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Abstract

We introduce here a family of mixed coalitional values. Theyextend the binomial semi-
values to games endowed with a coalition structure, satisfythe property of symmetry in
the quotient game and the quotient game property, generalize the symmetric coalitional
Banzhaf value introduced by Alonso and Fiestras and link andmerge the Shapley value
and the binomial semivalues. A computational procedure in terms of the multilinear ex-
tension of the original game is also provided and an application to political science is
sketched.
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1 Introduction

The parallel axiomatic characterization stated by Feltkamp [28] shows that the only difference
between the Shapley value (Shapley [50]) and the Banzhaf value (Owen [40]), as allocation
rules for all cooperative games, is that the former satisfiesefficiency whereas the latter satis-
fies the total power property. Differences of this kind become important when one is facing
a group decision and negotiation problem and wishes to choose a suitable allocation rule for
solving the problem. The properties of a value should alwaysbe a main argument for either
selecting it or rejecting it in each particular case.

In the framework of cooperative games with a coalition structure, other essential differ-
ences also arise between the Owen value (Owen [41]) and the modified Banzhaf value or
Owen–Banzhaf value (Owen [43]). The Owen–Banzhaf value fails to satisfy the property of
symmetry in the quotient game and the quotient game property, which are satisfied by the
Owen value.
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Alonso and Fiestras [4] suggested a modification of the Owen–Banzhaf value that satisfies
these two properties and can therefore be compared with the Owen value in terms analogous
to Feltkamp [28]. Our aim here is to introduce the notion of coalitional binomial semivalue as
a wide generalization of the Alonso–Fiestras value (essentially: p∈ [0,1] instead ofp= 1/2)
in order to get the family ofsymmetric coalitional binomial semivaluesthat still satisfy the
property of symmetry in the quotient game and the quotient game property, so that they differ
from the Owen value just in satisfying a total power propertyinstead of efficiency. These new
values are especially suited for the study of cooperative games where the players show some
(common) tendency as to the size of the coalitions they wouldagree to form. This tendency
is defined by parameterp. Let us include a motivating example.

Example 1.1 In Section 5 we apply this family of values to the analysis of an interesting
political problem: the Catalonia Parliament during Legislature 2003–2007, prematurely fin-
ished in 2006. Curiously, the analysis remains still valid for Legislature 2006–2010 since, in
spite of the modification of the seat distribution issued from the elections held in November
1, 2006, the strategic possibilities are exactly the same.

ERC

CiU

ICV

PSC

PPC

rightleft

Catalanism

centralism

Fig. 1. Political positions in the Catalonia Parliament 2003–2007

In Catalonia, politics is based on two main axes: the classical left–to–right axis and a
crossed one going from Spanish centralism to Catalanism (Catalan nationalism) (see Fig. 1).
Thus, in 2003 Esquerra Republicana de Catalunya (ERC), a radical nationalist and left–wing
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party, was faced to the dilemma of choosing among either a Catalanist majority coalition with
Convergència i Unió (CiU) or a left–wing majority coalition with the Partit dels Socialistes
de Catalunya (PSC) and Iniciativa per Catalunya–Verds (ICV), which was finally formed in
2003 and has been repeated in 2006.

A classical approach to study the problem would consist in using either (a) the Shapley
value and the Owen value or, alternatively, (b) the Banzhaf value and the Owen–Banzhaf
value, in order to evaluate the strategic possibilities of each party in both setups. The results
are given in Table 1, where (NO) means no coalition formation, (C) means that CiU + ERC
forms, and (LW) means that PSC + ERC + ICV forms.

Table 1. Classical measures of power in the Catalonia Parliament 2003–2007

(a) (b)

(NO) (C) (LW) (NO) (C) (LW)

CiU 0.4000 0.5000 0.0000 0.6250 0.5000 0.0000

PSC 0.2333 0.0000 0.3889 0.3750 0.0000 0.3750

ERC 0.2333 0.5000 0.3889 0.3750 0.5000 0.3750

PPC 0.0667 0.0000 0.0000 0.1250 0.0000 0.0000

ICV 0.0667 0.0000 0.2222 0.1250 0.0000 0.1250

According to the Shapley and Owen values used in (a), ERC would strictly prefer joining
CiU instead of PSC and ICV. The same conclusion is obtained according to the Banzhaf and
Owen–Banzhaf values used in (b). In both cases, the results fail to provide a mathematical
explanation of ERC’s actual decision (to join PSC and ICV).

Instead, by using binomial semivalues, and symmetric coalitional binomial semivalues
whenever a coalition structure exists, the conclusion of the theoretical analysis is that ERC,
the crucial agent in this scenario, was not necessarily forced to participate in the left–wing
tripartite government but would have got more political power in joining CiU depending on
the tendency of the parties. The reader is referred to Example 5.3 for a detailed analysis.

The organization of the paper is as follows. In Section 2, a minimum of preliminaries
is provided. Section 3 is devoted to define and study the symmetric coalitional binomial
semivalue, and it includes an axiomatic characterization that parallels Owen [41] for the
Owen value. In Section 4 we present a computation procedure for the symmetric coalitional
binomial semivalue. Section 5 contains a remark on simple games and two detailed examples
and, finally, we have included in Section 6 a historical note.

2 Preliminaries

2.1 Games and semivalues

Let N be a finite set ofplayersand 2N be the set of itscoalitions(subsets ofN). A cooperative
gameonN is a functionv : 2N → R, that assigns a real numberv(S) to each coalitionS⊆ N,
with v( /0) = 0. A gamev is monotonicif v(S) ≤ v(T) wheneverS⊆ T ⊆ N. A playeri ∈ N
is a dummyin v if v(S∪{i}) = v(S)+ v({i}) for all S⊆ N\{i}, andnull in v if, moreover,
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v({i}) = 0. Two playersi, j ∈ N aresymmetricin v if v(S∪ {i}) = v(S∪{ j}) for all S⊆
N\{i, j}.

Endowed with the natural operations for real–valued functions,i.e. v+ v′ andλv for all
λ ∈ R, the set of all cooperative games onN is a vector spaceGN. For every nonempty
coalition T ⊆ N, the unanimity game uT is defined byuT(S) = 1 if T ⊆ S anduT(S) = 0
otherwise, and it is easily checked that the set of all unanimity games is a basis forGN.
Finally, every permutationθ of N induces a linear automorphism ofGN given by(θv)(S) =
v(θ−1S) for all S⊆ N and allv.

By avalueonGN we will mean a mapf : GN → R
N, that assigns to every gamev a vector

f [v] with componentsfi [v] for all i ∈ N.
Following Weber’s [58] axiomatic description,ψ : GN → R

N is asemivalueiff it satisfies
the following properties:

(i) linearity: ψ[v+v′] = ψ[v]+ ψ[v′] (additivity) andψ[λv] = λψ[v] for all v,v′ ∈ GN and
λ ∈ R;

(ii) anonymity: ψθi [θv] = ψi [v] for all θ onN, i ∈ N, andv∈ GN;
(iii) positivity: if v is monotonic, thenψ[v] ≥ 0;
(iv) dummy player property: if i ∈ N is a dummy in gamev, thenψi [v] = v({i}).
There is an interesting characterization of semivalues, bymeans ofweighting coefficients,

due to Dubey, Neyman and Weber [26]. Setn = |N|. Then: (a) for everyweighting vector

{pk}n−1
k=0 such that

n−1
∑

k=0
pk

(n−1
k

)

= 1 andpk ≥ 0 for all k, the expression

ψi [v] = ∑
S⊆N\{i}

ps[v(S∪{i})−v(S)] for all i ∈ N and allv∈ GN,

wheres= |S|, defines a semivalueψ; (b) conversely, every semivalue can be obtained in this
way; (c) the correspondence given by{pk}n−1

k=0 7→ ψ is bijective.
Thus, the payoff that a semivalue allocates to every player in any game is a weighted sum

of his marginal contributions in the game. Ifpk is interpreted as the probability that a given
player i joins a coalition of sizek, provided that all the coalitions of a common size have
the same probability of being joined, thenψi [v] is the expected marginal contribution of that
player to a random coalition he joins.

