic matrix D 
with the amount of bitrate exchanged between 
each pair of locations in N; iv) the cost of every 
component, such as optical cross-connects 
(OXC) and transponder (TP) types specifying its 
capacity and reach. 

Output: i) Network dimensioning including the 
type of OXC and TPs in each location; ii) the 
route and spectrum allocation for each demand 
in D. 
Objective: Minimize the total cost to transport 
the given traffic matrix. 
Those problems can be formulated using mixed 
integer linear program (MILP). Several ways to 
model the same problem usually exists, being 
some of them more preferable than others. In 
that regard, we showed in 3 that the use of a 
pre-computed set of channels (i.e. contiguous 
spectrum fractions) allows considerably 
reducing the problem complexity. In that study, 
we addressed a RSA problem in which enough 
spectrum needed to be allocated for each 
demand of a given traffic matrix and presented 
novel MILP formulations of RSA based on the 
assignment of channels. The evaluation results 
revealed that the proposed approach allows 
solving the RSA problem much more efficiently 
than previously proposed ILP-based methods 
and it can be applied even for realistic problem 
instances, contrary to previous ILP formulations. 
Solving RSA-related problems 
MILP formulations can be solved to optimality 
using commercial solvers. Notwithstanding, due 
to the NP-completeness of the RSA problem, 
un-tractability of MILP formulations appears 
when instances to be solved involve a large 
number of variables (e.g. large size of sets N, E 
and D in the above problem). 
Since the size of the problems can be really 
large, solving MILPs might entail problems with 
literally thousands of millions of (integer or 
binary) variables. To deal with this complexity, 
large scale optimization (LSO) methods can be 
used. The objective of LSO methods is to 
improve the exact methodology based on 
classical Branch & Bound (B&B) algorithm for 
solving MILP formulations.  
Among different methods, decomposition 
methods such as column generation (CG) and 
Benders decomposition have been successfully 
used for solving communications network design 
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problems. Detailed algorithms for decomposition 
and other methods can be found in 4. 
CG consists in using a small set of variables 
(columns) to solve the linear relaxation of the 
MILP formulation. Then, according to the dual 
variables obtained after solving linear relaxation, 
an algorithm runs looking for new variables 
suitable to improve the current solution. At each 
iteration, the problem is solved adding those 
new variables until the iterative algorithm ends 
when no more variables are found. In the 
context of networks variables are mainly paths 
so this technique is also known as path 
generation; search for new variables to add can 
be roughly defined as a secondary problem 
(pricing problem) consisting in finding paths in a 
network whose costs depend on dual variables 
values. Note that CG does not ensure integer 
optimal solutions, however it can be combined 
with the B&B algorithm so CG is applied inside 
each tree node to create the Branch & Price 
algorithm. 
Benders decomposition method is an iterative 
procedure based on projecting out a subset of 
variables from the original problem with the 
whole set of variables and creating new 
constraints from the projected ones. In contrast 
with previous decomposition method, this 
methodology adds inequalities to the linear 
formulation to solve, thus strengthening lower 
bounds and speeding up the convergence to 
integer optimal solutions. Similar to this strategy, 
the combination of B&B with other methods to 
generate inequalities or cuts, such as cutting 
plane, derives into the Branch & Cut algorithm. 
Nonetheless, when the time to find a solution is 
critical, which happens when the network is in 
operation, a better trade-off between solutions’ 
quality and time-to-compute can be obtained by 
relaxing optimality condition to find near optimal 
solutions much more quickly. 
In that regard, heuristic algorithms are the way 
to produce sub-optimal feasible solutions. In 
particular, metaheuristics (high-level strategies) 
guide a problem specific heuristic, to increase 
their performance avoiding the disadvantages of 
iterative improvement allowing escaping from 
local optima. Although a large variety of meta-
heuristic methods have appeared in the 
literature, in this paper we restrict ourselves to 
describe only two: the greedy randomized 
adaptive search procedure (GRASP)5 and the 
biased random-key genetic algorithm (BRKGA)6. 
The GRASP procedure is an iterative two phase 
metaheuristic method based on a multi-start 
randomized search technique. In the first phase, 
a greedy randomized feasible solution of the 
problem is generated through a construction 
algorithm. Then, in the second phase, a local 

search technique to explore an appropriately 
defined neighborhood is applied in an attempt to 
improve the current solution. These two phases 
are repeated until a stopping criterion (e.g., a 
number of iterations) is met, and once the 
procedure finishes the best solution found over 
all GRASP iterations is returned. In addition to 
local search, path-relinking (PR) can be used as 
an intensification strategy that explores 
trajectories connecting GRASP solutions. It 
starts at a so-called initiating solution and moves 
towards a so-called guiding solution. To ensure 
that PR is only applied among high-quality 
solutions, a set ES must be both maintained and 
cleverly managed during all GRASP iterations. 
