
A Trace-Scaling Agent for Parallel Application TracingJ

Felix Freitag. Jordi Caubet, Jesus Labarta

Computer Architecture Department (DAC)
European Center for Parallelism of Barcelona (CEPBA)

Univer.'Jitat Politecnica de Catalunya (UPC)

{felix,jordics,jesus}@ac. upc.es

Abstract requirement for trace files. We show that the agent can
obtain such an understanding automatically at runtime
without programmer intervention or support.

The remainder of the paper is structured as follows: In
section 2 we describe scalability problems of tracing
mechanisms. Section 3 shows the implementation of the
trace-scaling agent. Section 4 describes some applications
and results of scaled tracing. Section 5 contains further
disussion of our approach. In section 6 we conclude the

paper.

Tracing and performance analysis tools are an
important component in the development of high

performance applications. Tracing paral'el prqgrams
with current tracing tools. however. easily leads to large
trace files with hundreds of lUegabytes. The s~orage.
visualization, and analysis of such trace files is often

difficult.
We propose a trace-scaling agent for tracing p~ral'el

applications. which learns the application behaVior in
runtime and achieves a small. easy to handle trade. The
agent dynamically identifies the amount of inforbtation
needed to capture the application behavior. This
knowledge acquired at runtime allows recording o~ly the
non-iterative trace iriformation, which drastical'y rf!duces
the size of the tracefile.

2. Scalability of tracing mechanisms

2.1. Problems associated to large traces

The perfonnance analysis of parallel programs easily
leads to a large number of trace files, since often several
executions of the instrumented application are carried out
in order to observe the application behavior under slightly

changed conditions. Another reason why several traces are
needed is to study how the application scales. All these
traces for the different configurations of the application
and the environment (number of processors, algorithmic
changes, hardware counters, ...) require storage space.

Visualization packages have difficulties in showing
such large traces effectively. Large traces make the

navigation (zooming, forward/backward animation)
through them very slow and require the machine where the
visualization package is run to have a large physical
memory. Othern'ise, the response time of the tool
increases significantly, strongly affecting the motivation
of the programmer to carry out the perfonnance analysis.

The high amount of redundant trace infonnation in
large trace files hides the relevant details of the
application behavior. When visualizing such large traces,
zooming down to identify the application structure
becomes an inefficient task for the program analyst. Often,
the analyst needs to have a certain understanding of the
application in order to carry out an efficient perfonnance

analysis.

I. Introduction

Performance analysis tools are an important component
of the parallel program development and tuning cyqle. To
obtain the raw performance data of an applicati~n, an
instromented version of the application is run with probes
that take measures of specific events or perfo~ance
indicators (i.e. hardware counters, subroutines, parallel

loops).
The obtained trace data can be summarized on-line by

the tracing tool. More often, however, it is stored ili1 trace
files for off-line analysis. We focus our interest in 1Iracing
packages for parallel programs, where all the ac~uired
data is stored in trace files for a detailed analysis at !a later
time. Tracing parallel programs with such traci~ tools
easily leads to huge trace files with hundr~s of
Megabytes, which has several problems conc!erning
storage, visualization and analysis of such traces.

We propose a trace-scaling agent for tracing tQols of
parallel applications. In runtime the agent lea$ the
periodic structure in the application behavior exhibi~ed by
many scientific programs. The caption of the appljcation
behavior allows storing only the non-iterative trace
information, which drastically reduces the storage

I This work has been supported by the Spanish MinistI)' of Science and Technology under TIC2001 -0995-CO2-01 and by the European Union

(FEDER).

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

2.2. Related work the trace file. The analysis of such a reduced trace allows
tuning the main iterative body of the application.

3. Trace-scaling agent

3.1 Recognition of iterative patterns

The most frequent approach to restrict the size of the
trace in current practice is to insert calls into the source
code of the application to start and stop the acing.
Systems such as VampirTrace [6], VGV [4 , and
OMPItrace [I] provide this mechanism. This a oach
requires the modification of the source code, whi h may
not always be available to the performance analys .Even
if the source code is available, it is necessary to ve a
certain understanding of it before being able to p operly
insert the tracing control calls.