Well known examples of semivalues are theShapley valueϕ (Shapley [50]), for which
pk = 1/n

(n−1
k

)

, and theBanzhaf valueβ (Owen [40]), for whichpk = 21−n. The Shapley
valueϕ is the onlyefficientsemivalue, in the sense that∑

i∈N
ϕi [v] = v(N) for everyv∈ GN.

Notice that these values are defined for eachN. The same happens with thebinomial
semivalues, introduced by Puente [48] as follows. Letp∈ [0,1] andpk = pk(1− p)n−k−1 for
k = 0,1, . . . ,n−1. Then{pk}n−1

k=0 is a weighting vector and defines a semivalue that will be
denoted asψp and called thep–binomial semivalue. Using the convention that 00 = 1, the
definition makes sense also forp = 0 andp = 1, where we respectively get thedictatorial
indexψ0 and themarginal indexψ1, introduced by Owen [42] and such thatψ0

i [v] = v({i})
andψ1

i [v] = v(N)−v(N\{i}) for all i ∈ N and allv∈ GN. Of course,p = 1/2 givesψ1/2 = β
—the Banzhaf value.

In fact, semivalues are defined on cardinalities rather thanon specific player sets: this
means that a weighting vector{pk}n−1

k=0 defines a semivalueψ on all N such thatn = |N|.
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When necessary, we shall writeψ(n) for a semivalue on cardinalityn andp(n)
k for its weighting

coefficients. A semivalueψ(n) induces semivaluesψ(t) for all cardinalitiest < n, recurrently
defined by the Pascal triangle (inverse) formula given by Dragan [23]:

p(t)
k = p(t+1)

k + p(t+1)
k+1 for 0≤ k < t.

A seriesψ = {ψ(n)}∞
n=1 of semivalues, one for each cardinality, is amultisemivalueif it

satisfies Dragan’s recurrence formula. Thus, the Shapley and Banzhaf values and all binomial
semivalues are multisemivalues.

2.2 Games with coalition structure

Let us consider a finite set, say,N = {1,2, . . . ,n}. We will denote byP(N) the set of all
partitions ofN. EachP∈ P(N) is called acoalition structureor system of unionson N. The
so–calledtrivial coalition structuresarePn = {{1},{2}, . . . ,{n}} (individual coalitions) and
PN = {N} (grand coalition). Acooperative game with a coalition structureis a pair[v;P],
wherev ∈ GN andP ∈ P(N) for a givenN. Each partitionP gives a pattern of cooperation
among players. We denote byGcs

N the set of all cooperative games with a coalition structure
and player setN.

If [v;P] ∈ Gcs
N andP = {P1,P2, . . . ,Pm}, the quotient game vP is the cooperative game

played by the unions, or, rather, by the setM = {1,2, . . . ,m} of their representatives, as
follows:

vP(R) = v(
⋃

r∈R

Pr) for all R⊆ M.

UnionsPr ,Ps are said to besymmetricin [v;P] if r,s are symmetric players invP.
By a coalitional valueon Gcs

N we will mean a mapg : Gcs
N → R

N, which assigns to every
pair [v;P] a vectorg[v;P] with componentsgi [v;P] for eachi ∈ N.

TheOwen value(Owen [41]) is the coalitional valueΦ defined by

Φi [v;P] = ∑
R⊆M\{k}

∑
T⊆Pk\{i}

1
mpk

1
(m−1

r

)

1
(pk−1

t

) [v(Q∪T ∪{i})−v(Q∪T)]

for all i ∈ N and[v;P] ∈ Gcs
N , wherePk ∈ P is the union such thati ∈ Pk andQ =

⋃

r∈R
Pr . It

was axiomatically characterized by Owen [41] as the only coalitional value that satisfies the
following properties: the natural extensions to this framework of

• efficiency
• additivity
• the dummy player property

and also

• symmetry within unions: if i, j ∈ Pk are symmetric inv then

Φi [v;P] = Φ j [v;P]
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• symmetry in the quotient game: if Pr ,Ps ∈ P are symmetric in[v;P] then

∑
i∈Pr

Φi [v;P] = ∑
j∈Ps

Φ j [v;P].

The Owen value is acoalitional value of the Shapley valueϕ in the sense thatΦ[v;Pn] =
ϕ[v] for all v∈ GN. Besides,Φ[v;PN] = ϕ[v]. Finally, asΦ is defined for anyN, the following
property makes sense and is also satisfied:

• quotient game property: for all [v;P] ∈ Gcs
N ,

∑
i∈Pk

Φi [v;P] = Φk[v
P;Pm] for all Pk ∈ P.

The Owen value can be viewed as a two–step allocation rule. First, each unionPk receives
its payoff in the quotient game according to the Shapley value; then, eachPk splits this amount
among its players by applying the Shapley value to a game played inPk as follows: the worth
of each subcoalitionT of Pk is the Shapley value thatT would get in a “pseudoquotient
game” played byT and the remaining unions on the assumption thatPk\T leaves the game,
i.e. the quotient game after replacingPk with T. This is the way to bargain within the union:
each subcoalitionT claims the payoff it would obtain when dealing with the otherunions in
absence of its partners inPk.

The Owen–Banzhaf valueB (Owen [43]) follows a similar scheme. The resulting formula
parallels that of the Owen value with the sole change of coefficient 1/mpk

(m−1
r

)(pk−1
t

)

by
21−m21−pk. This value, which is acoalitional value of the Banzhaf valueβ, does not satisfy
efficiency, but neither symmetry in the quotient game nor thequotient game property. The
bargaining interpretation is the same as in the case of the Owen value by replacing everywhere
the Shapley value with the Banzhaf value.

Alonso and Fiestras [4] introduced a modification of the Owen–Banzhaf value. In this
case, the coefficient of each marginal contribution is replaced with 21−m/pk

(pk−1
t

)

. This
symmetric coalitional Banzhaf valueΠ satisfies the same properties as the Owen value, with
the sole exception of efficiency —replaced by a total power property—, as well as the quotient
game property, and it is a coalitional value of the Banzhaf value.

Example 2.1 (Alonso and Fiestras [4]) Let us taken = 5 and consider the unanimity game
uN and the coalition structureP = {P1,P2} whereP1 = {1,2,3} andP2 = {4,5}. Notice that
the quotient game isuP

N = uM, whereM = {1,2}. It is not difficult to obtain the following
values:

β[uN] = (1/16,1/16,1/16,1/16,1/16),

β[uP
N] = (1/2,1/2),

B[uN;P] = (1/8,1/8,1/8,1/4,1/4).

