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Abstract

In this paper, a novel strategy for structural vibration control of multi-structure systems is presented. This strategy pays particular
attention to mitigating negative interstructure interactions. Moreover, it is based on recent advances in static output-feedback
control, which make possible the efficient computation of decentralized velocity-feedback controllers by solving a single-step
optimization problem with Linear Matrix Inequality constraints. To illustrate the main ideas, a local velocity-feedback energy-
to-peak controller is designed for the seismic protection of a two-building system. This controller is remarkably effective and
extremely simple. Moreover, it can also be implemented by a linear passive damper. To assess the effectiveness of the proposed
controller, numerical simulations are conducted with positive results.
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1. Introduction

One of the main objectives of Structural Vibration Control
(SVC) for large structures is to mitigate the vibrational response
induced by external natural disturbances, such as wind gusts,
earthquakes, or ocean waves. For multi-structure systems, the
overall response must include not only the vibrational response
of individual substructures, but also the possible interactions
between adjacent substructures.

The seismic protection of closely adjacent buildings is an
excellent example of SVC for multi-structure systems. In this
case, the action of seismic excitations can produce interbuilding
collisions (pounding), which can cause severe structural dam-
age. Moreover, the large acceleration pulses generated in the
quick and massive pounding impacts can also produce a seri-
ous damage in the buildings’ content [1–5]. Consequently, a
twofold objective must be considered in SVC designs for this
kind of multi-structure systems: (1) mitigating the structural vi-
brational response of the individual buildings, and (2) providing
protection against pounding events.

The Connected Control Method (CCM) consists in linking
together adjacent buildings by coupling devices to produce ap-
propriate reaction control forces. Over the last years, a number
of passive, active, and semiactive control strategies based on
the CCM approach have been proposed for seismic protection
of adjacent buildings with positive results (see for example [6–
15]). It should be highlighted, however, that all these works
only deal with the vibrational response of the individual build-
ings.
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An attempt of setting a more comprehensive formulation of
the problem can be found in [16, 17], where two different kinds
of output variables are considered. In these papers, together
with the interstory drifts typically used to describe the relative
displacement of adjacent stories in the same building, the inter-
building approaches are introduced to describe the approaching
between stories placed at the same level in adjacent buildings.

In contrast with previous works, the present paper is prin-
cipally focused on the interactions between adjacent buildings.
More precisely, the main goal is to design a control system to
provide a suitable protection against negative interbuilding in-
teractions produced by seismic excitations. This should also
be done without introducing negative side effects in the struc-
tural vibration response of the individual buildings. Moreover,
the control system should be as simple as possible to facilitate
its practical implementation. In terms of the output variables,
these controller design objectives can be formulated as follows:
(1) to produce a significant reduction of the interbuilding ap-
proach peak values, while (2) helping to keep the peak values
of the interstory drifts in the individual buildings within accept-
able levels. Additionally, the simplicity constraint is a broad
concept which may involve a variety of different design ele-
ments, such as partial state information requirements, reduced
information exchange, or low power consumption.

Decentralized velocity-feedback controllers can be efficient-
ly designed using recent developments on static output-feedback
control presented in [18] . This approach has been successfully
applied to design decentralized velocity-feedback controllers
and optimal passive-damping systems for seismic protection of
single buildings [19, 20]. In the present work, these new ideas
are applied to design a local velocity-feedback energy-to-peak
controller which satisfies the proposed design objectives.

For clarity and brevity, a particular two-building system for-
med by a four-story building adjacent to a five-story building
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has been selected to present the main ideas. A minimal ac-
tuation system has also been chosen, which consists in a sin-
gle actuation device linking both buildings at the fourth story
level, as schematically depicted in Fig. 1. For this two-building
system, a velocity-feedback controller that only uses the rel-
ative velocity of the fourth stories as feedback information is
designed. This controller attains a remarkable reduction of the
interbuilding approach peak values and, also, a moderate at-
tenuation of the interstory drift peak values in both buildings.
Moreover, it can be implemented in practice using a linear pas-
sive damper, that is, without sensors, no communication sys-
tem, and null power consumption. A state-feedback LQR con-
troller and a state-feedback energy-to-peak controller, which re-
quire the complete two-building state as feedback information,
are also computed and used as a reference.

To assess the effectiveness of the proposed controllers, nu-
merical simulations are conducted using the full scale North–
South El Centro 1940 seismic record as ground acceleration
disturbance. To avoid the computational complexity associated
to the pounding impacts, the numerical simulations are carried
out under the assumption that the interbuilding separation is
large enough to avoid collisions. In this case, the maximum val-
ues of the interbuilding approaches can be understood as lower
bounds of safe interbuilding separation.