The Paradyn project [5] developed an instrume tation

technology (Dyninst) through which it is poss le to
dynamically insert and take out probes in a ing
program. Although no effort is made to autom tically
detect periods, the methodology behind this approa h also
relies on the iterative behavior of applications. The
automatic periodicity detection idea we present this
paper could be useful inside such a dynamic analy is tool
to present to the user the actual structure f the

application.
In IBM UTE [7], an intermediate approach is fo lowed

to partially tackle the problem, which large traces ose to
the analysis tool. The tracing facility can generat huge
traces of events, containing information with a lot o detail
down to the level of context switches and global ystem
activities. Then, filters are used to extract a tra e that
focuses on a specific application, summ izing
information in record formats more amena le to
visualization and better describing the appl cation
behavior. To properly handle the fast access to s ecific
regions of a large trace file the SLOG format (s alable
logfile format) has been adopted. Using a frame in x the
Jmnpshot visualization tool [8] improves the acce s time
to trace data.

The trace of the application is a data stream containing

the values of several parameters. If the application

contains loops, then it has segments with periodic

patterns. We apply a periodicity detection algorithm to the

data stream in order to segment the data stream into

periodic patterns. The used algorithm is frame based and

requires a finite length of past data values to compute the

periodicity.
We implement the periodicity detector from [3] in the

trace-scaling agent in order to perform the automatic

detection of iterative structures in the trace. The stre3ln of

parallel function identifiers from the trace is the input. The

output of the agent is the indication whether periodicity

exists in the data stream and its period length.

The algorithm used by the periodicity detector is based

on the distance metric given by the equation
,V-I

d(m) = sign Ii x(i)- x(i -m)1

1=0 (1).

In equation (I) N is the size of the data window, m is

the delay (O<m<M), M<=N, x[i] is the current value of the

data stream, and d(m) is the value computed to detect the

periodicity. It can be seen that equation (1) compares the

data sequence with the data sequence shifted m samples.

Equation (1) computes the distance between two vectors

of size N by sumJning the magnitudes of the L I -metric

distance of N vector elements. The sign function is used to

set the values d(m) to 1 if the distance is not zero. The

value d(m) becomes zero if the data window contains an

identical periodic pattern with periodicity m.

If the periodicity m in the data stream is several

magnitudes less than the size N of the data window, then

the value d(m) may become zero for multiples of m. On

the other hand if the periodicity m in the data stream is

larger than the data window size N, then the detector

cannot capture the periodicity. The periodicity length we

found in the used applications was usually small (between

5 -20) and less than 300. For an unknown data stream, the

window size N of the periodicity detector can be set

initially to a large value, in order to be able to capture

potentially large periodicities. Once a satisfying

periodicity is detected, the window size can be reduced

dynamically.

2.3 Our approach

~Our approach to the scalability problem oftraci is to
adapt dynamically the traced time. We propose a trace-
scaling agent, which learns in runtime the structure of the
application. It automatically determines the r levant
tracing intervals, which are sufficient to capt e the
application behavior. With the trace-scaling age t it is
possible to trace only one or several iterations f the
dynamically detected repetitive pattern in the appl cation
behavior. Our approach does not require limit" 9 the
granularity of tracing, nor the number of paramete s read
at every tracing point, nor the problem size. Due to the
dynamic interception of the calls to runtime librarie in the
tracing tool, our implementation does not requi e the
source code of the application to achieve the scal trace.
In runtime the redundant trace information is ide tified
and only the non-iterative application behavior is st red in

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

3.2. Implementation The new sample overwrites the column containing the
oldest values with the new distance. The implementation
with circular lists avoids moving the data values. The
number of operations at instant i are reduced, which leads
to a small overhead of this implementation.

3.3. OpenMP and tracing tool integration

The structure of OpenMP based parallel applications
usually iterates over several parallel regions. For each
parallel directive the master thread invokes a runtime
library passing as argument the address of the outlined
routine. The tracing mechanism intercepts the call and
obtains a stream of parallel function identifiers. This
stream contains all executed parallel functions of the
application, both in periodic and non-periodic parallel

regions.
We have implemented the trace-scaling agent in the

OMPItrace tracing tool [I]. The tracing tool generates
trace tiles, which consist of events (hardware counter

values, parallel regions entry/exit, user functions
entry/exit) and thread states (computing, idle, fork/join).

full trace

data stream

iterative patterns

scaled trace
iLorali.o bcha.;or DO lraoc i. wriLIOD

11111111 IIIIIIIIIIIIIIIIII 111111111 ~ t

Figure I. Interaction or the agent in the tracing

tool.