As P1 andP2 are symmetric in[uN;P], it follows that the Owen–Banzhaf valueB fails to
satisfy the property of symmetry in the quotient game. Neither the quotient game property is
fulfilled by B in this instance. Instead

Π[uN;P] = (1/6,1/6,1/6,1/4,1/4)
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so that both properties are satisfied by the Alonso–FiestrasvalueΠ (here and elsewhere).
Since the Banzhaf valueβ is a particularp–binomial semivalue (p = 1/2), this exam-

ple also shows that thecoalitional p–binomial semivalues, which can be obtained from the
work by Albizuri and Zarzuelo [3] or Amer and Giménez [8] by applying Owen’s scheme to
any p–binomial semivalue, satisfy, in general, none of both properties. That’s why we will
generalize Alonso and Fiestras’ procedure.

3 The symmetric coalitional binomial semivalue

In this section we define and study a “coalitional version” ofeachp–binomial semivalue for
games with coalition structure. This includes, besides theexplicit formula, an axiomatic char-
acterization and an interpretation in terms of a two–step bargaining process, among unions,
first, and among players within each union later. We begin by dealing with binomial semi-
values. We recall thatψp denotes, for eachp∈ [0,1], the p–binomial semivalue acting on a
fixedGN.

Definition 3.1 Let p∈ [0,1]. A value f on GN satisfies thep–binomial total power property
if

∑
i∈N

fi [v] = ∑
i∈N

∑
S⊆N\{i}

ps(1− p)n−s−1[v(S∪{i})−v(S)] for all v∈ GN.

Lemma 3.2 Let /0 6= S⊆ N, s= |S| and i∈ N. Thenψp
i [uS] = ps−1 if i ∈ S, andψp

i [uS] = 0
otherwise.

Proof: Let i ∈ S. By the definition of the weighting coefficients ofψp we have

ψp
i [uS] =

(n−s
0

)

ps−1(1− p)n−s+
(n−s

1

)

ps(1− p)n−s−1+ · · ·+
(n−s

n−s

)

pn−1 =

= ps−1[(p+(1− p)]n−s = ps−1.

If i /∈ S, the dummy player property yieldsψp
i [uS] = 0. �

Proposition 3.3 The unique semivalue onGN that satisfies the p–binomial total power prop-
erty is the p–binomial semivalueψp.

In other words,∑i∈N ψi [v] = ∑i∈N ψp
i [v] for all v ∈ GN impliesψ = ψp.

Proof: (a) It is obvious that thep–binomial semivalueψp satisfies thep–binomial total power
property.

(b) Using linearity and the fact that the unanimity games form a basis ofGN, it suffices to
prove that any semivalueψ satisfying thep–binomial total power property coincides withψp

on each unanimity game. LetuS be such a game for someS⊆ N. From the dummy player
property we getψi [uS] = 0 = ψp

i [uS] for all i /∈ S. From thep–binomial total power property
it follows that ∑

i∈S
ψi [uS] = sps−1. Using anonymity,ψi [uS] = ps−1 for eachi ∈ S, and this

allocation coincides withψp
i [uS] according to Lemma 3.2. �
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In particular, settingp = 1/2 we obtain that the Banzhaf valueβ is the only semivalue
that satisfies the classicaltotal power property:

∑
i∈N

fi [v] =
1

2n−1 ∑
i∈N

∑
S⊆N\{i}

[v(S∪{i})−v(S)] for all v∈ GN.

The Owen (resp., Owen–Banzhaf) value is a natural extensionof the Shapley (resp.,
Banzhaf) value to games with a coalition structure. We generalize this idea.

Definition 3.4 Given a valuef onGN, acoalitional value of fis a coalitional valueg onGcs
N

such thatg[v;Pn] = f [v] for all v∈ GN.

Let g be a coalitional value of thep–binomial semivalueψp defined for allN, and assume
thatg satisfies the quotient game property. Then, for a givenN and any[v;P] ∈ Gcs

N ,

∑
i∈N

gi [v;P] = ∑
k∈M

∑
i∈Pk

gi [v;P] = ∑
k∈M

gk[v
P;Pm] = ∑

k∈M

ψp
k [vP] =

= ∑
k∈M

∑
R⊆M\{k}

pr(1− p)m−r−1[vP(R∪{k})−vP(R)].

This motivates the next definition, that is an adaptation of thep–binomial total power property
to games with a coalition structure.

Definition 3.5 Let p∈ [0,1]. A coalitional valueg onGcs
N satisfies thecoalitional p–binomial

total power propertyif, for all [v;P] ∈ Gcs
N ,

∑
i∈N

gi [v;P] = ∑
k∈M

∑
R⊆M\{k}

pr(1− p)m−r−1[vP(R∪{k})−vP(R)].

The next statement defines and axiomatically characterizes, for eachp∈ [0,1], thesym-
metric coalitional p–binomial semivalue, which will be denoted asΩp.

Theorem 3.6 Let p∈ [0,1]. For any N there is a unique coalitional value onGcs
N that satisfies

additivity, the dummy player property, symmetry within unions, symmetry in the quotient
game, and the coalitional p–binomial total power property.Given [v;P] ∈ Gcs

N , this value
allocates to each player i∈ N the real number

Ωp
i [v;P] = ∑

R⊆M\{k}
∑

T⊆Pk\{i}
pr(1− p)m−r−1 1

pk
(pk−1

t

) [v(Q∪T ∪{i})−v(Q∪T)],

where Pk ∈ P is the union such that i∈ Pk and Q=
⋃

r∈R
Pr .

Moreover,Ωp is a coalitional value of the p–binomial semivalueψp and satisfies the
quotient game property.

Proof: (a) (Existence) It suffices to show that the coalitional value Ωp given by the above
formula satisfies the five properties enumerated in the statement.

1. Additivity. It merely follows from the expression ofΩp
i [v;P].
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2. Dummy player property. Leti ∈ N be a dummy player in gamev and P be any
coalition structure. Assumei ∈ Pk. Thenv(Q∪T ∪{i})−v(Q∪T) = v({i}) for all R andT.
As, moreover,

∑
R⊆M\{k}

pr(1− p)m−r−1 = 1 and ∑
T⊆Pk\{i}

1

pk
(pk−1

t

) = 1,

we conclude thatΩp
i [v;P] = v({i}).

3. Symmetry within unions. Leti, j ∈ Pk ∈ P be symmetric players in gamev. For each
R⊆ M\{k} andT ⊆ Pk\{i, j}, let ∆(R,T,h) = v(Q∪T ∪{h})−v(Q∪T) for h = i, j. Then,
by the symmetric position ofi, j in v,

f (R,T) = ∆(R,T, i)−∆(R,T, j) = 0 and

g(R,T) = ∆(R,T ∪{ j}, i)−∆(R,T∪{i}, j) = 0,

so that

Ωp
i [v;P]−Ωp

j [v;P] = ∑
R⊆M\{k}

pr(1− p)m−r−1 ∑
T⊆Pk\{i, j}

[

f (R,T)

pk
(pk−1

t

) +
g(R,T)

pk
(pk−1

t+1

)

]

= 0.

4. Coalitionalp–binomial total power property. Let[v;P] ∈ Gcs
N . Fixing k∈ M, for every

R⊆ M\{k} we consider the gamevR ∈ GPk defined by

vR(T) = v(Q∪T)−v(Q) for all T ⊆ Pk.

The Shapley value gives, for eachi ∈ Pk,

ϕi [vR] = ∑
T⊆Pk\{i}

1

pk
(pk−1

t

) [v(Q∪T ∪{i})−v(Q∪T)].

Using the efficiency ofϕ, we get

∑
i∈Pk

ϕi [vR] = vR(Pk) = v(Q∪Pk)−v(Q) = vP(R∪{k})−vP(R).

