
A Dynamic Periodicity Detector: Application to Speedup Computation

Felix Freitag, Julita Corbalan, Jesus Labarta

Departament d’Arquitectura de Computadors (DAC),Universitat Politècnica de Catalunya(UPC)

{felix,juli,jesus}@ac.upc.es

Abstract
We propose a dynamic periodicity detector (DPD) for
the estimation of periodicities in data series obtained
from the execution of applications. We analyze the algo-
rithm used by the periodicity detector and its perfor-
mance on a number of data streams. It is shown how the
periodicity detector is used for the segmentation and
prediction of data streams. In an application case we
describe how the periodicity detector is applied to the
dynamic detection of iterations in parallel applications,
where the detected segments are evaluated by a speedup
computation tool. We test the performance of the period-
icity detector on a number of parallelized benchmarks.
The periodicity detector correctly identifies the itera-
tions of parallel structures also in the case where the
application has nested parallelism. In our implementa-
tion we measure only a negligible overhead produced by
the periodicity detector. We find the DPD to be useful
and suitable for the incorporation in dynamic optimiza-
tion tools.

1 Introduction

In dynamic performance, analysis of applications the
measurement and evaluation is done during the applica-
tion’s execution. Measuring the application performance
requires the monitorization of certain parameters, such
as for instance, subroutine calls, hardware counters, or
CPU usage [Corbalan99]. During the execution of the
application the values of these parameters represent a
data stream to the measuring tool. The measuring tool
computes the value of certain performance parameters
associated with the conditions in each measuring inter-
val. Based on the run-time performance of the applica-
tion, decisions can be taken dynamically leading to
dynamic optimization.

Dynamic performance measurement of applications
is useful for several purposes. Based on the run-time
performance of applications the resources of the system
may be allocated differently. In [Corbalan2000]
[NguyenZV96] authors propose to consider the run-time
calculated application efficiency to perform the proces-
sor allocation. Moreover, performance measurements
can be useful to dynamically optimize the application
execution. In [Voss99][VossEigenmann99] authors pro-
pose to perform several run-time tests to dynamically
detect data dependences, serialize parallel loops with
great overheads, and to perform tiling.

The knowledge about the periodicity in data streams
can be useful for different applications in dynamic per-
formance analysis: 1) Knowing the periodicity of pat-
terns can be used to perform the dynamic segmentation
of the data stream in periods. Periods in a data stream or
multiples of them may represent reasonable intervals for
performance measurement. 2) If the detected period rep-
resents the execution of an iterative part of an applica-
tion, then measuring the performance in one period can
be used to predict the performance in future iterations
without need to have a continuous measurement. 3)
Given the periodicity of a data stream, future parameter
values can be predicted.

2 Background

The data series which need to be analyzed with the
described periodicity detector could be obtained in dif-
ferent ways. For certain parameters a reasonable method
to obtain a data stream can be the sampling of the
parameter value with a certain sampling frequency. For
other kinds of parameters only the changes of the
parameter value may be interesting to register. So the
data stream is obtained if the magnitude of the parame-
ter value changes.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

We expect to observe in the data streams of several
parameters of scientific applications locally periodic
patterns, since applications often spend a large part of
their execution time in loops which provide data series
with repeating patterns [Sazeides98]. A frame based
detector for the analysis of the data series shall therefore
be appropriate to detect locally periodic patterns.

In the next section we how the proposed periodicity
detector works with both of the above mentioned types
of data series.

3 Dynamic Periodicity Detection

3.1 Periodicity Detection Algorithm

We propose the application of the periodicity detec-
tor to data series which contain segments with periodic
patterns. We consider the periodicity of the data stream
which we are interested to detect being the fundamental
period it contains, where its amplitude is of larger mag-
nitude than that of other frequencies contained in the
data stream.

