ON THE GEOMETRY OF QUADRATIC MAPS OF THE PLANE
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ABSTRACT. In this article we give a geometric classification of the set of quadratic
maps of the plane. The fundamental step is the proof that the restriction of the
map to the critical set is injective, from which it follows that there are finitely
many classes of geometrically equivalent maps. In the last sections we apply this
geometric knowledge to obtain some simple dynamical properties of a particular
family of quadratic maps.

1. INTRODUCTION

Let @ be the set of quadratic self-mappings of the real plane endowed with the topol-
ogy of coefficients. In [1] it is proved that six parameters are enough to describe an open
and dense subset @), of Q; in addition, every map in (), without fixed points has trivial
dynamics. This constitutes a version, for non-invertible mappings, of the well known
Brouwer’s theorem [2], which states that an orientation preserving homeomorphism of
the plane having no fixed points has empty limit sets; on this topic see the article of J.
Franks [4].

This paper is devoted to show a geometric classification of that open and dense set.
We took adventage of this classification to analyze some interesting properties of a real
one-parameter family of endomorphisms on the complex plane. The meaningful concept
in our approach is the geometric equivalence of maps. We recall that two smooth maps
fyg : M — N are (geometrically) equivalent if there exist smooth diffeomorphisms
w: M — M and ¥ : N — N such that fop =1 og. A map is stable if it has a
neighborhood consisting of equivalent maps. Clearly ¢ (resp. ) carries critical points
(resp. critical values) of g to critical points (resp. critical values) of f; further, critical
sets of equivalent maps are diffeomorphic.

We briefly describe some other geometric invariants that we will consider throughout
this paper. If f: M — M is a smooth and proper map, then the number of preimages
of every regular point is finite and constant in each connected component of the set of
regular values of f. If the set of regular values of such a map f has k components and
a1 < --- < ag are the number of preimages in each one of these components, then we say
that f has type (a1, ...,ax). We also recall that generically real planar maps have only
two kind ofcritical points: folds and cusps, both having simple local canonical forms.
The number of cusp points, the type of the map and the absolute value of the degree of
the map are invariants of geometric equivalence. Each of these invariants is sufficient to
characterize the geometric equivalence classes among the endomorphisms in Q). This is
a consequence of the following proposition whose proof is contained in lemmas 1 and 2
below.

Proposition 1. The restriction of G € Q4 to its critical set is injective.
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In the above referred lemmas it is also proved the existence of just two classes of
geometric equivalent maps in the generic set ()y; in addition, it can be proved that
there exist finitely many classes of geometrically equivalent quadratic maps (see at the
beginning of paragraph 6.1 in section 6). The proof of these lemmas rest on geometrical
objects that represent the set of critical values of quadratic maps in that equivalent
classes: deltoids and hypdeltoids. Deltoids, also called 3-cusped hypocycloids, were
first studied by Euler in 1745 while considering optical problems, they have a simple
parametrization with sine and cosine functions. Dual parametrizations with hyperbolic
sine and cosine functions give rise to a geometrical object that we called hypdeltoids.
The striking property of these curves in our context is that they describe the sets of
critical values and its preimages, which gives an accurate geometric description of maps

in Qg:
Theorem 1. For the open and dense set Qg the following properties hold:

(i) For every G € Qg, the point at 0o is an attractor.
1) Every map in is geometrically stable.
y map g9 Y
(11t) There exist only two classes, Q4+ and Q_, of geometric equivalence in Q.
(iv) Every G € Q_ is of type (2,4), has degree £2 and the set of critical points is an
ellipse containing exactly three cusp points.
(v) Every G € Q4 is of type (0,2,4), have degree 0 and the set of critical points is a
hyperbola containing exactly one cusp point.

2. THE GENERIC SET (),
Consider the set of all real planar maps defined, for every (z,y) € R?, by
G(z,y) = (pry + ax + by + k1,72 + sy + twy + cx + dy + ko), (1)

where prs # 0. It was proved in [1] that the set of maps affinely conjugated to a map
of this form is open and dense in Q. Let Qg4 be the set of maps Gy satisfying:

e Gy is affinely conjugated to a map of the form (1);

e The critical set of Gy is either an ellipse or a hyperbola.

It is easy to see that (), is open and dense in ). Additionally, note that Gy € Q)
has an ellipse (resp. a hyperbola) as its critical set if, and only if, there is a G as in (1)
with rs < 0 (resp. rs > 0) and affinely conjugated to Go. This property splits @, into
two disjoint subsets: (_, consisting of maps in ¢4 whose the critical set is an ellipse,
and @4, consisting of those maps whose critical set is a hyperbola.

Take Gy € @Q_ and G as in (1) which is affinely conjugated to Gp. After the change of
variables (X,Y) = (\/—rs z, —sy) and an appropriate traslation, the map G is written
as:

t—2b bt + 2
G(m,y):<pxy+ax+by+k:1,x2—y2+t:ﬁy+ap x+ +ea

Y+ k2> . (2)

Let ©_ be the family of maps in @_ and defined as in (2). Notice that if G € ©_ is
as above, then its critical set / is given by the circle with Cartesian equation 22 + y? =
(a® + b?) /p?; obviously a® + b* > 0. We refer this kind of maps as the normal form for
Q-_.