Hence

∑
i∈Pk

Ωp
i [v;P] = ∑

R⊆M\{k}
pr(1− p)m−r−1[vP(R∪{k})−vP(R)] = (ψp)

(m)
k [vP]

and, finally,

∑
i∈N

Ωp
i [v;P] = ∑

k∈M
∑

R⊆M\{k}
pr(1− p)m−r−1[vP(R∪{k})−vP(R)].

5. Symmetry in the quotient game. It readily follows from therelationship

∑
i∈Pk

Ωp
i [v;P] = (ψp)

(m)
k [vP],
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stated in the previous point, and the anonymity (whence symmetry) of thep–binomial semi-
valueψp.

(b) (Uniqueness) Letg be a coalitional value onGcs
N satisfying the five properties. Using

additivity and the fact that the unanimity games form a basisof GN, it suffices to show thatg is
completely determined by its action on any pair of the form[λuS;P], whereλ ∈ R, /0 6= S⊆ N
andP∈ P(N).

By the dummy player property,gi [λuS;P] = 0 if i /∈ S. This leaves us with playersi ∈ S.
Let S′ = {k ∈ M : S∩Pk 6= /0} and, for everyk ∈ S′, S′k = S∩Pk. It is easy to see that

(λuS)
P = λuS′ . From the coalitionalp–binomial total power property, and applying Lemma

3.2, we have

∑
i∈N

gi [λuS;P] = ∑
k∈M

(ψp)
(m)
k [λuS′ ] = ∑

k∈S′
(ψp)

(m)
k [λuS′ ] = λs′ps′−1.

Now, from symmetry in the quotient game, ifk∈ S′ then

∑
i∈S′k

gi[λuS;P] = ∑
i∈Pk

gi [λuS;P] = λps′−1

and, finally, using symmetry within unions,

gi[λuS;P] =
λps′−1

s′k
for anyi ∈ S′k.

As S=
⋃

k∈S′ S
′
k, this concludes the proof thatg is univocally determined.

(c) Ωp is a coalitional value of thep–binomial semivalueψp. Indeed, forP = Pn the
explicit formula ofΩp reduces to

Ωp
i [v;Pn] = ∑

R⊆N\{i}
pr(1− p)m−r−1[v(R∪{i})−v(R)] = ψp

i [v].

Finally, the quotient game property: as we have seen when showing the symmetry in the
quotient game in part (a) of this proof, and using the preceding property forGcs

M ,

∑
i∈Pk

Ωp
i [v;P] = (ψp)

(m)
k [vP] = Ωp

k [vP;Pm]. �

Remark 3.7 (a) The symmetric coalitionalp–binomial semivalue is a natural (and wide)
generalization of Alonso and Fiestras’ symmetric coalitional Banzhaf value, sinceΩ1/2 = Π.

(b) Ωp relates not only to thep–binomial semivalueψp (of which it is a coalitional value)
but also to the Shapley valueϕ, as

Ωp[v;PN] = ϕ[v] for anyv∈ GN.

Thus, in some manner,Ωp establishes a “coalitional path” that linksϕ andψp.
(c) From Theorem 3.6 it follows that the only axiomatic difference between the Owen

valueΦ and the symmetric coalitionalp–binomial semivalueΩp is that the former satisfies
efficiency whereas the latter satisfies the coalitionalp–binomial total power property, in a
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way that parallels the distinction between the Shapley valueϕ and thep–binomial semivalue
ψp.

(d) It is worth mentioning that in the parallel axiomatizations of the Owen value and the
symmetric coalitionalp–binomial semivalue, additivity might be replaced with linearity, and
the dummy player property with the null player property. We have chosen the first possibility
in each case (additivity and dummy player property).

(e) The symmetric coalitionalp–binomial semivalue also merges the Shapley value and
the p–binomial semivalue. It is the result of a two–step bargaining procedure similar to that
of the Owen value. In our case, the unions play the quotient game among themselves and
each one receives the payoff given by thep–binomial semivalueψp, and then this payoff is
efficiently shared within the union according to the Shapleyvalueϕ.

4 A computation procedure

Themultilinear extension(Owen [39]) of a gamev∈ GN is the real–valued function defined
onR

N by
f (x1,x2, . . . ,xn) = ∑

S⊆N
∏
i∈S

xi ∏
j /∈S

(1−x j)v(S).

As is well known, both the Shapley and Banzhaf values of any game v can be easily
obtained from its multilinear extension. Indeed,ϕ[v] can be calculated by integrating the
partial derivatives of the multilinear extension of the game along the main diagonalx1 =
x2 = · · · = xn of the cube[0,1]N (Owen [39]), while the partial derivatives of that multilinear
extension evaluated at point(1/2,1/2, . . . ,1/2) give β[v] (Owen [40]. This latter procedure
extends well to anyp–binomial semivalue (see Puente [48], Freixas and Puente [29] or Amer
and Giménez [8]) by evaluating the derivatives at point(p, p, . . . , p).

In the context of games with a coalition structure, the multilinear extension technique has
been also applied to computing the Owen valueΦ (Owen and Winter [45]), as well as the
Owen–Banzhaf valueB (Carreras and Magaña [18]) and the symmetric coalitional Banzhaf
valueΠ (Alonso, Carreras and Fiestras [5]). In this section we present a method to compute
the symmetric coalitionalp–binomial semivalueΩp by means of the multilinear extension of
the game.

Theorem 4.1 Let p∈ [0,1] and [v;P] ∈ Gcs
N be a cooperative game with a coalition struc-

ture. Then the following steps lead to the symmetric coalitional p–binomial semivalue of any
player i∈ Pk in [v;P].

1. Obtain the multilinear extension f(x1,x2, . . . ,xn) of game v.

2. For every r 6= k and all h∈ Pr , replace the variable xh with yr . This yields a new
function of xj for j ∈ Pk and yr for r ∈ M\{k}.

3. In this function, reduce to 1 all higher exponents, i.e. replace with yr each yqr such that
q> 1. This gives a new multilinear function that we denote as g((x j) j∈Pk, (yr)r∈M\{k}).
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4. In the function obtained in step 3, substitute each yr by p. This provides a new function
αk((x j ) j∈Pk) defined by

αk((x j ) j∈Pk) = g((x j) j∈Pk
,(p)r∈M\{k}).

5. Finally, the symmetric coalitional p–binomial semivalue of player i∈ Pk in [v;P] is
given by

Ωp
i [v;P] =

∫ 1

0

∂αk

∂xi
(z,z, . . . ,z)dz.

Proof: Steps 1–3 have already been used by Owen and Winter [45], Carreras and Magaña
[18] and Alonso, Carreras and Fiestras [5] in dealing with the Owen value, the Owen–Banzhaf
value and the symmetric coalitional Banzhaf value, respectively. It will be useful to recall
their common argument here.

By the second and third steps, we get a multilinear function where all terms corresponding
to coalitionsSsuch thatS∩Pr 6= /0 and(N\S)∩Pr 6= /0 for somer ∈ M\{k} vanish. Indeed,
in step 2, the terms corresponding to these coalitions include expressions likecyq1

r (1−yr)
q2,

with q1,q2 ∈ N, and in step 3 these terms turn onc(yr −yr) thus getting zero.
Hence, the only coalitionsS for which the corresponding term of the (initial) multilinear

extension may not vanish after steps 2 and 3 are those of the form S= Q∪T, whereT ⊆ Pk

andQ =
⋃

r∈R
Pr for someR⊆ M\{k}. The function arising from step 3 is therefore

g((x j) j∈Pk, (yr)r∈M\{k}) =

∑
T⊆Pk

∑
R⊆M\{k}

∏
j∈T

x j ∏
j∈Pk\T

(1−x j)∏
r∈R

yr ∏
r /∈R∪{k}

(1−yr)v(Q∪T).