The paper is organized as follows: In Section 2, a second-
order model and a first-order state-space model for the two-
building system are provided. In Section 3, the theoretical re-
sults on static output-feedback control presented in [18] are
applied to derive an effective computational strategy to design
static output-feedback energy-to-peak controllers. In Section 4,
the different controllers are computed and numerical simula-
tions are conducted to compare their effectiveness. Finally,
some conclusions and future research directions are presented
in Section 5.

2. Two-building mathematical model

2.1. Second-order model
Let us consider the two-building system schematically dis-

played in Fig. 1. The buildings motion can be described by the
second-order model

Mq̈(t)+Cq̇(t)+Kq(t) = Tu u(t)+Tw w(t), (1)

where M is the mass matrix, C is the damping matrix, and K
is the stiffness matrix. The vector of story displacements with
respect to the ground is

q(t) =

[
q(1)(t)
q(2)(t)

]
, (2)

where
q(1)(t) =

[
q1

1(t), q1
2(t), q1

3(t), q1
4(t)
]T
, (3)

q(2)(t) =
[
q2

1(t), q2
2(t), q2

3(t), q2
4(t), q2

5(t)
]T
, (4)

and q j
i (t) represents the displacement of the ith story in the jth

building corresponding to the time t. We assume that an active
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Figure 1: Two-building system with interbuilding actuation device

control device D has been implemented between the fourth sto-
ries of both structures. The control force u(t) delivered by D
produces a pair of opposite forces as indicated in Fig. 1. This
actuation scheme is modeled by means of the control location
matrix Tu. Finally, the ground acceleration disturbance is de-
noted by w(t), and Tw is the disturbance input matrix. The mass
matrix M has the following block diagonal structure:

M =

[
M(1) [0]4×5

[0]5×4 M(2)

]
, (5)

where [0]r×s is a zero matrix of dimensions r× s,

M(1) =


m1

1 0 0 0
0 m1

2 0 0
0 0 m1

3 0
0 0 0 m1

4

 , (6)

M(2) =


m2

1 0 0 0 0
0 m2

2 0 0 0
0 0 m2

3 0 0
0 0 0 m2

4 0
0 0 0 0 m2

5

, (7)

and m j
i denotes the mass of the ith story in the jth building. The

stiffness matrix has the form

K =

[
K(1) [0]4×5

[0]5×4 K(2)

]
, (8)

where

K(1) =


k1

1 + k1
2 −k1

2 0 0
−k1

2 k1
2 + k1

3 −k1
3 0

0 −k1
3 k1

3 + k1
4 −k1

4
0 0 −k1

4 k1
4

 , (9)
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K(2) =


k2

1 + k2
2 −k2

2 0 0 0
−k2

2 k2
2 + k2

3 −k2
3 0 0

0 −k2
3 k2

3 + k2
4 −k2

4 0
0 0 −k2

4 k2
4 + k2

5 −k2
5

0 0 0 −k2
5 k2

5

, (10)

and k j
i denotes the stiffness coefficient of the ith story in the

jth building. The damping matrix also has a block diagonal
structure of the form

C =

[
C(1) [0]4×5

[0]5×4 C(2)

]
. (11)

When the damping coefficients are known, the matrices C(1)

and C(2) can be obtained by replacing the stiffness coefficients
k j

i in Eqs. (9) and (10) by the corresponding damping coeffi-
cients c j

i . Frequently, however, the values of the damping coef-
ficients cannot be properly determined and the matrices C(1)

and C(2) are computed following other methods such as the
Rayleigh damping approach [21]. The control location matrix
is

Tu = [ 0 0 0 −1 0 0 0 1 0 ]T (12)

and the disturbance input matrix can be written as

Tw =−M [1]9×1 , (13)

where [1]9×1 is a column vector of dimension 9 with all its en-
tries equal to 1.

In the different controller designs and numerical simula-
tions presented in Section 4, the following particular mass val-
ues (×103 kg) have been used: m1

1 = 215.2, m1
2 = 209.2, m1

3 =
207.0, m1

4 = 266.1; m2
1 = 215.2, m2

2 = 209.2, m2
3 = 207.0, m2

4 =
204.8, m2

5 = 266.1. The particular values of the stiffness coef-
ficients (×106 N/m) are: k1

1 = 147, k1
2 = 113, k1

3 = 99, k1
4 = 84;

k2
1 = 147, k2

2 = 113, k2
3 = 99, k2

4 = 89, k2
5 = 84. These values of

mass and stiffness coefficients are similar to those correspond-
ing to the five-story building presented in [22]. The matrices
C(1) and C(2) have been computed as Rayleigh damping matri-
ces by setting a 2% of relative damping on the corresponding
first and last modes. The obtained particular values (in Ns/m)
are as follows:

C(1) = 105×
[

2.6450 −0.9034 0 0
−0.9034 2.2455 −0.7915 0

0 −0.7915 2.0078 −0.6715
0 0 −0.6715 1.3719

]
, (14)

C(2) = 105×

 2.6017 −0.9244 0 0 0
−0.9244 2.1958 −0.8099 0 0

0 −0.8099 1.9946 −0.7281 0
0 0 −0.7281 1.8670 −0.6872
0 0 0 −0.6872 1.2741

 . (15)

2.2. First-order state-space model

Now we consider the first-order state-space model

ẋ(t) = Ax(t)+Bu(t)+Ew(t), (16)

with state vector

x(t) =
[

q(t)
q̇(t)

]
. (17)

The state matrix in Eq. (16) can be written as

A =

[
[0]9×9 I9

−M−1K −M−1C

]
, (18)

where Ir denotes the identity matrix of order r. The control
and disturbance input matrices have, respectively, the following
form:

B =

[
[0]9×1

M−1Tu

]
, E =

[
[0]9×1

−[1]9×1

]
. (19)

In addition to the state variables, two different sets of output
variables are considered in this work: interstory drifts and in-
terbuilding approaches. The interstory drifts are the relative
displacements between consecutive floors of the same building,
and can be defined as s j

1(t) = q j
1(t),

s j
i (t) = q j

i (t)−q j
i−1(t), 1 < i≤ n j,

(20)

where n j represents the number of stories of building j. For
building B(1), the vector of interstory drifts is

s(1)(t) =
[
s1

1(t), s1
2(t), s1

3(t), s1
4(t)
]T

, (21)

and for B(2), we have

s(2)(t) =
[
s2

1(t), s2
2(t), s2

3(t), s2
4(t), s2

5(t)
]T

. (22)

The overall vector of interstory drifts

s(t) =
[

s(1)(t)
s(2)(t)

]
(23)

can be computed as
s(t) = Cs x(t) (24)

with the output matrix

Cs =
[

C̃s [0]9×9
]
, (25)

where

C̃s =

[
C(1)

s [0]4×5

[0]5×4 C(2)
s

]
, (26)

C(1)
s =


1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

 , (27)

C(2)
s =


1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 . (28)

The interbuilding approaches describe the approaching between
the stories placed at the same level in adjacent buildings

ai(t) =−
(
q2

i (t)−q1
i (t)
)
, 1≤ i≤min(n1,n2). (29)
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For our particular two-building system, the vector of interbuild-
ing approaches

a(t) = [a1(t), a2(t), a3(t), a4(t)]
T, (30)

can be computed as

a(t) = Ca x(t), (31)

using the output matrix

Ca =
[

C̃a [0]4×9
]
, (32)

where
C̃a =

[
I4 −I4 [0]4×1

]
. (33)

Remark 1. It should be observed that positive values of the
interbuilding approaches defined in Eq. (29) correspond to a
reduction of the distance between the corresponding stories.
Clearly, for a given interbuilding separation, large values of the
interbuilding approaches may result in interbuilding collisions.

3. Static output-feedback energy-to-peak controller design

In this section, the theoretical results presented in [18] are
applied to define an effective computational strategy to design
static output-feedback energy-to-peak controllers. We begin by
considering the system

S :

{
ẋ(t) = Ax(t)+Bu(t)+Ew(t),
z(t) = Cz x(t)+Dz u(t),

(34)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
w(t) ∈ Rr is the disturbance input, and z(t) ∈ Rnz is the con-
trolled output. A, B, E, Cz, and Dz are known, real and constant
matrices of appropriate dimensions. Given a state-feedback
controller

u(t) = Gx(t), (35)

the following closed-loop system results:

SCL :

{
ẋ(t) = AG x(t)+Ew(t),
z(t) = CG x(t),

(36)

where
AG = A+BG, CG = Cz +DzG. (37)

The closed-loop transfer function from the disturbance w(t) to
the controlled output z(t) is

TG(s) = CG(sI−AG)
−1E. (38)

In the state-feedback energy-to-peak control design, the objec-
tive is to find a control gain matrix G̃ which produces an asymp-
totically stable closed-loop matrix AG̃ and, at the same time,
minimizes the value of the energy-to-peak norm