In analogous way, maps in ()4 are affinely conjugated to a map of the family 6,
given by the normal form:

at — 2b bt — 2a
T +

G(z,y) = <pxy+ax+by+k1,x2+y2+txy+ y—i—kzz), (3)
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whose critical set £ is the hyperbola given by y? — 22 = (a® — b?)/p?; note that a? > b2,
otherwise G ¢ Q.

3. DELTOIDS AND HYPDELTOIDS

We begin this section by recalling generic properties related to critical sets of smooth
planar maps and singularities of smooth parametrized curves in R2.

Take a smooth map G : R? — R2Z. The following notions and statements were
introduced by H. Whitney in [9]. The map G is said to be good if every point p € U
is either regular or the gradient of the Jacobian matrix of G at p is non-null. If G is
a good map, then its critical set ¢ is a l-manifold. In this case, if p € ¢ and ¢ is a
parametrization of ¢ around p (p(0) = p), then this critical point is called a fold point
of Gif d(Gow)/dt #0 at t =0 and p is a cusp point of G whenever d(G o )/dt = 0
and d?(G o p)/dt? # 0 at t = 0; these definitions are independent of the choice of the
parametrization. In that seminal article Whitney found a generic set of good maps: the
set of excellent maps, which are characterized by the fact that the critical set is only
composed by fold or cusp points. Furthermore, local normal forms for these critical
points were constructed. If p is a fold point, then the map G is equivalent, in some
neighborhood of p, to the map (z,y) — (22, y) in a neighborhood of the origin; so G is
locally of type (0,2). For cusp points the normal form is given by (z,y) — (zy — 22, y),
which implies that cusp points are isolated and the mapping is of type (1,3) around
p. It is proved in [7] that the restriction of a generic map G to any component of
the complement of G~1(G(¥)) is a covering map whose image is a component of the
complement of G(¢); see Lemma 3 in section 4. Therefore, determining the critical sets,
the critical values and the preimages of the critical values is essential in the description
of the geometry of a generic map.

Additionally to the notion of cusp point as critical point of smooth maps we deal
with cusp points as singularities of plane smooth curves. In order to recall this notion
we consider a parametrized smooth curve y(t) = (x(¢),y(t)), where ¢ is varying in an
open interval. Take a singular point p on this curve, that is, p = (z(¢g),y(to)) for some
to € I, and 2/ (to) = y'(to) = 0. Hence it holds that

z(t) = mo + a(t —to)* + b(t — to)® + Ri(t), and
y(t) = yo + c(t —to)? + d(t — to)” + Ra(1),

where R;(t)/(t —t9)® — 0 when t — t(, i = 1,2. Assuming a® + ¢ > 0, the curve 7 is
tangent to the line through p with slope ¢/a if a # 0, and it is tangent to the vertical line
x = x( at that point when a = 0. Observe that this assumption implies that near p the
curve is injective and this singularity is isolated. The singular point p is said to be an
ordinary cusp (or simply a cusp) on v when ad —be # 0. It is easy to see that under this
open condition on the derivatives of second and third order, the two branches of v near
p, that is {vy(t) : t < to} and {y(t) : t > to} with |t — to| small, are located in different
sides of the tangent line. The same notion of cusp point on simple and piecewise regular
curves is introduced in [3].

3.1. Deltoids and maps in ©_.

Definition 1. For « € [0, 2), the regular a-deltoid (deltoid, for short) is the parametrized
smooth closed curve A, given by:

Ay (w) = (sin(2w) + 2sin(w + @), cos(2w) — 2cos(w + «)), w € [0,2m). 4)
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Notice that Ag(w) = ie~ 2 — 2ie* @+ In this way it is easy to verify that:
e The function A, : [0, 27) — R? is injective; hence A, is a closed simple curve.
e Only at w = (7 — )/3,(37 — «)/3,(5nr — «)/3 it holds dA,(w)/dw = 0. That
is, A, has three singularities. Since d?A,(w)/dw? # 0 for all w € [0,27) and the
imaginary part of the product d?A,(w)/dw?. d3A,(w)/dw? is non-null at the values
where dA, (w)/dw = 0, then that three singularities are cusp on the deltoid A,. Here
Z denotes the conjugate of the complex numbre z.

An implicit Cartesian equation of A, can be obtained by eliminating the variable w
in the equations = = sin(2w) 4 2 sin(w + «) and y = cos(2w) — 2 cos(w + «). Indeed, with
the proceduce described in [8, p. 206] one arrives to D, (x,y) = 0, where

Dy(z,y) = (2® + y?)(2* + y* + 18) + 8z(3y? — x?) sin(2a)
+ 8y(32% — y?) cos(2a) — 27.
It is simple to check that for all & € [0, 27) the function D, satisfies
Dy =DgoJoR 543, (5)

where J is the reflection with respect to the vertical axis and R_5, /3 is the rotation by
angle —2a/3.

FIGURE 1. Regular deltoids with a =0, g, 1%”.