For the periodicity detector we use an adaptation of
the distance metric given in equation (1), see Figure 1,

[Deller87]. In equation (1) N is the size of the data win-
dow, m is the delay (0 < m < M), M<=N, x[n] is the cur-
rent parameter value of the data stream, and d(m) is the
value computed to detect the periodicity. It can be seen
that equation (1) compares the data sequence with the
sequence shifted m samples. Equation (1) computes a
distance between two vectors of size N by summing the
magnitudes of the L1-metric distance of N vector ele-
ments. The value d(m) becomes zero if the data window
contains a identical periodic pattern with periodicity m.
If d(m) > 0, then the two vectorsx[n] and x[n-m] of
equation (1) are not identical. However, the magnitude
of d(m) provides a distance between the two vectors.
Then, the value of m for which d(m) has a local mini-
mum is considered the periodicity detected in the data
frame.

According to equation (1), if the periodicity m in the
data stream is several magnitudes less than the size N of
the data window, then the value d(m) may become zero
for multiples of m. On the other hand if the periodicity

m in the data stream is larger than the data window size
N, then the pattern and its periodicity cannot be captured
by the detector. In this case the periodicity is not
obtained since d(m) does not have a local minimum nor
will d(m) become zero.

In certain data series the sample values do not repre-
sent meaningful magnitudes such as for instance when
processing a sequence of events. Then, the implementa-
tion of the periodicity detector is made using equation
(2), see Figure 2. If d(m)=0, then a periodic pattern with
dimension m is detected in the data stream. The sign()
function is used in equation (2) to set the value d(m) to 1
if it is not zero. If d(m) is zero, then the two patterns are
identical. For all m where d(m) is not zero the patterns
are not identical and no periodicity in m is indicated.

On the data series obtained from the execution of
applications we experimented with we found that most
periodicities are less than 100 samples, for which
N=100 is sufficient. For some data series the size of the
data window can be less than N=10, if very short period-
icities appear (see section 6). We also used the periodic-
ity detector with window sizes up to N=1024. With this
setting periods with a length of up to 1023 samples can
be detected. Implementation issues concerning memory
requierements are given in [Freitag00]. In most cases
the periodicities in the data series we found were small
(see examples in this paper). For an unknown data
stream, the window size N of the periodicity detector
should be set initially to a large value, in order to be able
to capture large periodicities. Once a satisfying period-
icity is detected, the window size may be reduced
dynamically (see section 4).

3.2 Using the periodicity detector on the paral-
lelism of applications

In order to test and illustrate the performance and
possible applications of the periodicity detector we have
carried out a number of experiments. We show some of
them in the following sections. More applications of the
periodicity detector are shown in [Freitag00].

We apply the periodicity detector on a trace which
represents the instantaneous number of active CPUs
used by a parallel application, see Figure 3. The trace is

d m() 1
N
---- x n[] x n m–[]–

n 0=

N 1–

∑=

Figure 1: Distance metric.

(1)

d m() sign x i() x i m–()–
i 0=

N 1–

∑=

Figure 2: Distance metric used for data series
consisting of events.

(2)

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

from the FT application of the NAS benchmarks. The
parallel application is MPI/OpenMp. Each process has a
number of threads and messages are interchanged
between the MPI processes. The application is executed
in the NANOS environment [Nanos97] on a SGI Origin
2000 multi-processor platform. The sampling frequency
of the CPU usage is set to 1 ms. It can be observed in the
trace that during the execution of the application the par-
allelism is opened and closed a few times. Up to 16
CPUs are used by the applications in parallel. By visual
inspection a periodic pattern in the CPU usage can be
observed. Also, it can be noted that the pattern of CPU
use is not exactly the same during the application’s exe-
cution.

The periodicity detector is applied to this data
sequence. The periodicity detector computes the values
d(m). In Figure 4 the values of d(m) are shown. The
periodicity is detected for the value m where d(m) has a
local minimum. It can be seen that d(m) has a local min-
imum at m = 44. The periodicity detector indicates peri-
odicity m = 44 in the data stream.

4 Interface implementation

We have implemented the periodicity detector pro-
viding the interface shown in Table 1 . Two functions
are implemented in the interface. The DPD function is
the main function used for periodicity detection and seg-
mentation. The DPDWindowSize function is an addi-
tional function which allows to modify the data window
size of the DPD during the application’s execution.