In Figure 1 the interaction between the instrumented
application, the tracing tool, and the agent is illustrated. It
can be seen that the agent receives a data stream from the
tracing tool. The data stre~ contains the values of a
traced parameter such as the identifiers of the executed
functions in parallel regions. The agent learns the
application behavior. Having this indication the tracing
tool knows, which is the non-iterative information to write
to the trace file.

In our implementation of equation (I), we store ~ finite
number of previous data values of the data Istream
including the most recent value in a data vector. ~ n this
data vector the algorithm performs periodicity det ction.
This data vector can be implemented as a FIFO b ffer of
length M+N. This type of implementation uses ~ least
amount of memory, but requires a higher number of
operations at every instant i than other implementations.

Applying equation (I) on the data vector requir,s M x
N operations to compute the values of d(m) at the instant i
of the data stream. It can be observed, however, that some
operations are done with the same data values ~everal times at different instants i. The previously co puted

distances between vector elements could be sto d to
reduce the number of computations made by the algorithm
at instant i. There is a trade-off between the nwnber of
computations made at instant i. and the amount of memory
needed by the algorithm. In order to reduce the amiunt of
computation we implement a FIFO organized ma rix of
size MxN where previously computed distanc s are
stored. Using this distance matrix we compute ~ each
instant i the value of di(m) for all values of m, whd;re x(i)
is the value of the data value at the current samplel i, and
x(i-m) is the data value obtained m samples beforb. The
computed values of d;(m) are written in the 9olumn
corresponding to the instant i in the matrix. i

In case of using the distance matrix to store preJiously

computed distances, then only M instead of j x N

operations need to be made at instant i to obtain e new

distances di(m). The value of d(m) for all value m is
obtained by summing the elements of each raw 1of the
distance matrix, i.e. the previously computed di tances
and each most recent distance d;(m). This means hat at
every instant i new values are written in a columnlof the
distance matrix, and d(m) is computed as the sum lof the
values in each raw using the previously computed ~alues
of the other columns. Using the distance matrix the l ize of

the data vector can be reduced to M, since at instant i only

the distances between the ne~l data value and the M I past
data values need to be computed. It can be s en in
equation (I) that if the data window size N and th delay
M is increased, larger iterative structures can be de ected.
Then, the number of computations to obtain d() also
increases. However, when increasing N and M a d the
previously computed distances are re-used, th n the
increase of operations is only linear. i

In order to reduce the number of shifts of thel FIFO
operations, the data structures of the periodicity detector
conceptually working as FIFO organized matrix and FIFO
organized data vector are programmed as circular lilts. At
each instant i the pointer to the current list elemen shifts
by one such that it points to the oldest values in t e list.

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

4. Applications of scaled tracing 4.3. Improvement of the ease of visualization

4.1. Experimental setup

We trace the applications given in Table 1 i Four
applications from the NAS benchmark suite: Et (cl~ss A),

I
Lu (class A), Cg (class A) and Sp (class A); aI1d five
applications of the SPEC95 suite: Swim, Hydro2dj Apsi,
Tomcatv, and Turb3d, all with ref data set. !

All experiments are carried out on a Silicon G~aphics
Origin 2000. The OpenMP applications are execut~d in a
dedicated environment with 8 CPUs. We configqre the
trace-scaling agent such that after having detec,ed 10
iterative parallel regions it stops writing trace datal to the
file until it observes a new program behavio~. The
parameters contained in the trace file are the threaq states
and OpenMP events, which include two hatdware
counters.

Considering the full trace in Figure 4 (see fmal page) a
first visual perception of the program behavior can be
quite misleading. For example, it seems that there is a lot
of for~join activity in the first thread (white color) while
this is only an effect of the display precision. The reason
is that at the scale that had to be used to display the whole
trace, each pixel represents a large time interval (152 ms)
within which one thread can perform many changes of

activity.
In Figure 5 (see final page) we can easily identify that

there is a periodic pattern (period boundaries tagged with
flags). It can be observed that after a certain number of
repetitions this pattern changes and that a new periodic
pattern is then repeated. The direct look at the full trace of
Figure 4 hardly reveals that there is a special behavior in
the middle part. The flags in Figure 5 identify the period.
With the scaled trace it is immediate to zoom to an
adequate level to see the actual pattern of behavior. In the
visualization of the scaled trace, the iterative trace
information is not shown (Figure 5 black area), since the
tracing mechanism did not write it to the trace file.

Table I. Evaluated benchmarks.

Benchmarks

Application

NAS Et

NAS Cg

NAS Lu

NAS Sp

Apsi

Hydro2D

Swim

Tomcatv

Turb3d

NAS
benchmarks

4.4. Reduction of the trace file size

We examine how much the tmce file size reduces when
using the trace-scaling agent. Figure 2 shows the size of
the trace files for the NAS and SPEC95 benchmarks
obtained with and without using the agent. It can be seen
that with scalable tracing the trace files are reduced
significantly. The NAS Lu trace file, for instance, reduces
from I73 Mb to 8 Mb, which is a reduction of 95%. Had
we traced less than IO iterations, the trace size would
reduce more.

SPEC95fp
benchmarks

4.2. Application structure identification

-
.0
~-
.r.
-
0)
c:
~
Q)
u
~
...

The trace-scaling agent allows inserting info$ation
about the detected application structure in thei trace
records, which indicates the start/end of an it~rative
pattern. This infonnation is highly useful for the I/nalyst
because one of the first activities when facing a largf trace
is to zoom down, trying to identify an area of !a few
periods that can be taken as reference for loo~ng at
details. The tracing tool writes these events indicating
periodic patterns to the trace even if the writing ! of all
other trace information is suspended.

In Figure 3 (see fmal page) two iterative regionsi of the
NAS Et benchmark with their thread states are shown.
The boundaries of the iterative regions are represented as
flags, which reveal the application structure. The number
of periodic patterns and their duration can easJly be
comDuted from the Deriodicitv event in the trace filei

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

efficient analysis. We have proposed a trace-scaling agent,
which allows storing data for a complete analysis while
achieving a small trace file. We have implemented the
agent, which learns the application behavior in runtime
and allows storing only the non-iterative trace data. We
have shown that the size of such a scaled trace file
becomes significantly reduced, while in the traced interval
the relevant application behavior is captured. We
observed that the scaled traces are easy to handle by
visualization tools and the scaled trace lets the analyst
fuster observe relevant application behavior such as the
application structure. Our implementation of the trace-
scaling agent has a small overhead and it is used in
runtime. The scaled trace can substitute the full trace in
several performance analysis tasks, since it allows the
performance analyst to reach the same conclusions on the
application performance as when using the full trace.

-

~.Full trace

.10lteratio s

--
.c

~
.c-
C)
c

~
Qj

~..
...

NAS lu Hydro2D

Figure 2. Comparison of the trace file size wi~h full
and scalable tracing.

5. Discussion

7. References

The overhead of an implementation is an important
performance factor of real-time tools. In [2] w~ have
evaluated the overhead produced by the trace-$caling
agent. It was observed that the overhead introdu4ed by
tracing is small in terms of the execution timt The original tracing tool adds 1% -3% to the executio time.

With the trace-scaling agent, the overhead is 3% -6 0.
In applications with a periodic pattern ",'e ex ect to

reach the same concluysions on performance I when
analysing a subset of the iterations, i.e. the scaled trhce. In
[2] we have compared the performance indices coTputed
from the scaled and full traces. Our results show ~rt the
same performance conclusions can be obtained I when
analysing the scaled trace of the applications. i

The agent learns the application behavior fr f the stream of function identifiers. It could be possible t t the

agent detects iterative behavior in the executed fun tions,
but at the same time the performance of the other i dices
(cache misses, TLB misses, ...) could differ signi cantly
from one iteration to another. If such a case occur~ in an
isolated parallel region, the agent would not dete~t this
situation. I

Our tool relies on the iterative behavior OfapPli f tions, where loops are executed many times. Many sc. ntific

applications have such a structure. The studied N S and
SPEC95 benchmarks, which mostly perform n eric
computations, exhibit iterative application behav~or. In
case of having the trace-scaling agent activate4 with
another class of applications, which are non-iterative,
simply no periodic behavior would be detected and the
whole trace would be written to the file.

[1] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, J.
Vetter. "A Dynamic Tracing Mechanism for Performance
Analysis of OpenMP Applications." In Internationa/
Workshop on Open,\1P App/ications and Too/s
(WO,\1PAT 2001), July 2001, pp. 53-67.
[2] J. Caubet, F. Freitag, J. Labarta. "Comparison of
scaled and full traces of OpenMP applications." Tech.

Report UPC-DAC-200 1-31.
[3] F. