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and Alfredo Vellido 1 ∗
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Abstract. In this paper, we describe a novel kernel for multinomial
distributions, namely the Quotient Basis Kernel (QBK), which is based
on a suitable reparametrization of the input space through algebraic ge-
ometry and statistics. The QBK is used here for data transformation
prior to classification in a medical problem concerning the prediction of
mortality in patients suffering severe sepsis. This is a common clinical syn-
drome, often treated at the Intensive Care Unit (ICU) in a time-critical
context. Mortality prediction results with Support Vector Machines using
QBK compare favorably with those obtained using alternative kernels and
standard clinical procedures.

1 Introduction

In this brief paper, we summarily describe a novel kernel for multinomial dis-
tributions, based on a suitable reparametrization of the input space through
algebraic geometry and statistics. This kernel, named Quotient Basis Kernel
(QBK), is the result of calculating the covariance of the design matrix of a
Gröbner basis of the data. It has been shown that such a representation is very
closely related to graphical models [1] in such a way that these kernels could
be considered as open-box methods and thus comply with model interpretabil-
ity requirements [2]. The downside is that the calculation of Gröbner bases is
computationally costly.

The so-called QBK is applied here to data transformation prior to classifi-
cation in a medical problem concerning the prediction of mortality in patients
suffering severe sepsis. Sepsis is a common clinical syndrome, defined by the pres-
ence of both infection and Systemic Inflammatory Response Syndrome (SIRS).
The acute stages of this condition are severe sepsis, which implies organ dys-
function, and the more severe septic shock and multiorganic failure [3, 4]. The
mortality rates of sepsis are very high, ranging from 12.8% for sepsis to 45.7%
for septic shock [5].

Severe sepsis is often treated at the ICU, which is a critical care environment.
This is a time-critical context in which decision-making follows very specific
protocols on the basis of well-defined quantitative indices. The definition of
quantitative approaches to mortality prediction due to severe sepsis at the ICU is

∗This research is partially funded by Spanish research project TIN2012-31377.

379

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.



therefore a relevant research problem. This clinical environment further demands
methods that are robust and straightforward to apply within its constraints.

Using soft-margin Support Vector Machines (SVM), the performance of the
proposed QBK method in the prediction of mortality due to severe sepsis is
compared to that obtained with a number of alternative generative kernels. It
is also compared to a standard method currently used in clinical practice that
is based on the basal APACHE II score [6] (i.e. through the automatic selection
of a threshold). It is shown that the mortality prediction results using QBK
compare favorably with those of the alternative methods.

2 Methods

2.1 Gröbner Basis

A Gröbner basis G is a subset of an ideal I in a polynomial ring R. For a system
of polynomials P , G is an equivalence system that presents very useful properties.
For example, any polynomial f is a combination of those in P iff the remainder
of f with respect to G is 0 (i.e., the Gröbner basis is a sub-set generating the
ideal I(P )). Here, the division algorithm requires an order of certain type on
the monomials [7]. Moreover, the set of polynomials in a Gröbner basis has the
same collection of roots as the original polynomials. This is particularly useful
for the problem at hand since a set of points A can be considered as the set of
solutions of the system of polynomials P . The definition of the Gröbner basis
and some useful results for the definition of the QBK are given in the following.

Definition 1 [7] Term Ordering: A term-ordering on R is an ordering relation
�τ (or τ or �) on the terms of R satisfying

1. xα � 1 ∀xα with α �= 0 and

2. ∀α, β, γ ∈ Z+ such that xα � xβ, then xαxγ � xβxγ

Definition 2 [7] Let τ be a term ordering on R and f a polynomial in R. The
leading term of f , LTτ (f) is the largest term with respect to τ among the terms
in f .

Definition 3 Ideal generated by a set of polynomials: The ideal generated by a
set of polynomials F is the smallest ideal containing F . It is denoted 〈F 〉.
Definition 4 [7] Gröbner Basis: Let τ be a term ordering on R. A subset
G = g1, . . . , gt of an ideal I is a Gröbner basis of I with respect to τ iff

〈LTτ (g1), . . . ,LTτ (gt)〉 = 〈LTτ (I)〉 (1)

where LTτ (I) = {LTτ (f) : f ∈ I}.
Theorem 1 [7, 8] Given a term ordering, every ideal I except {0} has a Gröbner
basis and any Gröbner basis is a basis of I.
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Definition 5 [7] Ideal of a set of support points: Let A be a set of unique support
points A = {a1, . . . , an}. The set I(A) is the set of all polynomials whose zeros
include the points in A.

Definition 6 Gröbner basis of unique points [7, 8]: Let A be a set of n unique
points A = {a1, . . . , an} and τ a term ordering. A Gröbner basis of A, G =
g1, . . . , gt, is a Gröbner basis of I(A). Therefore, the points in A can be presented
as the set of solutions of ⎧⎪⎪⎨

⎪⎪⎩

g1(a) = 0
g2(a) = 0

· · ·
gt(a) = 0

(2)

2.2 Quotient Basis Kernel

Let us formally define the Quotient Basis ESTτ that shall be used in this short
paper to define the QBK.

Definition 7 [7] Quotient Basis:
Let A be a set of unique support points A = {a1, . . . , an} and τ a term

ordering. A monomial basis of the set of polynomial functions over A is

ESTτ = {xα : xα /∈ 〈LT(g) : g ∈ I(A)〉} (3)

As a consequence, ESTτ comprises the elements xα that are not divisible by
any of the leading terms LT(g) of the elements of the Gröbner basis of I(A).

Theorem 2 [7] The set ESTτ has as many elements as there are support points.

Definition 8 Design Matrix
Let τ be a term ordering and let us consider an ordering over the support

points A = {a1, . . . , an}. We call design matrix (i.e. ESTτ evaluated in A) the
following n× c matrix

Z = [ESTτ ]
∣∣
A

(4)

where c is the cardinality of ESTτ and n is the number of support points.

Theorem 3 [7] Matrix Z is non-singular, and its covariance is a kernel.

Definition 9 Quotient Basis Kernel (QBK): The covariance of the design ma-
trix of the quotient basis ESTτ of a a set of unique support points A = {a1, . . . , an},

cov(Z) = E (Z − E(Z))(Z − E(Z))
t
,

which is a kernel, is the QBK.
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3 Results

3.1 Dataset description

This work resorts to a prospective observational cohort study of adult patients
with severe sepsis. The study was conducted at the Critical Care Department
of the Vall d’Hebron University Hospital (One of the main metropolitan hospi-
tals in Barcelona, Spain), and was approved by the Research Ethics Committee
of the Hospital. The resulting database includes data from 354 patients with
severe sepsis, collected at the Vall d’Hebron ICU. Mortality for this popula-
tion was 26.34%. In this study mortality was assessed through the following
variables: numbers of dysfunctional organs (3.18 ± 1.32), presence of mechani-
cal ventilation (66.71% of patients), severity measured through the APACHE II
score (23.03± 9.62) and the Surviving Sepsis Campaign Resuscitation Bundles
(i.e. adminstration of antibiotics with haemocultures in the first 6h of evolution,
31.41 % of the population [9, 10]).

3.2 Risk-of-Death Assessment with the APACHE II Mortality Score

The Risk-of-Death (ROD) formula based on the APACHE II score is a standard
method in use in the critical care field. It can be expressed as [6]:

ln

(
ROD

1− ROD

)
= −3.517 + 0.146 · A+ ε, (5)

where A is the APACHE II score and ε is a correction factor that depends on
clinical traits at admission in the ICU. For instance, if the patient has undergone
post-emergency surgery, ε is set to 0.613.

The application of this formula with a threshold of γ = −0.25 to the popu-
lation under study yielded a classification error rate of 0.28, a specificity (true
negative cases ratio, where a true negative is a patient correctly classified as
not being at ROD) of 0.82 and a sensitivity (true positive cases ratio, where
a true positive is a patient correctly classified as being at ROD) of 0.55. The
corresponding area under the ROC curve (AUC) was 0.70.

3.3 Mortality Prediction with the Quotient Basis Kernel

The performance of the QBK was tested against other generative kernels, in-
cluding the exponential, centred and inverse kernels described in [11]. For the
sake of comparison, other well established kernels (linear, polynomial and Gaus-
sian) were also tested. In order to improve the computation time for all kernels,
the input data was first transformed into decile ranges. The QBK is calculated
by taking the covariance after transforming the input data points with ESTτ .
At this stage, it is important to note that the QBK accounts for all the in-
teractions between the different input variables, which means that the 4 input
variables are conditionally dependent [12] and that they can be represented with
a fully connected graph. This interpretation is consistent with standard clinical
practice.
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The classification for all kernels was implemented using Matlab’s Support
Vector Machine QP solver from the Bioinformatics and Optimization Toolboxes.
A grid search yielded that the most appropriate value for C parameter of the
SVM was 10 for each kernel. A 10-fold cross-validation was used to obtain the
classifiers, which were evaluated over a test dataset. The latter was obtained by
random sampling 10% of the initial data before cross-validation.

The results summarized in Table 1 show that the QBK consistently produced
the best outcome in terms of accuracy, specificity and AUC (which, in a way,
summarizes sensitivity and specificity). The resulting sensitivity is comparable
to the best results of alternative methods. It is also apparent that for this
particular study, there are no major differences of performance between the other
generative kernels (exponential, centred and inverse). The exponential and the
centred kernels have the same accuracy as the Gaussian and polynomial. The
latter, however, present slightly better sensitivities (i.e. 0.66 vs 0.65).

Despite the fact that the accuracy and specificity obtained with the APACHE
II score are similar to those obtained with some of the kernels evaluated, the
corresponding sensitivity is quite low. This poor sensitivity may be the result of
the APACHE II score including non-sepsis specific clinical traits (for example,
the performance of haemocultures, antibiotic administration or vasoactive drug
administration).

4 Conclusion

The SVM classifiers in the reported experiments were trained with the trans-
formed data resulting from the use of seven different kernels, out of which four
were generative, while the rest were considered to be well-suited to the problem
at hand. The investigated kernels provided accurate and medically actionable
results, whilst keeping an acceptable balance between the different parameters
of interest (accuracy rate, sensitivity and specificity).

The new kernel proposed in this paper, the QBK, is defined through the
Gröbner basis of an algebraic ideal. It has been shown to outperform not only the
alternative kernels, but also the clinical standard method based on the APACHE
II score in the problem of mortality prediction for septic patients. In fact, all
kernels outperform the standard APACHE II ROD formula in terms of accuracy,
The QBK being the best according to all the criteria: accuracy, sensitivity and
specificity.

Even though the QBK yields the best results, a word of caution must be
given regarding its computation time. For high-dimensional datasets or very big
input matrices (which is not the case of the analyzed data), the calculation of
a Gröbner basis can be very time-consuming, even though the computational
efficiency of the algorithms to calculate these bases has improved significantly
over the last years.
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Kernel AUC Error Rate Sens. Spec.

Quotient 0.89 0.18 0.70 0.86

Exponential 0.75 0.21 0.70 0.82

Inverse 0.62 0.22 0.70 0.82

Centred 0.75 0.21 0.70 0.82

Gaussian 0.83 0.24 0.65 0.81

Poly (order 2) 0.69 0.28 0.71 0.76

Linear 0.62 0.26 0.62 0.78

Apache II 0.70 0.28 0.55 0.82

Table 1: Results for SVM with diverse kernels and for the ROD formula based
on the APACHE II score.
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rubia, A. Algora, A. Bustos, G. Garćıa, I. Rodŕıguez, Ruiz. R, Sepsis incidence and out-
come: contrasting the intensive care unit with the hospital ward, Critical Care Medicine,
35(5):1284-1289, LWW, 2007.

[6] W.A. Knaus, E.A. Draper, D.P. Wagner, J.E. Zimmerman, APACHE II: A severity of
disease classification system, Critical Care Medicine 13: 818-829, LWW, 1985.

[7] G. Pistone, E. Riccomagno, H.P. Wynn, Algebraic Statistics: Computational Commuta-
tive Algebra in Statistics, Chapman and Hall CRC, 2001.
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