5 Case Study: Dynamic Performance Anal-
ysis

In this section we describe the integration of the DPD
in theSelfAnalyzer[Corbalan99]. TheSelfAnalyzeris a
mechanism that dynamically analyzes the performance
of parallel applications. This mechanism uses the DPD
to automatically detect periodic patterns of parallel
regions in parallel applications.

The SelfAnalyzer is a run-time library that dynami-
cally calculates the speedup achieved by the parallel
regions of the applications, and estimates the execution
time of the whole application. TheSelfAnalyzerexploits
the iterative structure of a significant number of scien-
tific applications. The main time-consuming code of
these applications is composed by a set of parallel loops
inside a main sequential loop. Iterations of the sequen-
tial loop have a similar behavior among them. Then,
measurements for a particular iteration can be used to
predict the behavior of the next iterations.

The SelfAnalyzerinstruments the application and
measures the execution time of each iteration of the
main loop. The speedup is calculated as the relationship
between the execution time of one iteration of the main
loop, executed with abaselinenumber of processors,
and the execution time of one iteration with the number
of available processors.

To calculate the speedup, theSelfAnalyzerneeds to
detect the following points of the code: the starting of
the application, the iterative structure, and the start and
end of each parallel loop. In the current implementation,
the invocation of theSelfAnalyzerat these points can be
done in two different ways: (1) if the source code is

Figure 3: Number of CPUs used during the execution
of a parallel application.

Figure 4: Estimation of the period with the
periodicity detector. Periodicity m=44 samples.

Table 1: Interface of the DPD implementation.

Interface Description
int DPD (long sample, int *period) Periodicity detection and seg-

mentation

void DPDWindowSize (int size) Adjust data window size

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

available, the application can be re-compiled and the
SelfAnalyzercalls are inserted by the compiler. (2) If the
source code is not available, both the iterative structure
and the parallel loops are dynamically detected.

5.1 Using the DPD to automatically detect itera-
tive parallel structures

Compilers that process OpenMp directives typically
encapsulates code of parallel loops in functions. Figure
5 shows the iterative parallel loop, once encapsulated.
These functions are called by the application threads,
and each one executes their range of iterations at run-
time. Using dynamic interposition (DITools
[Serra2000]) the calls to encapsulated parallel loops are
intercepted.

Each parallel loop is identified by the address of the
function that encapsulates it. In this case we are only
interested in detecting periodic patterns in sequences of
calls to parallel loops, then the address of parallel loops
is the value that we pass to the DPD. The iterative paral-
lel region of the application can be nested, it can include
more than one periodic pattern, with different starting
points and lengths. In the current implementation calls
to parallel loops are passed through the DPD mecha-
nism, since we do not have any knowledge of the appli-
cation structure and no assumptions can be made about
the periodicities inside the application.

Figure 6 shows the three mechanism working at run-
time. In (1) the parallel loop generation is intercepted
through the DITools. Inside the code that process this
event, the DPD is called in (2). If the value ofaddressis

the start of a period, the DPD returns a value different
from zero. In that case theSelfAnalyzeris called (3).
The SelfAnalyzeridentifies a parallel region with the
address of the starting function and the length of the
period indicated by the DPD. We have adopted this solu-
tion, rather than using the complete sequence of loops
that compound the period, by simplicity and assuming
that the case of two iterative sequences of values with
the same length and same initial function is not a normal
case. In fact, this case has not appear in the applications
we have processed till the moment. With these two
mechanism, DITools and DPD, theSelfAnalyzercan be
applied to those applications that do not have their
source code available. The speedup calculated can be
used to improve the processor allocation scheduling pol-
icy, providing a great benefit as we have shown in
[Corbalan2000].

6 Evaluation

In order to evaluate the integration of the DPD mech-
anism in theSelfAnalyzerwe have performed two kinds
of experiments. The first experiment demonstrates the
effectiveness of the DPD detecting periodic patterns in
the applications. In the second experiment we measure
the overhead introduced by the DPD. We want to dem-
onstrate that the DPD is able to detect the periodic pat-
terns inside the application without introducing a
significant overhead.

6.1 Applications

We have selected five applications from the
SPECFp95 benchmark suite: tomcatv (ref), swim (ref),
hydro2d (ref), apsi (ref), and turb3d (ref). These applica-
tions have been parallelized by hand using OpenMp
directives. Tomcatv, swim, and apsi have only one peri-
odicity. hydro2d and turb3d have several nested iterative
parallel structures.

do

end do

call omp_parallel_do_1(..)
call omp_parallel_do_2(...)
call omp_parallel_do_3(...)

Figure 5: Encapsulated parallel loops

call omp_parallel_loop_1(...)

DI_event(.,address,.)
{

start_period=DPD(address,length);
if (start_period){

InitParallelRegion(address,lenght)

}else{

}

call (*address)(....)

}

return

do it=1,niter

enddo

.......

........

Figure 6: Using the DPD with the SelfAnalyzer

int DPD(address,length)

InitParallelRegion(address, length)

DPD m
ec

ha
nis

m

SelfAnalyzer

M
echanism

DIT
oo

ls
M

ec
ha

ni
sm

(1) (2)

(3)

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

6.2 Dynamic periodicity detection in applica-
tions

In Table 2 some characteristics of the applications
and the periodicities detected by the DPD are presented.
Figure 7 shows a small part of the data streams and its
segmentation by the DPD (the segmentation made by
the DPD is marked by “*”). The data stream is a
sequence of addresses. In the y-axis of the graphics the
value of the addresses is indicated. Note that the data
streams are drawn as continuous values in order to better
observe the periodicity of the patterns. It can be seen
that in the applications tomcatv, swim, and apsi the DPD
correctly identifies the periodicity of the patterns with
periodicity 5, 6, and 6, respectively. The data streams
from the applications turb3d and hydro2d contain nested
iterative structures. It can be seen in Figure 7 that the
data streams of these applications contain a large itera-
tive pattern within which smaller iterative patterns
appear. Also for these applications with nested parallel-

ism the DPD correctly identifies the periodicity of the
large iterative pattern (periodicity=269 for hydro2d and
periodicity=142 for turb3d).

6.3 Overhead

We have calculated the cost of processing the values
by the DPD. A synthetic benchmark has been executed
to measure this cost. This synthetic benchmark reads a
trace file that corresponds to the execution trace of one
application, and it calculates its periodicity. The syn-
thetic benchmark measures the execution time con-
sumed by processing the trace and calculates the cost of
processing each value of the trace. Table 3 shows the
results on the five SPECfp95 applications.NumElems
column is the number of elements in the trace file,
ApExTimecolumn is the execution time of the bench-
mark in sequential, without the DPD mechanism,Time-
Proc column is the execution time (in seconds)

Figure 7: Data streams of 5 parallel applications with segmentation made by the DPD.
iterative

iterative
pattern

pattern

segmentation
indicated by the

DPD

Table 2: Detected periodicities.

Appl. Data stream length
Detected

periodicities
Apsi 5762 6

Hydro2d 53814 1, 24, 269

Swim 5402 6

Tomcatv 3750 5

Turb3d 1580 12, 142

Table 3: Overhead analysis

Num
Elems

ApEx
Time(sec)

Time
Proc (sec)

Perc.
Timex

Elem(ms)
tomcatv 3750 136.33 0.016678 0.012% 0.004

swim 5402 135.17 0.023476 0.017% 0.004

apsi 5762 95.9 0.025169 0.026% 0.004

hydro2d 53814 183.92 6.028188 3.27% 0.112

turb3d 1580 266.44 0.171326 0.064% 0.108

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

consumed in processing the trace by the DPD,Percent-
agecolumn is the percentage of time consumed process-
ing the trace with the DPD in relation to the execution
time of the application, that isPercentage=TimeProc/
ApExTime*100, andTimexElemcolumn is the execution
time consumed each time the DPD is called (in millisec-
onds).

We observe in Table 3 that the overhead introduced
by the DPD is very small compared to the execution
time of the benchmark, see columnsApExTimeand
TimeProc. The additional load to execute the DPD along
with the application showed to be negligible, see col-
umnPercentage. We conclude that the additional cost of
running the DPD was very small, which allows to use
the DPD during program execution in dynamic optimi-
zation tools.

7 Conclusions

We have presented a technique to dynamically detect
the periodicity in data streams and some of its applica-
tions. The performance of the proposed mechanism is
evaluated on a number of data streams and applications.
We incorporate the Dynamic Periodicity Detector
(DPD) in a tool for speedup computation, theSelfAna-
lyzer and show the interface of the DPD we imple-
mented. We obtain that the DPD correctly identifies the
iterative parallel structure in the applications and pro-
vides the segmentation of the data stream to theSelfAn-
alyzer. It is found that the overhead added by using the
DPD dynamically is negligible. We observe in this
application case that the DPD mechanism is useful and
suitable to be incorporated in a dynamic optimization
tool.

8 Acknowledgements

This work has been supported by the Spanish Minis-
try of Education under grant CYCIT TIC98-0511 and
the Direcció General de Recerca of the Generalitat de
Catalunya under grant 1999FI 00554 UPC APTIND.
The research described in this work has been developed
using the resources of the European Center for Parallel-
ism of Barcelona (CEPBA).

9 References

[Amdahl67] G. M. Amdahl, “Validity of the single pro-
cessor approach to achieving large-scale computing
capabilities”, in Proc. AFIPS, vol. 30, pp. 483-485,
1967.

[Corbalan99] J. Corbalan, J. Labarta, “Dynamic
Speedup Calculation through Self-Analysis”, Tech.
Report UPC-DAC-1999-43, Dep. d’Arquitectura de
Computadors, UPC, 1999.

[Corbalan2000] J. Corbalan, X. Martorell, J. Labarta,
“Performance-Driven Processor Allocation”, in Proc. of
the 4th Symposium on Operating System Design &
Implementation (OSDI2000), 2000.

[Deller87] J. R. Deller, J. G. Proakis, J. H. L. Hansen.
“Discrete-time processing of speech signals”, Prentice
Hall 1987.

[Eager89] D. L. Eager, J. Zahorjan, E. D. Lawoska,
“Speedup Versus Efficiency in Parallel Systems”, IEEE
Transactions on Computers, vol. 38,(3), pp. 408-423,
March 1989.

[Freitag00] F. Freitag, J. Corbalan, J. Labarta, “A
Dynamic Periodicity Dectector: Application to Speedup
Computation”, Tech. Report UPC-DAC-2000-58, Dep.
d’Arquitectura de Computadors, UPC, 2000.

[Nanos97] Nanos Consortium, “Nano-threads Program-
ming Model Specification”, ESPRIT Project No. 21907
(NANOS), Deliverable M1.D1, July 1997.

[NguyenZV96] T. D. Nguyen, J. Zahorjan, R. Vaswani,
“Using Runtime Measured Workload Characteristics in
Parallel Processors Scheduling”.JSPP, vol. 1162 of
Lectures Notes in Computer Science. Springer-Verlag,
University of Washington, 1996.

[Sazeides98] Y. Sazeides, J. E. Smith, “Modeling Pro-
gram Predictability”, in Proc. ISCA, pp. 73-84, 1998.

[Serra2000] A. Serra, N. Navarro, T. Cortes, “DITools:
Application-level Support for Dynamic Extension and
Flexible Composition”, in Proc. of the USENIX Annual
Tech. Conf., pp. 225-238 , June 2000.

[Voss99] M. Voss, R. Eigenmann, “Dynamically Adap-
tive Parallel Programs”, Int’l. Symp. on High-Perfor-
mance Computing, pp. 109-120, Japan 1999.

[VossEigenmann99] M. Voss, R. Eigenmann, “Reducing
Parallel Overheads Through Dynamic Serialization”,
Int’l. Parallel Processing Symposium, pp. 88-92, 1999.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 10:44 from IEEE Xplore. Restrictions apply.