With the attribute high-quality we are not only 
referring to their cost function value but also to 
the diversity they add to ES. GRASP+PR have 
been successfully used in many applications 
including flexgrid network defragmentation 7. 
The BRKGA metaheuristic, a class of GA, has 
been recently proposed to effectively solve 
RSA-related optimization problems 8. Compared 
to other meta-heuristics, BRKGA has provided 
better solutions in shorter running times. As in 
GAs, each individual solution is represented by 
an array of n genes (chromosome), and each 
gene can take any value in the real interval [0,1]. 
Each chromosome encodes a solution of the 
problem and a fitness value, i.e., the value of the 
objective function. A set of individuals, called a 
population, evolves over a number of 
generations. At each generation, individuals of 
the current generation are selected to mate and 
produce offspring, making up the next 
generation. In BRKGA, individuals of the 
population are classified into two sets: the elite 
set with those individuals with the best fitness 
values and non-elite set. Elite individuals are 
copied unchanged from one generation to the 
next, thus keeping track of good solutions. The 
majority of new individuals are generated by 
combining two elements, one elite and another 
non-elite, selected at random (crossover). An 
inheritance probability is defined as the 
probability that an offspring inherits the gene of 
its elite parent. Finally, to escape from local 
optima a small number of mutant individuals 
(randomly-generated) to complete a population 
are introduced at each generation. A 
deterministic algorithm, named decoder, 
transforms any input chromosome into a 
feasible solution of the optimization problem and 
computes its fitness value. In the BRKGA 
framework, the only problem-dependent parts 
are the chromosome internal structure and the 
decoder, and thus, one only needs to define 
them to completely specify a BRKGA heuristic. 
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Fig. 1. Three phases of flexgrid network live cycle. 
Optimization within the network live cycle 
Different optimization problem arise during the 
live cycle of telecom networks. The classic 
telecom network life-cycle consists of two main 
phases: i) before operation, the network is 
designed and dimensioned during the planning 
phase; ii) network operation where the network 
is in service. However, dynamic connection set-
up and teardown entails suboptimal resources 
utilization. Thus, a new phase, named re-
optimization, is needed. Fig. 1 presents the 
entire flexgrid network live cycle. 
As introduced above, LSO methods are oriented 
to solve MILP formulations when the number of 
variables is very large (e.g. millions of 
variables). In network planning problems, it is 
easy to find real huge size instances. Indeed, 
the complexity of solving RSA for a static 
demand matrix increases rapidly when other 
features such as, for example, network topology 
design, protection against failures, or multi-hour 
traffic variations are considered. Although the 
majority of complex network planning problems 
are finally solved by means of a heuristic 
method, the benefits provided by obtaining the 
optimal solution instead of just sub-optimal ones 
backs the application of LSO. 
Once the network is in operation a control plane 
base on the PCE architecture presented in Fig. 
2 can be used for connection provisioning and 
network re-optimization. Requests arrive to the 
front-end PCE which are computed running one 
of the algorithms locally deployed. To solve the 
RSA problem for just one connection, exact 
algorithms that are able to provide an optimal 
solution in real-time can be used; see e.g. 7. 
In the case of bulk RSA computation, the RSA 
problem need to be solved for a limited number 
of connections, e.g. after a link has failed 
restoration routes need to be computed for the 
set of optical connections affected. In this 
scenario, computation times need to be kept as 
short as possible, e.g. hundreds of milliseconds 
are preferred to several seconds. In such cases, 
GRASP heuristics can be devised to provide 
good solutions in really short times 9. 
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Fig. 2. Front and back-end PCEs for network 
operation and re-optimization. 
Finally, re-optimization problems need to be 
solved triggered by some condition (e.g., 
provisioning blocking, network performance 
reaches a threshold or new available resources 
appear after a failure repair). In this re-
optimization scenario, the problem size can be 
small but also as large as those for network 
planning. 
When the problem is related to provisioning, 
ultra-fast heuristics such as those in 7,9 can be 
applied. However, when the temporal 
requirements to solve those re-optimization 
problems can be relaxed to tens of minutes, 
LSO methods can be used to find good-quality 
solutions. Re-optimization algorithms can be run 
in specialized PCEs in the back-end, and are 
called by the front-end PCE upon some network 
condition arises. 
Conclusions 
Several RSA-related optimization problems that 
arise along the live cycle of flexgrid networks 
have been introduced. To solve them several 
methods have been reviewed which can be 
used as a function of the requirements where 
those problems need to be solved. 
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