γG = ‖TG‖2,∞ = sup
0<‖w‖2<∞

‖z‖∞

‖w‖2
(39)

where
‖z‖∞ = sup

0≤t<∞

√
zT(t) z(t), (40)

‖w‖2 =

(∫
∞

0
wT(t) w(t)dt

)1/2

. (41)

For a prescribed γ > 0, the following two statements are equiv-
alent [23–25]:

1. AG is asymptotically stable, and ‖TG‖2,∞ < γ.

2. There exists a symmetric positive-definite matrix X such
that

AGX+XAT
G +EET < 0, CGXCT

G < γ
2I. (42)

Using the closed-loop matrix definitions given in Eq. (37), the
conditions in Eq. (42) become

(A+BG)X+X(A+BG)T +EET < 0, (43)

(Cz +DzG)X(Cz +DzG)T < γ
2I. (44)

By introducing the new variables Y = GX, η = γ2, and using
Schur complements in Eq. (44), the nonlinear matrix inequali-
ties in Eqs. (43) and (44) can be written as the following Linear
Matrix Inequalities (LMIs):

AX+XAT +BY+YT BT +EET < 0, (45)[
X (CzX+DzY)T

CzX+DzY ηI

]
> 0, (46)

and the continuous-time state-feedback energy-to-peak control
problem can be transformed into the following optimization
problem with LMI constraints:{

minimize η

subject to X > 0, η > 0, and the LMIs in Eqs.(45), (46),
(47)

where matrices X and Y are the optimization variables. If the
optimal value η̃ is attained for the matrices X̃ and Ỹ, then the
control gain matrix

G̃ = Ỹ
(
X̃
)−1 (48)

defines a state-feedback controller u(t) = G̃x(t) with asymptot-
ically stable closed-loop matrix AG̃ and optimal energy-to-peak
norm

γG̃ = ‖TG̃‖2,∞ = η̃
1/2. (49)

Now, let us focus our attention on a more realistic scenario,
where only a restricted set of observed output variables are
available as feedback information. More precisely, we consider
the observed output vector

y(t) = Cyx(t), (50)

where y(t) ∈ Rp, p < n, and Cy is a full row-rank matrix of
dimensions p×n. Following the ideas presented in [18], a static
output-feedback energy-to-peak controller

u(t) = Gyy(t), (51)
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AQXQ QT +QXQQT AT +ARXR RT +RXR RT AT +BYRRT +RYT
R BT +EET < 0, (LMI-A)[

QXQQT +RXRRT (CzQXQQT +CzRXRRT +DzYRRT )T

CzQXQQT +CzRXRRT +DzYRRT ηI

]
> 0. (LMI-B)

Figure 2: LMIs for static output-feedback energy-to-peak controller design

can be computed by defining the transformations

X = QXQ QT +RXR RT , Y = YR RT , (52)

where R is the Cy Moore-Penrose pseudo-inverse

R = CT
y (CyCT

y )
−1; (53)

Q is a matrix with dimensions n× (n− p), whose columns are
a basis of Ker(Cy); XQ, XR are symmetric matrices with re-
spective dimensions (n− p)× (n− p), and p× p; and YR is an
m× p matrix. After substituting the transformations given in
Eq. (52) in the LMIs presented in Eqs. (45) and (46), we obtain
the new set of LMIs displayed in Fig. 2; and the continuous-
time static output-feedback energy-to-peak control problem can
now be formulated as the following optimization problem with
LMI constraints:{

minimize η

subject to XQ > 0, XR > 0, η > 0,and the LMIs in Fig.2,
(54)

where matrices XQ, XR, and YR are the new optimization vari-
ables. If an optimal value η̃ is attained for the matrices X̃Q, X̃R,
and ỸR, then the control gain matrix

G̃y = ỸR
(
X̃R
)−1 (55)

defines a static output-feedback controller u(t) = G̃yy(t) with
asymptotically stable closed-loop matrix

AG̃y
= A+BG̃yCy (56)

and optimal energy-to-peak norm

γG̃y
=
∥∥∥TG̃y

∥∥∥
2,∞
≤ η̃

1/2. (57)

Remark 2. As indicated in Eq. (57), solving the optimization
problem given in Eq. (54) only provides an upper bound of the
γ-value corresponding to the controller defined by the output-
feedback control gain matrix G̃y. The actual value of γG̃y

can
be computed by considering the associated state-feedback gain
matrix

Ĝ = G̃yCy (58)

and the LMIs

(A+BĜ)X+X(A+BĜ)T +EET < 0, (59)

(Cz +DzĜ)X(Cz +DzĜ)T −ηI < 0. (60)

If the optimization problem{
minimize η

subject to X > 0, η > 0, and the LMIs in Eqs.(59), (60),
(61)

admits the optimal solution η̂, then we have

γG̃y
= η̂

1/2. (62)

Note that, in contrast with what happened in Eqs. (43) and (44),
Ĝ is a known matrix in Eqs. (59) and (60); consequently, this
last pair of matrix inequalities are linear.

4. Results and discussion

4.1. Controllers design

In this subsection, the controller design methodology discus-
sed in Section 3 is applied to compute a local velocity-feedback
controller for the two-building system introduced in Section 2.
A state-feedback LQR controller and a state-feedback energy-
to-peak controller are also computed to be used as a reference.

4.1.1. State-feedback LQR controller
Let us consider the state vector x(t) given in Eq. (17) and

the matrix
Q̂ = α

2
s CT

s Cs +α
2
a CT

a Ca, (63)

where Cs is the output matrix of interstory drifts defined in
Eqs. (25)–(28), Ca is the output matrix of interbuilding approa-
ches given in Eqs. (32) and (33), and αs, αa are real scaling
coefficients. The quadratic form

xT(t)Q̂ x(t) = α
2
s

2

∑
j=1

n j

∑
i=1

{
s j

i (t)
}2

+α
2
a

4

∑
i=1
{ai(t)}2 (64)

provides a joint quadratic cost of interstory drifts and interbuild-
ing approaches. To compute a state-feedback LQR controller

u(t) = Gx(t), (65)

we take the state-space model

ẋ(t) = Ax(t)+Bu(t), (66)

with the matrices A and B given in Eqs. (18) and (19), and the
quadratic cost function

J (x(t),u(t)) =
∫

∞

0
xT(t)Q̂ x(t)+ R̂ {u(t)}2 dt. (67)
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G̃I = 106× [ 0.1391 0.4379 −0.3536 3.3958 −0.0890 0.6150 2.0755 −4.3886 2.6393
−0.0174 −0.0475 0.0108 0.9262 0.0212 −0.0385 −0.1707 −0.8512 −0.1954 ]

G̃II = 107× [ −0.1790 0.3038 0.5749 1.6645 −0.3742 −0.1379 −0.0133 −0.1517 0.3113
0.0151 0.0275 0.0364 0.0502 −0.0194 −0.0489 −0.0820 −0.1106 −0.1704 ]

Figure 3: Control gain matrices for the state-feedback LQR controller and the state-feedback energy-to-peak controller

The control gain matrix that minimizes the index in Eq. (67),
subject to the constraints given in Eqs. (65) and (66), can be
easily computed with the lqr( ) command of the MATLAB
Control System Toolbox [26]. In Fig. 3, we present the optimal
solution G̃I corresponding to the particular values of the build-
ings parameters given in Subsection 2.1, the weighting matrix
Q̂ with scaling coefficients αs = 5, αa = 1, and the weighting
factor R̂ = 10−13.

Remark 3. Typically, the peak values of interbuilding approa-
ches are significantly larger than those observed in interstory
drifts. The scaling coefficients αs and αa in Eq. (63) are intro-
duced to compensate for this effect, which can be clearly appre-
ciated in the graphics presented in Subsection 4.2 (see also the
graphics in [16, 17]).

Remark 4. Note that the state-feedback LQR control gain ma-
trix G̃I is a row matrix of dimensions 1×18. For clarity, how-
ever, it has been presented in the figure using a two-row layout.

4.1.2. State-feedback energy-to-peak controller
In this second case, we consider the state-space model

ẋ(t) = Ax(t)+Bu(t)+Ew(t), (68)

with the matrices A, B, E given in Eqs. (18) and (19), and the
controlled output

z(t) = Cz x(t)+Dz u(t) (69)

defined by the matrices

Cz =

[
Q̃1/2 [0]9×9

[0]1×9 [0]1×9

]
, (70)

Dz =

[
[0]9×1

R̃

]
, (71)

where
Q̃ = α̃

2
s C̃T

s C̃s + α̃
2
a C̃T

a C̃a, (72)

and the matrices C̃s, C̃a are given in Eqs. (26) and (33).
As indicated in Section 3, a state-feedback energy-to-peak

controller with the form given in Eq. (65) can be computed by
solving the optimization problem with LMI constraints defined
in Eq. (47). Solving this problem with the optimization tools of
the MATLAB Robust Optimization Toolbox [27] for the partic-
ular values of the buildings parameters given in Subsection 2.1,
and

α̃s = 5, α̃a = 1, R̃ = 10−6.5, (73)

produces the control gain matrix G̃II displayed in Fig. 3, with
an associated γ-value

γG̃II
= 0.3905. (74)

Remark 5. The controlled output z(t) corresponding to the par-
ticular values

α̃s = αs, α̃a = αa, R̃ = R̂1/2, (75)

satisfies
zT(t)z(t) = xT(t)Q̂ x(t)+ R̂ {u(t)}2 , (76)

where Q̂ and R̂ are the weighting matrices used in the quadratic
index defined in Eq. (67). This choice of the controlled out-
put produces a relatively similar behavior of the controllers de-
signed following the LQR and energy-to-peak approach.

Remark 6. A complete knowledge of the state variables is re-
quired to compute the control actions with the state-feedback
energy-to-peak control gain matrix G̃II . Consequently, a full
set of sensors and a complex communication system would be
necessary for a practical implementation of the corresponding
control system. This remark also applies to the controller de-
fined by the control gain matrix G̃I .

4.1.3. Energy-to-peak controller with restricted local state in-
formation

Now, let us assume that the information available for feed-
back purposes is reduced to the relative velocity between the
stories at the fourth level of the buildings. To design this third
controller, we consider the same state-space model and con-
trolled output used in Subsection 4.1.2, and define the observed
output variable

y(t) = q̇2
4(t)− q̇1

4(t), (77)

which can be written as

y(t) = Cy x(t) (78)

with

Cy = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0 ]. (79)

Next, we compute the matrices that define the transformation
of the LMI variables presented in Eq. (52). The particular val-
ues of the matrices Q and R used in the controller design are
displayed in Fig. 4. These matrices have been obtained with
the MATLAB commands null( ) and pinv( ), respectively.
Note that an orthonormal basis of Ker(Cy) is provided by the
null( ) command.
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Q =



0 0 0 0 0 0 0 0 0 0 0 −1√
2

0 0 0 1√
2

0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, R =



0
0
0
0
0
0
0
0
0
0
0
0
−1/2

0
0
0

1/2
0



.

Figure 4: Matrices for the transformation of the LMI variables

The next step should be solving the optimization problem
defined in Eq. (54) to obtain a static output-feedback controller

u(t) = Gy y(t). (80)

However, a first attempt of solving this problem with the op-
timization tools of the MATLAB Robust Optimization Tool-
box fails, and the problem is reported to be infeasible. This
same difficulty has been encountered in previous works (see
[19, 20, 28]), and extensive numerical tests indicate that it can
be overcome by introducing a small perturbation in the state
matrix. More precisely, after replacing the state matrix A by
the perturbed state matrix

Aε = A− εI18 (81)

with ε = 10−5, the problem in Eq. (54) can be properly solved,
resulting the control gain

G̃y =−6.8719×105 (82)

with an associated γ-value that satisfies

γG̃y
≤ 0.9782. (83)

According to the discussion presented in Remark 2, the actual
γ-value corresponding to G̃y can be computed by solving the
auxiliary optimization problem defined in Eq. (61). Taking the
matrix Ĝ in Eq. (58) as

Ĝ = G̃y Cy, (84)

where Cy is the output matrix given in Eq. (79), we obtain

γG̃y
= 0.5083. (85)

Moreover, although the gain G̃y has been computed using the
perturbed matrix Aε, the feasibility of the LMIs in Eqs. (59) and
(60) assures the asymptotic stability of the closed-loop matrix
AG̃y

given in Eq. (56).

Remark 7. The procedure presented in Remark 2 can also be
applied to compute the energy-to-peak norm of the LQR con-
troller designed in Subsection 4.1.1. By solving the optimiza-
tion problem defined in Eq. (61) with Ĝ = G̃I , we obtain

γG̃I
= 0.4670. (86)

Comparing the values presented in Eqs. (74), (85) and (86), we
get

γG̃II
< γG̃I

< γG̃y
. (87)

Remark 8. The initial infeasibility of the LMI optimization
problems associated to the design of static output-feedback con-
trollers for structural vibration control is certainly a strange
phenomenon. Using a perturbed state matrix in the form given
in Eq. (81) has proved to be a very effective computational strat-
egy to overcome this problem. Moreover, the method discussed
in Remark 2 provides a general procedure to validate the cor-
rectness of the controller designed on the basis of the perturbed
state matrix Aε. Currently, we are working on using more gen-
eral transformations of the LMI variables to provide a better
solution to this feasibility problem with promising results.

Remark 9. In all the previous discussions, it has been assumed
that D is an ideal active device. In this case, a practical imple-
mentation of the output-feedback controller

u(t) = G̃y y(t) (88)

would only require a velocity sensor allocated in the actuation
device D, and the control system could be operated using only
this local feedback information. From a practical perspective,
an even more interesting scenario arises when the actuation de-
vice D is considered to be a passive linear damper with ad-
justable damping capacity cD. In this second case, the force
exerted by the damper D can be modeled as

fD(t) =−cD
{

q̇2
4(t)− q̇1

4(t)
}

(89)

and the proposed output-feedback controller design strategy pro-
vides a systematic procedure to determine the damping capacity

7
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Figure 5: Full scale North–South El Centro 1940 seismic record
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Figure 6: Maximum interbuilding approaches

cD. Specifically, for our particular two-building model, we will
have

cD =−G̃y = 6.8719×105 Ns/m. (90)

A more detailed discussion on the optimal design of passive
damping systems for structural vibration control of single build-
ings using a static output-feedback approach can be found in
[20].

4.2. Numerical simulations

In this subsection, numerical simulations are conducted to
compute the vibrational response of the two-building system for
several control configurations. Specifically, the following four
control configurations are considered: (1) Uncontrolled. No
control system is implemented. (2) Full State LQR. The control
system includes an ideal active device D, which is driven by
the state-feedback LQR controller designed in Subsection 4.1.1.
(3) Full State ETP. The control system includes an ideal ac-
tive device D, driven now by the state-feedback energy-to-peak
controller designed in Subsection 4.1.2. (4) Local ETP. In this
case, we can assume that the control system includes an ideal
active device D, which is driven by the local velocity-feedback
energy-to-peak controller designed in Subsection 4.1.3. Alter-
natively, and according to Remark 9, we could assume that the
actuation device D is a linear passive damper with the damp-
ing capacity cD = −G̃y given in Eq. (90). In all the cases, the
full scale North–South El Centro 1940 seismic record is taken

0 10 20 30 40 50

−20

−10

0

10

20

time (s)

in
te

rb
ui

ld
in

g 
ap

pr
oa

ch
es

 (
cm

)

 

 
Uncontrolled
Local ETP

Figure 7: Interbuilding approaches at the fourth story level

Table 1: Percentages of reduction in maximum interbuilding approaches with
respect to the uncontrolled response

Story 1 2 3 4
Full State LQR 50.8 51.0 51.9 52.5
Full State ETP 44.5 42.7 43.7 47.5
Local ETP 54.7 56.2 56.2 55.7

as ground acceleration disturbance (see Fig. 5), and the inter-
building approaches a(t) together with the interstory drifts s(t)
are computed as output variables. The control effort u(t) is also
computed in the controlled cases (2)–(4).

The maximum values of the interbuilding approaches cor-
responding to the different control configurations are displayed
in Fig. 6. A quick inspection of the graphic clearly shows that
all the proposed controllers meet the first control design ob-
jective of providing a significant protection against pounding
events. In particular, interbuilding separations of about 15 cm
can be considered safe for the three controlled configurations
while, in contrast, an interbuilding separation of 25 cm would
produce an interbuilding collision for the Uncontrolled configu-
ration. Moreover, it can also be appreciated that the best results
are achieved by the Local ETP configuration, which attains lev-
els of reduction in the maximum interbuilding approaches that
are uniformly superior to those obtained by the full state con-
figurations. The interbuilding approaches at the fourth story
level a4(t) corresponding to the Uncontrolled and the Local
ETP configurations are presented in Fig. 7.

The percentages of reduction in maximum interbuilding ap-
proaches with respect to the uncontrolled response presented in
Table 1 provide a more detailed account of the excellent behav-
ior exhibited by the Local ETP configuration, which achieves
percentages of reduction in the interbuilding approaches peak-
values of about 55% in all the stories. Comparatively, the per-
centages obtained by the Full State LQR configuration are 3–5
points lower; and this difference is even larger for the Full State
ETP configuration, for which the corresponding percentages of
reduction are 8–13 points lower.