Take G € O_ as in equation (2). Recall that its critical set ¢ is the ellipse given by
2?2 +y? = p?/p?, where p = Va2 + b?. Fix a € [0,27) such that

(a,b) = p(cos(a),sin(a)), (6)
and parametrize ¢ as
l(w) = g(sin(w),cos(w)), w € [0, 2m). (7)
With these considerations G(¢(w)) is written, for all w € [0, 27), as:
2
p
Gt =4 (580 ) ®
where « and p are given by (6) and A is the affine bijection:
1
A(.’.ZZ, y) - 5((pa t)ZE + (Ov 72)y) + (kla k2) (9)

Notice that (8) and the existence of the three cusp points on A, imply that G has only
three critical point of cusp type: ¢((m — «)/3),4((37 — «)/3) and £((5b7 — «)/3). It is
also concluded that the restriction of G to £ is an injective function.
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Now we will analize the preimage under G of G(¢). First, it is clear that (z,y) belongs
2
to G~1(G(0)) if and only if 5 A7'G(z,y) € Aq; that s,

2 2 2b 2b 2
& <2afy + et Dy ey D “y) € D;(0).
P P p P p

Introducing the change of variable (X,Y’) = %(x, y), using (6) and defining
H(X,Y) = (2XY + 2X cos(a) + 2Y sin(a), —X? + Y? + 2X sin(a) — 2Y cos(a)),
it follows that (z,y) € G1(G(¥)) if and only if (D, 0o H)(X,Y) = 0. A straightforward
calculation leads to the identity
(DaoHoR_,;3)(X,Y)=(X*+Y?-1)’D,(X,Y).
From (5) one obtains D, o R, /3 = D, /2, consequently
(Do o H)(X,Y) = (X?4+Y?—1)°D, »(X,Y).

This implies that G~1(G(£)) = £ U, where £ is the deltoid obtained as the homothetic
transformation with scale p/p of the deltoid A, /5. From this fact one can verify that ¢
is contained in the closure of the bounded component of the complement of Z moreover,
¢ and /¢ are tangent at the three cusp points in /.

The following lemma summarizes the preceding discussion.

Lemma 1. If G € O_, then its critical set £ is a circle having exactly three cusp points,
the restriction of G to { is injective, the set G(€) is a deltoid and G=1(G({)) is the union

of £ and another deltoid ? which is tangent to £ at the three critical points of cusp type.

3.2. Hypdeltoids and maps in ©,. Now we will proceed in very similar way as above
to analize the geometry of the set of critical values of maps in 6.

Definition 2. Given « € R, the regular a-hypdeltoid (hypdeltoid, for short) is the pair
of parametrized curves AL given by:

AZ(w) = (sinh(2w) + 2sinh(w + ), — cosh(2w) & 2 cosh(w + a)), w € R. (10)

For i = 1,2 and 0 = £ we denote by ¢7(w) the ith-coordinate of AZ(w). Suppose
that for w,w’ € R are satisfied ¢ (w) = ] (') and 3 (W) = @, (w'). This implies
that — cosh(3w + «) = cosh(3w’ + a), which occurs when w = w’ = —§; but ¢ (—§) #
@5 (=% ). Thus, the branches A; and A are disjoint. On the other hand, since o7 isa
function onto R and dp} (w)/dw # 0, it follows that A} is an embbeding of R; indeed,
it is the graph of a smooth function. With respect to the branch A_, it is easy to see
that dy] (w)/dw = dp; (w)/dw if and only if w = —§. Hence, on Ay there is only one
singularity; moreover, by analyzing the values of the second and third derivatives of ¢;
at w = —5 we conclude that this singularity is a cusp point. Furthermore, as ¢7 is a
function onto R, d*p; (w)/dw? < 0 and dg] (w)/dw = 0 exactly at w = —% and w = a,
then the function w — A (w) is injective, and the branch A is topological immersion
of R.

Now we will obtain a Cartesian equation for AZ. First we introduce

x = sinh(2w) + 2sinh(w) and y = — cosh(2w) £ 2 cosh(w). (11)

Since y? — 22 = 5 F 4cosh(3w), the equation on the right side of (11) implies that
u = 3(y/3=2y+1), by setting u = cosh(w). But cosh(3w) = 4u® — 3u, then

(y* — 2%)(y? — 2 +18) + 8y(32? +y?) — 27 =0
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is an implicit Cartesian equation of A(jf. Thanks to this Cartesian representation and
the identity

A7 (W) = (W) + Ba(AF (W) = p(w)),
where p(w) = (sinh(2w), — cosh(2w)) and B, is the linear map given by the matrix
(Cosh(a) sinh(a
(

sinh(a) cosh )) , we get (after a tedious computation) that the zero set of

Hy(z,y) = (2% — y?) (2 — y* — 18) — 8z(2? + 3y?) sinh(20)

+ 8y (32 + y?) cosh(2a) — 27

is a the Cartesian description of Ag. It is simple to check that H, = Hyo Sy, where S,
cosh(2a/3) — sinh(2a/3))

is the linear isomorphisms given by <_ sinh(20/3)  cosh(2a/3)

/’—SL
,15/{ 3 Ns -15 -10 ~5
-5 -
_15 -

FIGURE 2. Hypdeltoids with ov = —3,0, 1.

-15

Take G € O, as in (3), recall that its critical set ¢ is given by the equation y? — 2? =

p?/p?, where p = v/a? — b2 and |a| > |b|. Consider o € R such that the coefficients a
and b in (3) satisty

(a,b) = p(cosh o, sinh «). (12)
We parametrize the branches ¢4 of ¢ by

ly(w) = B(sinh(w), + cosh(w)), w € R.
p
Then the image by G of ¢4 (w) is expressed as G({+(w)) = A (Z—EA?; (w)), where A is
defined in (9). This expression allows to conclude that:
e The map G restricted to each branch ¢4 (w) is an injective function.
e There is only one cusp point in the critical set of G, which belongs to ¢_. The
remaining critical points are all of the fold type.

e A point (x,y) € G71(G(¥)) if and only if i—zA_lG(x,y) € AL, that is
2 2 2b 2b 2

p—Q (2xy + 20 oy —a? P St ay) € H,'(0).
p p p p p

Making (X,Y) = E(z,y), equation (12) implies that (z,y) € G~Y(G(¥)) if and only
if (Hy oh)(X,Y) =0, where

h(X,Y) = (2XY 4+ 2cosh(a)X + 2sinh(a)Y, —X? — Y2 4 2sinh(a)X + 2cosh(a)Y).
It can be checked that for all X,Y € R it holds
(Hoo h)(X,Y) = (14+ X2 = Y22H, »(X, V).
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Thus, the zero set of the polynomial (H, o h)(X,Y) is the union of the hyperbola

1+ X2 —Y? =0 and the hypdeltoid H,/»(X,-Y) = 0. Therefore, G™*(G({)) is the

union of the hyperbola ¢ and the hypdeltoid obtained as the homethetic transformation

with scale p/p of the reflection respect to the horizontal axis of the hypdeltoid A: /2
We summarize the precedent exposition in the following lemma.

Lemma 2. If G € O, then its critical set ¢ is a hyperbola containing only one cusp
point, the mapping G is injective when it is restricted to £, the set of critical values G(£)
is a hypdeltoid and its preimage is the union of £ and a hypdeltoid .

4. PROOF OF THEOREM 1

As all the statements in Theorem 1 are invariant under affine conjugation, we only
consider generic quadratic maps.

Proof of part (i) of Theorem 1. Take a generic map G as in equation (1), that is
G(x,y) = (pry + ax + by + ky,r2* + sy” + tay + cx + dy + ka),

with prs # 0, by simplicity we assume p > 0. Let |(x,y)| = max{|z|, |y|}. We show
that there exists Ky > 0 depending only on G such that, for K > K, the condition
|(xz,y)| > K implies |G(z,y)| > 2K. So it is clear that oo is an attracting fixed point
for G. Indeed, assume that |(z,y)| > K and |z| > |y|. If |pry + ax + by + k1| < 2K and
K is large enough, then:

2K + |ax + k1| < 2K + |al|z| + |k1]

y <

vl bz + 5] plal — I
2K + |k1] |al <§ M<3+2|a|
pK—b| p-pl/K "p p = p

This inequality implies that:
t(3+2|a s|(3+2la))?  |d|(3+2]a
e > - (|82 ) - L2 _ s 2k
p p p
since r # 0 it follows that |G(z,y)| > 2K if K is sufficiently large and |z| > K. The
proof for the case |y| > |z| is similar. O

— ko;

For the proof of the other parts of theorem 1 we will use the following result, which
can be found in [7].

Lemma 3. Let G be a smooth proper map on a manifold M. The restriction of G to
any component of the complement of G=Y(G({)) is a covering map whose image is a
component of the complement of G(¢).

The proof of this lemma is based on the fact that every point y in G(C) has finitely
many preimages, where C' is a component of the complement of G=(G(¢)). Then the
result holds even if the set of critical points is not bounded. Note that part (i) proved
above implies that the restriction of G' to a component of G~!(G(¥)) is a proper map.

Proof of part (iv) of Theorem 1. Let G be a map in ©_ as in (2). Denote by ¢, co and
cg the cusp points of G. Besides the injectivity of G when restricted to ¢, Lemma 1
describes the way as the sets £, G(¢) and G~1(G(£)) = ¢ U ¢ are displayed, just as figure
3 shows.
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G(c1)

G(c2) G(cs)

FIGURE 3. Critical set, critical values and its preimage for maps in ©_.

Note that the regions A, B, C and D are topological discs and constitute the bounded
components of the complement of G~ 1(G(£)). It follows from Lemma 3 that the restric-
tion of G to each of these regions is a homeomorphism onto the bounded component of
the complement of G(¥).

Claim: Fvery point in the unbounded component of the complement of G(£) has two
preimages.

Note that the first coordinate of G(x,y) can be made pry + by + u by a translation
in the second coordinate. The preimage of a point (u,v) (with v > 0 large enough)
satisfies y = 0 or & = —b/p. Substituting & = —b/p in the second coordinate of G, and
assuming v large, there exist two solutions for y. On the other hand, substituting y = 0
in the second coordinate of G(z,y), and taking v large, it comes that two solutions for
x exist because v > 0. Hence, from Lemma 3, the restriction of G to the unbounded
component £ of the complement of G~ (G(¥)) is a two-to-one covering of the unbounded
component of the complement of G(£).

It remains to calculate the degree of G. As in the claim, take (u,v) with v > 0 large
enough and having preimages (z+,0). The determinant of DG at these points has the
same sign of —v, so the degree is —2. J

Proof of part (v) of Theorem 1. Consider a map GG € © whose critical set is the hy-
perbola €. Let £, and ¢; be the branches of ¢; we assume that £; contains the unique
cusp point ¢; of G, the remaining critical points of G are fold points. As G(#,) and
G(€3) are the branches of the hypdeltoid G(f) (see Lemma 2), it follows that the set
of regular values has three components: Yy, Ys and Y;. As in the proof of part (iv)
above, one can take now a point of the form (u,—v) with v large enough to conclude
that there are points with no preimages. It follows immediately that the degree of G is
zero in this case. Moreover, by the normal form at cusp points (see the remarks at the
beginning of Section 3) there exists a basis of neighborhoods of a cusp whose images are
open. Therefore, exactly one of the three regions contained in the complement of G(¢)
has no preimage under (; this component will be denoted by Yj. It follows also that
the boundary of Y} is equal to G(f2), because there cannot be images of cusps points in
the boundary of Yy. Then denote by Y, the other region having G(£2) in its boundary.
Points in Y, have two preimages because passing through G(£5) from Yj to Y5 means
an increasing in two units of the number of preimages; this follows by using the normal
form at fold points. With similar arguments using the normal form at cusp points it
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follows that every point in the region Y; whose boundary is G(¢,), has four preimages
(¢y contains the cusp point).

Yo
Y,
G(f2)
G
s
Ya

FIGURE 4. Critical set, critical values and its preimage for maps in 0.

It remains to describe the set G~ 1(G(£)). Note that G~ 1(G(£2)) has only one compo-
nent, the contrary assumption would imply that points in Yj have preimages. It follows
that the hypdeltoid £ = £} U #{ in the preimage of G(f) (see Lemma 2) is contained in
G Y(G(£)). Then G 1(G(£y)) = €, UL U L. Now we want to determine the location
of the branches of £. First note that as #1 has a cusp, then using again normal forms, it
comes that one of the branches of E’: say £, is tangent to ¢, at ¢;. Now take a simple
curve « joining G(£1) \ {G(c1)} to G(¢2) and whose interior is contained in Y,. It is
claimed that G—!(v) satisfies the following properties:

(1) Its interior is a simple arc, denoted from now on as ~'.

(2) One of the extreme points of 4" belongs to £}, the other one belongs to #7.

(3) The preimage of v NY; does not intersect £;.

Proof of these assertions: (1) Note that the two preimages of points in Y; are located at
different sides of £5. This is because £3 only contains fold points. Recall from the normal
form at a fold type critical point that the preimage of a simple curve intersecting ¢, at
just one point is a simple curve.

(2) and (3). Note that £} cannot intersect £ because their images are disjoint, recall
that G|y is injective. The same thing occurs with #{ and #;. Hence 7" cannot have
both extreme points in the same component of the preimage of G(£). So, to complete
the proof of both (2) and (3) it remains to show that its end points cannot belong to
¢,. Assume that one of the extreme points of 4 belongs to £;. As £ is a set whose
points (excepting ¢;) are critical points of fold type, then points in v N Y2 would have
preimages at both sides of £, but then these points would have more than two preimages
contradicting the definition of Y.

Supported on these arguments we conclude that the complement of G~ 1(G(£)) is the
union of six regions: A, B, C, D, F and F. The restrictions of G to A, B, C and F
are homeomorphisms onto the region Y;, while the restrictions of G to D and F are
homeomorphisms onto the region Y5; see figure 4. ()
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Proof of part (i) of Theorem 1. For the proof of this parte one must find, for any per-
turbation G of G, diffeomorphisms ¢ and v such that ¢y o G = Go . Consider first a
map G € ©_. It was shown above that this map has the geometrical structure described
in figure 3. What must be shown now is that any perturbation G of G has the same
geometrical structure, that is, the set of critical points of G and G must be diffeomor-
phic, as well as the sets of critical values; moreover, the number of components of the
complement of G~!(G(¢)) must remain unchanged after perturbation. Indeed, assume
that we have proved that for G the following picture is realized:

(1) The set of critical points £ of G is diffeomorphic to a circle and contains exactly
three cusps.

(2) The image G() of £ is a simple closed curve of class C except at the image of the
cusp points of G.

(3) The preimage of G(¢) is equal to the union of £ and another simple closed curve
which is of class C'! except at three points. Moreover, £ is contained in the bounded
component of the complement of § except at the cusps of ¢, where a tangency
between ¢ and ¢ occurs. B

(4) The complement of the preimage of G(¢) is equal to the union of five regions, the
map G is injective in each one of the four bounded regions, and it is two-to-one in
the unbounded one.

With these properties at hand, one can easily construct the diffeomorphisms making
the equivalence. Begin with a diffeomorphism ¢ carrying the closure of the bounded
component D of the complement of ¢(G) to the closure of the bounded component D
of the complement of E(é) By property (1) above it is obvious that this can be done
with the additional assumption that ¢ carries cusps to cusps. Denote by ¢y, s, c3 the
cusps of G and by ¢; = ¢(¢;), i = 1,2,3. Properties (2) and (3) above imply that the
bounded components of the complement of G~ (G(é)) are four: A, B, C and D, they
are labeled as in figure 3; that is, Ais the region containing in its boundary ¢ and ¢4, B
is the component containing in its boundary ¢; and ¢}, C is the component containing
¢y and ¢4, and D as described above. Use corresponding notations (A, B,C, D) for the
components of the complement of the preimage of G(¢(G)). We proceed to extend ¢ as
follows: for a point z € A, there exists a unique point in y € D such that G(y) = G(x).
Then define () as the unique point in # € A such that G(Z) = G(¢(y)). Note that ¢
was defined in A as

= (Gl3) o Glg 090 (Glp) ' oGla.

Similar extension to B and C. Thus, ¢ is defined in the closure of the union AUBUCUD.
Observe that the equation above implies that ¢ is differentiable in the union of the
interiors of these regions. It is also is smooth in the boundary of D. In common
boundaries it is well defined because the common boundaries are critical points and ¢
satisfies the symmetric property:

G(z) = G(y) implies G(p(x)) = G(e(y))- (13)
This formula also implies the smoothness of ¢ at those boundaries. It remains to define
¢ in E, the unbounded component of the complement of G~ (G(4(G))). That is, ¢ must
be any diffeomorphism from E onto E with prescribed boundary values, and such that
the symmetric property holds. To construct this, let L be an unbounded simple line
starting at G(c;), and note that the preimage of L under G has two components: L; and
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Lo, recall that L is simple and G|g is a covering of the annulus. Note that G=1(G(cy))
has two preimages, one of which is ¢1, and assume that L has ¢; as its unique extreme
point. Let Zl (i = 1,2) be equally constructed for é as above ¢ is the extreme point
of Zl Let ¢ be any diffeomorphism from L; to El Then extend ¢ to Lo, making as
before: for xo € Lo there is a unique L3l in Ly such that G(xg) = x1, hence one can
define ¢(z5) as the unique point Zs in Ly such that G(Z) = G(p(x1)). Observe that ¢
was defined twice at the points G=1(G(cy1)), but both definitions coincide. As E is an
annulus, it follows that E \ (L1 U Ly) equals the union of two connected components V;
and V5, gnd that G is injective in each V;. Define ‘71 and ‘72 in similar way. Note that
Vi and V) are half-planes and that ¢ was already defined as a diffeomorphism from the
boundary of V; onto the boundary of V;. It is easy then to extend ¢ to a diffeomorphism
from Vi onto ‘71. Making the same trick as above, extend ¢ to the whole L.

At this point, we have constructed a diffeomorphism ¢ from the plane onto itself
satisfying the symmetry property (13). To define 1) we proceed as follows: let y be any
point in the plane and choose any z such that G(z) = y. Then define ¥ (y) = G(p(y)).
This definition does not depend on the choice of x by the symmetry of . It is smooth
since it is locally a composition of diffeomorphisms at any point y ¢ G(¢1), and every
point in G(¢) has a preimage that is not critical. Clearly G o ¢ = v o G. This finishes
the construction of the equivalence between G and G.

Now it remains to prove that the properties (1) to (4) are satisfied for a perturbation
Gof G. A strong €' neighborhood of G is given by a function e : R? = RT and
defined as the class of maps G of the plane such that every derivative of G at a point z
is at a distance less than €(z) from the corresponding derivative of G at z. If GisaC°
strong perturbation of G, then G has an attractor at 00, from which it follows that it is
a proper map and has degree two. Moreover, given a neighborhood U of the critical set
of G, there exists a O strong neighborhood of G such that the set of critical points of
any G in that neighborhood is contained in U. This is also easy to prove since critical
points are determined by a C! condition: the Jacobian equal to zero. Furthermore,
if the perturbation is of class C?3, and the initial map G is generic, then the critical
set of the perturbation is C' close to that of G, and the type of the critical points
is preserved. That is, properties (1) and (2) are immediate application of the generic
conditions imposed on the maps G under consideration. Then property (3) follows from
the fact that the map is two-to-one in the un bounded component of the complement of
the preimage of the critical set, and finally this implies property (4).

The proof for G € © is similar and will be omitted. O

Proof of part (iii) of Theorem 1. Until now it was proved that generic quadratic maps
belong to one of two classes of geometric equivalence. It follows that no other class may
contain an open set. O

5. A ONE-PARAMETER FAMILY

In this section we analyze some global aspects of the dynamics of the one-parameter
family f,(z) = 22 —puz, where u € R, 2z € C and Z denotes the conjugated of the complex
number z. Several properties about the dynamics of this family are exposed in [5] and
[6]. If I : C — R? is given by I(z +iy) = (y,—z) and G, = I o f, o I, then

Gul(w,y) = (—2zy + px,2° — y* — py). (14)



ON THE GEOMETRY OF QUADRATIC MAPS OF THE PLANE 131

Observe that for every p the map G, belongs to ©_ and verifies the symmetries:
G,oJ =JoG, and R, oG, 0o R, = G, where J(z,y) = (—x,y) and R, is the rotation
of angle a = 7.

The map G2 has very interesting features: it is a two-dimensional analogue of the
map = — —z2 — 2z on the interval [~3,1]. The next theorem, which was proved in [5],

emphasizes the importance of this map.

Theorem 2. The following properties are satisfied by the mapping Gs:

(i) The basin of attraction of co is the unbounded component of the complement of
G2(?), where € is the critical set of Gs.

(i) The restriction of Go to the complement of this basin is conjugated to a Baker-like
map.

Let T be an equilateral triangle; joining the middle points of the sides of T one
obtains an equilateral triangle 7”. The Baker-like map mentioned in the statement
above is obtained as follows (see [5]): first, carry T into 7" by means of four affine maps
with singularities at the sides of T”, then apply a symmetry with respect to one of the
sides of 77 and finally multiply by two, to fit again on T. The map obtained has a
fixed vertex while the other two are two-periodic. Observe that the map is expanding
except for the singularities, each point in the interior of T" has four preimages, while the
restriction to the boundary is two-to-one. Moreover, this map preserves the Lebesgue
measure.

Denote by B, the basin of attraction of oo for the map G, and by 0B, its boundary.
The results stated in the theorem above imply that the deltoid Z, closure of G5 (Go(0)\
¢, is equal to G3(¢) and also equal to OBs, while the restriction of G2 to the complement
of By preserves a smooth measure. Note that the restriction of G5 to 0By is conjugated
to the circle map z — 22. The map G5 is highly unstable, the bifurcations of the
dynamics around G5 depends on the relative positions of the critical points and the
basin of attraction of co. The study of the boundary of Bs is determinant in the global
behavior of the perturbations of Gs.

We will just consider perturbations of Gy within the family G,. The main goal in
this section is to prove the next theorem:

Theorem 3. The family G, has the following two properties:
(1) If p < 2, then B, is simply connected (if considered as B, U {oo}).
(ii) The complement of B, is a Cantor set for every u large.

Since G/, belongs to ©_, the following parameter values are obtained from (2): p =
—2,a=pu,b=t=%k =ky=0. So,«a =0, p=p and A = —Id; see (6), (7) and
(9). Keeping the meaning of ¢ and ¢ for the mapping G, it follows that G, (¢) and ‘
are parametrized, respectively, by w —%Ao(w) and w — —5Ag(w), with w € [0, 27).
From these facts it is easy to conclude that:

o If =2, then / = G.0).

o If u <2, then G,(¢) C int /.

o If > 2, then G, (¢) C ext L.

Here int v and ext « denote, respectively, the bounded and unbounded regions provided
by the complement of the plane simple closed curve 7.

Lemma 4. If L is a simple closed curve such that G,,(¢) C int L, then G, * (L) is also a
simple closed curve and G, : G;;'(L) — L is two-to-one. Moreover, if Ly = G;;*(L) C

H
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ext L, then Ly = G (L1) C extLy and G,(L) C int L. On the other hand, if L is
a simple closed curve and L C int G, ({), then Ly is the disjoint union of four simple
closed curves.

Proof. The first assertion is an immediate consequence of part (iv) in Theorem 1. Next
assume by contradiction that L; C ext L and suppose that there exists a point = €
ext Ly N int Ly. Observe that if € ext Lo, then G,(x) € ext Ly. But if x € int Ly,
then G, (x) € int G,,(L1) = int L C int Ly, which is absurd; thus Ly C ext L;. To prove
that G,,(L) C int L, note that G, * (L) C ext L implies that L C G, (ext L) = ext G,(L),
therefore G\, (L) C int L. The last assertion is also direct consequence of Theorem 1. [J

Proof of part (i) of Theorem 3. As exhibited above, the deltoids G(£) and / coincide for
= 2. The vertices of this deltoid are the fixed point 72 = (0, —3) and a two-periodic
orbit {p2, g2}. Denote by r,, p,, g, the analytic continuation of these points. The circle
C through these three points is centered at the origin and has radius 1+ p. Since p < 2
we have

G,(0) Cintl C int C. (15)

Consider the function x : C — R defined by x(z) = |z| for all z € C. Observe that for
every z € ext C, x(fu(2)) — x(2) > |2|> — (u+1)|z| > 0. This says that x is a Lyapunov
function for the restriction of f, to ext C, therefore this set is contained in the basin of
oo for this map.

We claim that {G;"(ext C') },>0 is an increasing sequence of simply connected sets.
Note that the map I, defined at the beginnig of this section, leaves C' invariant; hence
ext C is also invariant under G, and contained in B,,. It follows from Lemma 4 that
G.'(C) C intC. On the other hand, equation (15) and the same lemma imply that
G;1(C) is a simple closed curve. Joining these two facts we have that

"
G M ext C) = ext G, (C) D ext C.

As G,(¢) C int C, Lemma 4 also implies that { C int G, (C). Tt follows that G, (¢)
is also contained in int G;l(C’). Hence, the preceding argument implies that G;Q(C) is
a simple closed curve, which obviously is contained in int G, *(C). Thus by a recursive
discourse, the claim follows by induction. Finally, since the basin of oo satisfies B, =
UnZO G, "(C), the proof of this part of the theorem is complete. |

Proof of part (it) of Theorem 3. A simple calculation shows that G, (¢) C int C for all
w>2(1+ \/5), so, every critical value, and hence every critical point, belongs to B,,. In

this case the complement By, of B, satisfles B}, =5, G, " (int £). Then, by standard
arguments one can prove that B, has uncountably many components, but to show that
it is a Cantor set we need to make p larger. Indeed, for u sufficiently large, it will
be showed that the distance between the critical set £ and the preimage of ¢ is large
and the differential at these points expands any vector at a constant rate. Note that

G,;'(£) has four connected components, denoted by K7, (i = 0,1,2,3). One of these
components, say Kg, is contained in int £. By calculating the vertices of Kg one can see
that for every R > 4 there exists p(R) such that Kg is contained in the disc of center
0 and radius R, for every p > p(R). Using the symmetries of the mapping, the same
—2y+p —2x

2z —2y — ,u> ’
it follows that for all (z,y) in KB, DG, (x,y) expands uniformly any nonzero vector for

property holds for every Kft. Fix any R > 4. Since DG, (z,y) = <
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every p > p(R). On the other hand, let K llt be the component contained in the exterior
of £ and intersecting the vertical axis. For every (z,y) € K, it holds that |z| < R and
—5 —y ~ p. Then the expansion of DG, at points in K i can be equally obtained.
Since the regions Kﬁ and K 2 can be obtained from K }L by special rotations, the result
follows using the symmetries of the map G,. |

6. CONCLUSIONS AND QUESTIONS.

In this final section we discuss some problems related to the topics of this article.

6.1. The geometry of critical sets. In the wide world of planar quadratic maps there
are finitely many classes of geometrically equivalent maps. In the generic set Q4 such
a classification was possible mainly by two reasons: first, the mechanism created to
understand the preimages of the deltoids or hypdeltoids; second, because these maps
are injective when restricted to its critical sets. However, for nongeneric quadratic maps
these restrictions are not necessarily injective, but one can directly check the assertion
in each one of the parts of the decomposition established in sections 7 to 9 in [1], where
the nongeneric quadratic maps of plane were classified.

It is easy to see that even within the class of generic maps of the plane having just
one component of critical points, there exist infinitely many nonequivalent maps. The
next example illustrates this claim.

Example 1. Consider the one-parameter family of plane endomorphisms:

Fu(z,y) = (2° = 3zy, y + fu(x)).

The critical set of F), is the curve y = 2% + fL(x) These maps have nondegenerate
critical points, a cusp point occurs at every (z,y) in the critical set such that 22+2f; (z)+
zf;/(z) = 0. For example, by choosing the function f, so that zf)/(z) +2f, (z) = psinz,
there exist values of p for which the number of cusps is arbitrarily large. Then there
exist infinitely many different classes of geometric equivalence within that family.

The problem of classifying under geometric equivalence degree three polynomial en-
domorphisms is not possible with similar techniques. At this point, we like to pose the
following question: Are there finitely many equivalence classes of generic polynomials of
a given degree?

6.2. Dynamics of plane maps. As was said in the introduction, it is known that
generic quadratic maps of the plane having no fixed points, must have empty limit
sets. The question arising is if the bifurcation giving rise to the appearance of a first
fixed point occurs in the boundary of the basin of attraction of co. That is, if f, is
a one-parameter family of generic maps, and fy is the first map having fixed points,
then we ask wether there exists an interval [0, po] such that f,, has a fixed point in the
boundary of the basin of co. This problem seems to be very difficult, and a positive
answer would give a new element for understanding globally the dynamics of these maps.
More generally, we state the following open question: Does a generic quadratic map of
the plane (having fixed points) necessarily have a fixed point in the boundary of the basin
of o0 ?
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6.3. Dynamics of the family G,(z) = 22 — uz and its perturbations. Some
questions that would be interesting to answer concern also with the boundary of the
basin of co. It is natural to ask if the fact that every critical point is contained in the
basin of oo implies that the nonwandering set is a hyperbolic set, however this seems
to be very difficult to prove. Being less ambitious, one can ask if at least for the one
parameter family under consideration, it holds that for parameters p little larger than
two, the complement of the basin is an expanding Cantor set.

There is another interesting question concerning the basin of co. It is clear that
the complement of the basin is a forward invariant set. It was sometimes conjectured
(for this family and also for others families of endomorphisms of the plane appearing
in diverse models) that, as some numerical experiments have shown, there is a unique
attractor in the complement of the basin of co. In other words, it is asked if the plane
is subdivided into three sets: the basin of co, the basin of another attractor and the
boundary of both sets; see [6] and references therein.

We want to state another problem. Observe that the restriction of Go to the boundary
of the basin of oo is a degree two map isotopic to the map z — 22 in the umit circle.
Moreover, this map is a local homeomorphism, but has three degenerate critical points,
whose images are periodic repellers. It is an interesting problem to solve if this invariant
curve has some kind of persistence. When p > 2 the set of critical points is contained
in the basin of oo, and it is impossible for the curve to persist. But consider the case
where p < 2. In this case the situation is different because the set of critical points does
not intersect the closure of the basin of co. We finish this section with two questions:
Is it true when p < 2 that an invariant curve persists in the boundary of the basin of
o0 ? If the answer to this question is yes, what can be said about the dynamics of the
restriction of G, to the invariant curve?
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