Substituting eachyr by p (step 4) gives

αk((x j ) j∈Pk) = ∑
T⊆Pk

∑
R⊆M\{k}

∏
j∈T

x j ∏
j∈Pk\T

(1−x j)pr(1− p)m−r−1v(Q∪T).

By differentiating functionαk((x j ) j∈Pk) with respect toxi

∂αk

∂xi
((x j) j∈Pk) =

∑
T⊆Pk\{i}

∑
R⊆M\{k}

∏
j∈T

x j ∏
j∈Pk\(T∪{i})

(1−x j)pr(1− p)m−r−1[v(Q∪T ∪{i})−v(Q∪T)].

Finally, by step 5,
∫ 1

0

∂αk

∂xi
(z,z, . . . ,z)dz=

∑
T⊆Pk\{i}

∑
R⊆M\{k}

pr(1− p)m−r−1[v(Q∪T ∪{i})−v(Q∪T)]

∫ 1

0
zt(1−z)pk−t−1dz=

∑
T⊆Pk\{i}

∑
R⊆M\{k}

pr(1− p)m−r−1t!(pk− t−1)!
pk!

[v(Q∪T ∪{i})−v(Q∪T)] = Ωp
i [v;P]. �
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5 A remark and two examples

Simple games form an especially interesting class of cooperative games. Not only as a test
bed for many cooperative concepts, but also for the variety of their interpretations, often far
from game theory. In particular, they are frequently applied to describe and analyze collective
decision–making mechanisms —weighted majority games playa crucial role here—, and the
notion of voting power is closely attached to them.

Shapley and Shubik [52] were the first to adapt a cooperative tool —the Shapley value—
to simple games, using it as a measure of power. Shapley [51] stated a series of arguments
inviting to a self–contained treatment of this class of games, and Dubey [24] initiated this
line when providing an axiomatic characterization of the Shapley–Shubik power index as a
solution concept on the class of simple games, for which he introduced thetransfer property
in order to replace the useless additivity property.

A cooperative gamev onN is simpleif it is monotonic andv(S) = 0 or 1 for everyS⊆ N.
A coalitionS⊆ N is winning in vif v(S) = 1 (otherwise it is calledlosing), andW(v) denotes
the set of winning coalitions inv. Due to monotonicity, the setWm(v) of all minimalwinning
coalitions determinesW(v) and hence the game. A simple gamev is a weighted majority
gameif there are nonnegativeweights w1,w2, . . . ,wn allocated to the players and a positive
quota qsuch that

v(S) = 1 iff ∑
i∈S

wi ≥ q.

We then writev = [q;w1,w2, . . . ,wn]. (For additional details on simple games, we refer the
interested reader toe.g.Carreras and Freixas [14], Taylor and Zwicker [54] or Carreras [12].)

Let SGN denote the set of all simple games on a given player setN. A power index
on SGN is a function f : SGN → R

N. All properties stated for values in this paper —with
the sole exception of additivity and linearity— make sense for power indices. AsSGN is
a lattice under the standard composition laws given by(v∨ v′)(S) = max{v(S),v′(S)} and
(v∧v′)(S) = min{v(S),v′(S)}, we will say that a power indexf satisfies thetransfer property
if

f [v∨v′] = f [v]+ f [v′]− f [v∧v′] for all v,v′ ∈ SGN.

Carreras, Freixas and Puente [20] gave an axiomatic characterization and a combinatorial
description in terms of weighting coefficients for (the restrictions of) semivalues as power
indices, which parallel the corresponding ones for semivalues on general cooperative games.

Let SGcs
N be the set of all simple games with a coalition structure onN. A coalitional

power indexonSGcs
N is a functiong : SGcs

N → R
N. All properties stated for coalitional values

in this paper —excluding again additivity and linearity—, as well as the natural extension of
the transfer property, make sense for coalitional power indices. Vázquez, van den Nouweland
and Garcı́a–Jurado [56] carried out an axiomatic characterization of the (restricted) Owen
value as a coalitional power index by means of efficiency, thetransfer property, the dummy
player property, symmetry within unions and symmetry in thequotient game.

In a similar way, we have found a “parallel” axiomatic characterization of the symmetric
coalitional binomial semivalues as power indices (that is,restricted toSGcs

N ) that we state
without proof because it is very similar to that of Theorem 3.6.
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Corollary 5.1 Let p∈ [0,1]. For any N there is a unique coalitional power index onSGcs
N

that satisfies the coalitional p–binomial total power property, the transfer property, the dummy
player property, symmetry within unions and symmetry in thequotient game. It is the restric-
tion of the symmetric coalitional p–binomial semivalueΩP to SGcs

N .
Besides, this index satisfies the quotient game property andreduces to the (restricted) p–

binomial semivalueψp when P= Pn and to the Shapley–Shubik power indexϕ when P= PN.
�

Example 5.2 Let us consider the 5–person weighted majority game

v = [68;46,42,23,15,9]

and the coalition structureP = {{1,4},{2,5},{3}}. We will computeψp[v] andΩp[v;P] for
anyp∈ [0,1].

The set of minimal winning coalitions of the game is

Wm(v) = {{1,2},{1,3},{1,4,5},{2,3,4},{2,3,5}}

and the multilinear extension ofv is

f (x1,x2,x3,x4,x5) = x1x2 +x1x3−x1x2x3 +x1x4x5 +x2x3x4 +x2x3x5−
−x1x2x3x4−x1x2x3x5−x1x2x4x5−x1x3x4x5−x2x3x4x5 +2x1x2x3x4x5.

Taking into account that players 2 and 3, on one hand, and players 4 and 5 on the other,
are symmetric inv, the computation method for binomial semivalues stated by Puente [48]
(see also Amer and Giménez [8]) gives

ψp
1[v] =

∂ f
∂x1

(p, p, p, p, p) = p(1− p)(2+2p−2p2),

ψp
3[v] = ψp

2[v] =
∂ f
∂x2

(p, p, p, p, p) = p(1− p)(1+2p−2p2),

ψp
5[v] = ψp

4[v] =
∂ f
∂x4

(p, p, p, p, p) = p(1− p)(2p−2p2).

In order to computeΩp[v] we use Theorem 4.1. AsM = {1,2,3}, steps 1–3 give

g1(x1,x4,y2,y3) = y2y3 +x1(y2 +y3−2y2y3),

g2(y1,x2,x5,y3) = y1y3 +x2(y1−y1y3)+x5(y1−y1y3)+x2x5(y3−y1),

g3(y1,y2,x3) = y1y2 +x3(y1 +y2−2y1y2),

and step 4 leads to

α1(x1,x4) = g1(x1,x4, p, p) = p2 +x1(2p−2p2),

α2(x2,x5) = g2(p,x2,x5, p) = p2 +x2(p− p2)+x5(p− p2),

α3(x3) = g3(p, p,x3) = p2 +x3(2p−2p2).
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Step 5 concludes the procedure and gives

Ωp
1[v;P] =

∫ 1

0

∂α1

∂x1
(z,z)dz= 2p−2p2, Ωp

4[v;P] =

∫ 1

0

∂α1

∂x4
(z,z)dz= 0,

Ωp
2[v;P] =

∫ 1

0

∂α2

∂x2
(z,z)dz= p− p2, Ωp

5[v;P] =
∫ 1

0

∂α2

∂x5
(z,z)dz= p− p2,

Ωp
3[v;P] =

∫ 1

0

∂α3

∂x3
(z)dz= 2p−2p2.

Thus
Ωp[v;P] = (2p−2p2, p− p2,2p−2p2,0, p− p2).

In the following example, we shall apply some values and coalitional values (mainlyψp

andΩp) to the analysis of an interesting political structure: theCatalonia Parliament 2003–
2007. All values have been computed using the multilinear extension technique, as illustrated
in the preceding example.

In the papers by Straffin [53], Laruelle [34] and Laruelle andValenciano [35], the Banzhaf
valueβ is suggested as a power measure more suitable than the Shapley value. The natural
generalization to semivalues has been argued by Laruelle and Valenciano [36], Carreras and
Freixas [17], and Carreras, Freixas and Puente [20]. By considering here binomial semi-
values, we look at the Banzhaf value in perspective, as will be shown by the results of our
analysis.

Therefore, our study of alliances will be based on the bargaining process corresponding
to the symmetric coalitional binomial semivaluesΩp: first, a power notion is shared among
unions in the quotient game by means of the Banzhaf value or a binomial semivalue; then,
the power so got by each union is shared among its members by using the Shapley value.
This will reflect that both bargaining steps are of differentnature. Indeed, notice that, once
an alliance is formed —and, especially, if it supports a coalition government—, cabinet min-
istries, parliamentary and institutional positions, budgets, and other political responsibilities
have to be distributedefficientlyamong the parties of the coalition, hence in a way as closely
as possible to the one suggested by the Shapley value. At thispoint, the quotient game prop-
erty and symmetry in the quotient game become very relevant properties. In fact, they are
connected because if a coalitional value satisfies the quotient game property (as is the case
for all Ωp) and it is a coalitional value of the Banzhaf value (or ap–binomial semivalue) then
symmetry in the quotient game follows from the anonymity ofβ (or of ψp).

Which is the reason for lettingp range from 0 to 1? Notice that a reasonable regularity
assumption on players’ behavior is that the probability to form coalitions follows a monotonic
(increasing or decreasing) behavior. Then, it is not difficult to see that the only semivalues
such thatpk+1 = λpk for all k (maybe the simplest form of monotonicity) are precisely the
p–binomial semivalues, in which caseλ = p

1−p for any p ∈ [0,1]. For example,p = 0.1
means that the players are very reticent to form coalitions,whereasp = 0.8 means that great
coalitions are likelier. The neutral casep = 0.5 corresponds to the Banzhaf value. Table 2
shows, forn = 5, the weighting coefficients ofψp for several values ofp.
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Table 2. Weighting coefficients of somep–binomial semivaluesψp for n = 5

p = 0.1 p = 0.4 p = 0.5 p = 0.8

(Banzhaf)

p0 = (1− p)4 0.6561 0.1296 0.0625 0.0016

p1 = p(1− p)3 0.0729 0.0864 0.0625 0.0064

p2 = p2(1− p)2 0.0081 0.0576 0.0625 0.0256

p3 = p3(1− p) 0.0009 0.0384 0.0625 0.1024

p4 = p4 0.0001 0.0256 0.0625 0.4096

As we will see, almost all allocationsψp
i [v] and coalitional allocationsΩp

i [v;P] will show
factorsp(1− p); the sole exceptions are the cases wherei is a dictator or veto player (if we
were dealing with improper games, we should add winner players to this short list). Further-
more, the maximum or the minimum of all these allocations foreach player will be attained
in casep = 0.5, that respectively correspond to the Banzhaf valueβ = ψ1/2 or to the Alonso–
Fiestras coalitional valueΠ = Ω1/2. These properties would not have been discovered if only
the casep = 0.5 were considered.

Example 5.3 (The Catalonia Parliament, Legislature 2003–2007) Five parties elected mem-
bers to the Catalonia Parliament (135 seats) in the elections held on November 16, 2003,
giving rise to a seat distribution that can be represented bythe weighted majority game

v = [68;46,42,23,15,9].

Let us briefly describe ideologically the agents in this game:

1: CiU (Convergència i Unió), Catalan nationalist middle–of–the–road coalition of two
federated parties.

2: PSC (Partit dels Socialistes de Catalunya), moderate left–wing socialist party, federated
to the Partido Socialista Obrero Español.

3: ERC (Esquerra Republicana de Catalunya), radical Catalan nationalist left–wing party.

4: PPC (Partit Popular de Catalunya), conservative party, Catalan delegation of the Partido
Popular.

5: ICV (Iniciativa per Catalunya–Verds), coalition of Catalan eurocommunist parties, fed-
erated to Izquierda Unida, and ecologist groups (“Verds”).

Notice that, as pointed out in Example 5.2,

Wm(v) = {{1,2},{1,3},{1,4,5},{2,3,4},{2,3,5}},

so that players 2 and 3 on one hand, and 4 and 5 on the other, are symmetric inv.
We show in Table 3 the evaluation ofv given by several binomial semivaluesψp. The

total power isτp[v] = ∑
i∈N

ψp
i [v].
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Table 3. Initial power distribution in the Catalonia Parliament 2003–2007

ψp
i [v] p = 0.1 p = 0.4 p = 0.5 p = 0.8

1. CiU p(1− p)(2+2p−2p2) 0.1962 0.5952 0.6250 0.3712

2. PSC p(1− p)(1+2p−2p2) 0.1062 0.3552 0.3750 0.2112

3. ERC p(1− p)(1+2p−2p2) 0.1062 0.3552 0.3750 0.2112

4. PPC p(1− p)(2p−2p2) 0.0162 0.1152 0.1250 0.0512

5. ICV p(1− p)(2p−2p2) 0.0162 0.1152 0.1250 0.0512

τp[v] p(1− p)(4+10p−10p2) 0.4410 1.5360 1.6250 0.8960

It is easy to see that the allocations found forp and 1− p would coincide because the
game isdecisive(proper and strong). Notice that the proportions between the allocations to
the players decrease asp approaches 0.5 from any of the extreme possibilities (0 or 1). Also
notice that the maximum allocation (power) for any player and the maximum total power are
got for p = 0.5 (Banzhaf value).

Next we are interested in the study and comparison of severalcoalition structures. In each
case, we have computed the coalitional valueΩp for all p∈ [0,1] and alsoΠ (for p = 1/2)
and the coalitionalp–binomial total powerT p[v;P] = ∑

i∈N
Ωp

i [v;P]. The cases and results are

as follows:

• The left–wing alliance PSC+ICV, as a previous step. The correspondingcoalition struc-
ture isP = {{2,5},{1},{3},{4}}, and the coalitional values are:

Π[v;P] = (1/2,3/8,1/2,0,1/8),

Ωp[v;P] = (2p−2p2,1.5p−1.5p2,2p−2p2,0,0.5p−0.5p2),

T p[v;P] = 6p(1− p).

• The simultaneous alliances CiU+PPC and PSC+ICV, as an alternative previous step.
The corresponding coalition structure isP = {{1,4},{2,5},{3}}, and the coalitional
values are:

Π[v;P] = (1/2,1/4,1/2,0,1/4),

Ωp[v;P] = (2p−2p2, p− p2,2p−2p2,0, p− p2),

T p[v;P] = 6p(1− p).

• The left–wing majority alliance PSC+ERC+ICV. The corresponding coalition structure
is P = {{2,3,5},{1},{4}}, and the coalitional values are:

Π[v;P] = (0,5/12,5/12,0,2/12),

Ωp[v;P] =

(

0,
1+ p− p2

3
,
1+ p− p2

3
,0,

1−2p+2p2

3

)

,

T p[v;P] = 1.

Notice thatΩp
i [v;P] > ψp

i [v] for all p∈ [0,1] andi = 2,3,5, and also thatp = 0.5 gives
the maximum ofΩp[v;P] for PSC and ERC but, at the same time, the minimum of
Ωp[v;P] for ICV.
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Incidentally, in this caseB[v;P] = (0,3/8,3/8,0,1/8), so thatB fails to satisfy the quo-
tient game property and the sharing of the dictatorial poweris by no means convincing
because of its inefficiency.

• The catalanist majority alliance CiU+ERC. The corresponding coalition structure is
P = {{1,3},{2},{4},{5}}, and the coalitional values are:

Π[v;P] = (5/8,0,3/8,0,0),

Ωp[v;P] =

(

1+ p− p2

2
,0,

1− p+ p2

2
,0,0

)

,

T p[v;P] = 1.

In this caseΠi [v;P] = βi [v] but Ωp
i [v;P] > ψp

i [v] for all p ∈ [0,1] and i = 1,3 (unless
p = 0.5, where the equality holds). Herep = 0.5 gives the maximum ofΩp[v;P] for
CiU and the minimum for ERC.

A most convenient way to analyze this set of evaluations of the coalitional behavior will
consist in considering different values ofp, and we will take 0.1, 0.4, 0.5 (this givesΠ)
and 0.8. Tables 4–7 show all these particular allocations but we prefer the following order:
p = 0.5, p = 0.4, p = 0.8 andp = 0.1.

Table 4. Evaluation according toψp andΩp for p = 0.5

scenario value CiU PSC ERC PPC ICV

initial (no alliance) β 0.6250 0.3750 0.3750 0.1250 0.1250

PSC+ICV B = Π 0.5000 0.3750 0.5000 0 0.1250

PSC+ICV and CiU+PPC B = Π 0.5000 0.2500 0.5000 0 0.2500

PSC+ERC+ICV B 0 0.3750 0.3750 0 0.1250

PSC+ERC+ICV Π 0 0.4167 0.4167 0 0.1667

CiU+ERC B = Π 0.6250 0 0.3750 0 0

In Table 4, we find that precoalition PSC+ICV does not increase the power of their mem-
bers, but it damages the strategic position of CiU and enhances the strategic possibilities of
ERC. The alternative (simultaneous precoalitions PSC+ICVand CiU+PPC) does not make
better off CiU and PPC but, instead, damages PSC, increases the power of ICV and gives
the same position to ERC. Of course, PPC loses its small powereven in joining CiU (its
only natural partner in this situation) because once PSC+ICV is formed PPC becomes a null
player.

An important point arises when considering the majority formation. According to the
Owen–Banzhaf valueB, forming a winning coalition does not change the power of itsmem-
bers with regard to the initial distribution, although it serves to reduce the outside parties to
a null position. Instead, from the viewpoint of the symmetric coalitional Banzhaf valueΠ,
coalition PSC+ERC+ICV clearly increases the power of each one of its members, and hence
it suggests to ERC the convenience to choose this coalition (which also satisfies its partners,
PSC and ICV) instead of CiU+ERC.
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Therefore, we have to point out here that after a short periodof negotiations, precisely
concerning these two options, alliance PSC+ERC+ICV was actually formed and got the re-
gional government of Catalonia, ending 23 years of CiU governments headed by Jordi Pujol
(under absolute majority of this party or with the parliamentary support of PPC). The actual
sharing of positions gave the presidency of the government to Pasqual Maragall (PSC) but the
presidency of the Parliament and the “Conseller en cap” position (a sort of vice–presidency
of the government) to Ernest Benach and Josep Lluis Carod Rovira (both ERC), respec-
tively. The remaining cabinet positions (“conselleries”)were distributed in the proportion
8:5:2 among the three parties.

Table 5. Evaluation according toψp andΩp for p = 0.4

scenario CiU PSC ERC PPC ICV

initial (no alliance) 0.5952 0.3552 0.3552 0.1152 0.1152

PSC+ICV 0.4800 0.3600 0.4800 0 0.1200

PSC+ICV and CiU+PPC 0.4800 0.2400 0.4800 0 0.2400

PSC+ERC+ICV 0 0.4133 0.4133 0 0.1733

CiU+ERC 0.6200 0 0.3800 0 0

We recall that the allocations on this (decisive) game for a given p are the same as for
1− p, so that our comments on Table 5 (p = 0.4) are the same as they would be forp = 0.6,
and the analogue holds for Tables 6 and 7.

By comparing the results given in Table 4 with those of Table 5, where it is assumed
that players are not indifferent to join a coalition of any size but, rather, they prefer not too
big coalitions (asp = 0.4), we notice that forming precoalition PSC+ICV increases abit the
power of its members. Its effects on the outside parties, as well as those of the alternative
(simultaneous formation of CiU+PPC) are the same as in Table4.

As to the formation of majorities, here, not only in the case of PSC+ERC+ICV but also
in the case of CiU+ERC, every party entering such a coalitionclearly increases its power.
However, from ERC’s viewpoint, coalition PSC+ERC+ICV gives again the best fraction of
coalitional power.

Table 6. Evaluation according toψp andΩp for p = 0.8

scenario CiU PSC ERC PPC ICV

initial (no alliance) 0.3712 0.2112 0.2112 0.0512 0.0512

PSC+ICV 0.3200 0.2400 0.3200 0 0.0800

PSC+ICV and CiU+PPC 0.3200 0.1600 0.3200 0 0.1600

PSC+ERC+ICV 0 0.3867 0.3867 0 0.2267

CiU+ERC 0.5800 0 0.4200 0 0

It is worth mentioning that almost all (initial or coalitional) power allocations given in Ta-
ble 6 are lower than in the previous cases. The only exceptions are for ICV in PSC+ERC+ICV
and ERC in CiU+ERC. Nevertheless, the variations undergoneby the initial allocations
when the precoalitions form are similar to those found in Table 5. The new feature here
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is that, in these circumstances (p = 0.8), ERC would clearly prefer CiU+ERC instead of
PSC+ERC+ICV.

Table 7. Evaluation according toψp andΩp for p = 0.1

scenario CiU PSC ERC PPC ICV

initial (no alliance) 0.1962 0.1062 0.1062 0.0162 0.0162

PSC+ICV 0.1800 0.1350 0.1800 0 0.0450

PSC+ICV and CiU+PPC 0.1800 0.0900 0.1800 0 0.0900

PSC+ERC+ICV 0 0.3633 0.3633 0 0.2733

CiU+ERC 0.5450 0 0.4550 0 0

Finally, Table 7 exhibits the same trends as Table 6 but they are even strengthened. Again,
ERC would prefer CiU+ERC, and notice that the increase of itspower in agreeing to form
this coalition would be greater than in the previous case.

It is not difficult to see that ERC would prefer option PSC+ERC+ICV instead of CiU+ERC

if, and only if, p ∈ (5−
√

5
10 , 5+

√
5

10 ), would remain indifferent ifp = 5±
√

5
10 and would prefer

CiU+ERC if p /∈ [5−
√

5
10 , 5+

√
5

10 ].
As a conclusion of our analysis, we find that the evaluation ofgames and games with

a coalition structure by means of binomial semivalues and symmetric coalitional binomial
semivalues provides a new approach to the study of the coalitional bargaining. Some general
properties sketched only on the basis of this instance should deserve further attention. And,
finally, the extension of the coalitional theory to probabilistic values might be, in the near
future, an interesting research field.

6 A historical note

Shapley [50] (see also Roth [49] and Owen [44]) initiated thevalue theory for cooperative
games. TheShapley valueapplies without restrictions and provides, for every game,a sin-
gle payoff vector to the players. The restriction of the value to simple games gives rise to the
Shapley–Shubik [52] power index, that was axiomatized by Dubey [24] introducing the trans-
fer property. As a sort of reaction, Banzhaf [11] proposed a different power index (see also
Coleman [21], and even Penrose [47]), that Owen [40] extended to a dummy–independent
and somehow “normalized”Banzhaf valuefor all cooperative games. A nice almost com-
mon characterization of the Shapley and Banzhaf values would be given by Feltkamp [28],
and a sound interpretative and comparative analysis has been carried out by Laruelle and Va-
lenciano [35]. See also Owen [42], Dubey and Shapley [25], Lehrer [38], Dragan [22] and
Carreras [13].

Dubey, Neyman and Weber [26] axiomatically introduced the notion of semivalue, that
encompasses both the Shapley and Banzhaf values (see also Weber [57] and Einy [27]). We-
ber [58] gave an alternative characterization for semivalues and introduced theprobabilistic
valuesby dropping anonymity.

Many authors have been working on semivalues. We will refer only to the most re-
lated to the present paper. Carreras and Freixas [15] and [16] introducedregularsemivalues.
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Puente [48] devoted much of her Ph.D. thesis to semivalues and introducedbinomial semival-
uesas a natural generalization of the Banzhaf value (see also Freixas and Puente [29], where
different ways are provided to evaluate the importance of the components in a given reliability
system based on semivalues and probabilistic values). Laruelle and Valenciano [36] and Car-
reras, Freixas and Puente [20] investigated semivalues as power indices, that is, by restricting
them to simple games. Finally, Carreras and Freixas [17] suggested several applications of
semivalues based on their versatility.

Games with acoalition structurewere introduced by Aumann and Drèze [10], who ex-
tended the Shapley value to this new framework in such a manner that the game really splits
into subgames played by the unions isolatedly from each other, and every player receives the
payoff allocated by the restriction of the Shapley value to the subgame he is playing within
his union. A second approach was used by Owen [41], when introducing and axiomatically
characterizing his coalitional value (Owen value). In this case, the unions play aquotient
gameamong themselves, and each one receives a payoff which, in turn, is shared among its
players in an internal game. Both payoffs, in the quotient game for unions and within each
union for its players, are given by applying the Shapley value. Further axiomatizations of the
Owen value have been given bye.g. Hart and Kurz [33], Peleg [46], Winter [59], Amer and
Carreras [6] and [7], Vázquez, van den Nouweland and Garcı́a–Jurado [56], Vázquez [55],
Hamiache [31] and [32], Albizuri and Zarzuelo [3] and Albizuri [2].

By applying a similar procedure to the Banzhaf value, Owen [43] got themodified Banzhaf
valueor Owen–Banzhaf valuefor games with a coalition structure. In this case the payoffs at
both levels, that of the unions in the quotient game and that of the players within each union,
are given by the Banzhaf value. This modified value was axiomatically characterized only
recently, by Albizuri [1] and [2] and, independently, by Amer, Carreras and Giménez [9].
Interesting interpretations of this value as a power index when restricted to simple games can
be found in Laruelle and Valenciano [37].

The natural generalization of semivalues for games with coalition structure has been car-
ried out by Albizuri and Zarzuelo [3]. These authors provideaxiomatic characterizations in
both cases: thehomogeneousone, when a common semivalue is used by unions in the quo-
tient game and by players within each one of them (see also Giménez [30] and Amer and
Giménez [8] for this case), and theheterogeneousone, where different semivalues apply in
the quotient game and (uniformly) within all unions.

Alonso and Fiestras [4] realized that the Owen–Banzhaf value fails to satisfy two inter-
esting properties of the Owen value: symmetry in the quotient game and the quotient game
property. Then they suggested to modify the two–step allocation scheme and use the Banzhaf
value for sharing in the quotient game and the Shapley value within unions. This gave rise
to a new, heterogeneous coalitional value that can be compared with the Owen value and
satisfies the above properties.

In fact, heterogeneous coalitional values are a particularcase of mixed coalitional values.
Mixed coalitional values were already suggested by Carreras and Magaña [19] in a more
general setup (see also Alonso, Carreras and Fiestras [5]).The idea is that unions might
use any value in the quotient game and, then, the players of each union might use a value
different from that of the unions and from those used within other unions. Notice that the
unions are, in general, of a different nature from the original, single players, and even from
each other, and the quotient game may well possess features not found in the initial game.
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The question is not, therefore, “why will the unions follow,as entities, a way different from
players’ one?” but, rather, “why not?” After all, freedom isa human aspiration that we should
take into account in our mathematical modeling of the real life behavior, and the contract for
forming each union could (in fact, it should) perfectly specify the way to share profits among
its members.

Then, a formal notation will help us to better distinguish the several coalitional evaluation
criteria that can arise. Letσ be the semivalue used by unions andρ1,ρ2, . . . , ρm be the
semivalues respectively used by each union. We denote the compound rule as

σρ1,ρ2, . . . ,ρm.

With this notation, a first level of homogeneity is achieved in caseσρ,ρ, . . . ,ρ = σρm for some
commonρ. Thus, Alonso and Fiestras’ [4] symmetric coalitional Banzhaf value isΠ = βϕm,
whereas the symmetric coalitional binomial semivalue introduced in this paper isΩp = ψpϕm,
whereψp is the binomial semivalue defined by numberp. A further homogeneity level is
finally found in the case whereσ = ρ, like in Owen’s classical extensions: the Owen value is
Φ = ϕϕm and the Owen–Banzhaf value isB = ββm.

Great attention has also been paid to the computation of values, usually in terms of the
multilinear extension(Owen [39]) of the original game. Thus, Owen [39] refers to the Shap-
ley valueϕ, Owen [40] to the Banzhaf valueβ, and Owen and Winter [45] to the Owen value
Φ. Carreras and Magaña [18] have applied the same procedure to the Owen–Banzhaf value
B, and Carreras and Magaña [19] have studied the multilinearextension of the quotient game.

More recently, Alonso, Carreras and Fiestras [5] apply the multilinear extension method
to the Alonso–Fiestras valueΠ, and also to a “counterpart” valueM = ϕβm introduced by
Amer, Carreras and Giménez [9]. In Puente [48] it is shown that the binomial semivalues
can be computed in a way very close to that of the Banzhaf value. Giménez [30] and Amer
and Giménez [8] prove that (a) any other semivalue requiresusing a geometrical reference
system of the semivalue simplex, given by anyn different binomial semivalues, and a linear
map whose matrix depends on (the partial derivatives of the multilinear extension of) the
game and the reference system —it also applies, of course, tothe Shapley value, with no in-
tegration step—, and (b) the homogeneous coalitional semivalues can be computed by means
of a bilinear form whose matrix depends, again, on the game and the reference system. It
is worthy mentioning here that in the case of coalitional binomial semivalues Carreras and
Magaña’s [18] procedure applies as well.
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[9] Amer, R., Carreras, F. and Giménez, J.M. [2002]: “The modified Banzhaf value for
games with a coalition structure: an axiomatic characterization.” Mathematical Social
Sciences43, 45–54.
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