With regard to the second control design objective of intro-
ducing no negative effects in the structural vibration response
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Figure 8: Maximum absolute interstory drifts in buiding 1

Table 2: Percentages of reduction in maximum absolute interstory drifts with
respect to the uncontrolled response for building 1

Story 1 2 3 4
Full State LQR 27.6 18.5 6.2 7.5
Full State ETP 17.9 9.9 5.0 -8.1
Local ETP 28.3 22.1 7.9 6.6

of the individual buildings, the graphics of maximum abso-
lute interstory drifts (presented in Fig. 8 and Fig. 9) show that,
for building 1, the best results are achieved by the Local ETP
configuration. However, the uncontrolled seismic response is
slightly exceeded by the response corresponding to the Local
ETP configuration for the fifth story of building 2 (see Fig. 9).
Something similar happens for building 2. In this case, the
best results are obtained by the Full State ETP configuration,
but again the uncontrolled seismic response is also slightly ex-
ceeded by the response corresponding to the Full State ETP
configuration for the fourth story of building 1 (see Fig. 8).
Considering the two-building system as a whole, the best re-
sults correspond to the Full State LQR configuration, which at-
tains an appreciable reduction of the interstory drifts peak val-
ues for all the stories in both buildings without exceeding in any
case the values corresponding to the Uncontrolled configura-
tion. The percentages of reduction in maximum absolute inter-
story drifts with respect to the uncontrolled response presented
in Table 2 and Table 3 provide a more detailed description of
the results achieved by the different controlled configurations.
The negative values in these tables indicate the cases where the
uncontrolled response is exceeded by the response of the corre-
sponding controlled configuration.

An overall consideration of the reduction in interbuilding
approaches, the reduction in interstory drifts for both build-
ings, and the maximum absolute control efforts displayed in
Table 4, clearly indicate the excellent performance of the Lo-
cal ETP configuration which, despite its simplicity, achieves
levels of seismic protection similar to those provided by the
Full State LQR configuration, and requiring also similar levels
of control effort. However, it must be highlighted the singular
characteristics of the Local ETP configuration which, accord-
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Figure 9: Maximum absolute interstory drifts in building 2

Table 3: Percentages of reduction in maximum absolute interstory drifts with
respect to the uncontrolled response for building 2

Story 1 2 3 4 5
Full State LQR 25.3 28.1 28.8 18.6 7.3
Full State ETP 31.8 36.4 27.0 19.6 16.6
Local ETP 20.8 22.5 23.7 11.4 -3.7

Table 4: Maximum absolute control efforts (N)

Controller Full State LQR Full State ETP Local ETP

max
0≤t<∞

|u(t)| 0.64×106 1.07×106 0.62×106

ing to Remark 9, can be implemented by a passive damper and,
consequently, can be operated without sensors, with null power
requirements, and no communication system.

Remark 10. Looking at the numerical results presented in this
subsection, it becomes quite clear that the Local ETP config-
uration produces better results than the Full State ETP config-
uration. It should be noted, however, that these results do not
contradict the optimality of the state-feedback energy-to-peak
controller computed in Subsection 4.1.2, since the optimality
of this controller refers to minimizing the energy-to-peak norm
given in Eq. (39), and this fact does not imply a better perfor-
mance in reducing the interbuilding approach or the interstory
drift peak values.

5. Conclusions and future directions

In this article, a novel approach to the problem of Struc-
tural Vibration Control for multi-structure systems has been
presented. The new perspective comprises conceptual, compu-
tational, and methodological aspects: Conceptually, the atten-
tion is primarily focused on the interactions between adjacent
substructures, rather than on the vibrational response of the in-
dividual substructures. Computationally, recent advances on
static output-feedback control are used to compute simple and
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effective controllers. Methodologically, decentralized velocity-
feedback control design strategies are used to design optimal
passive-damping systems. To illustrate the main ideas, a con-
trol system for the seismic protection of two adjacent build-
ings linked by a single actuation device has been designed,
and numerical simulations have been conducted to assess the
effectiveness of the proposed controller with positive results.
Although no accurate nor general conclusions can be drawn
from such simplified models, the obtained results clearly in-
dicate that the proposed approach is a promising research line
that certainly deserves deeper attention and further research ef-
fort. In particular, the following four issues are of special in-
terest: (1) Considering more advanced control methodologies
to include some practical aspects, such as limited frequency
domain [29], actuation saturation [24, 30], or actuation fail-
ures [25, 31]. (2) Extending the study to more complex multi-
structure systems, which may include three or more adjacent
substructures [17]. (3) Considering more complex actuation
schemes, which can include interstructure actuation devices to-
gether with actuation devices implemented in the individual
substructures [16, 17], and also optimal design of passive ac-
tuation systems [20]. (4) Providing more general and effective
methods to overcome the initial unfeasibility of the optimiza-
tion problems with Linear Matrix Inequality constraints associ-
ated to the design of static output-feedback controllers.
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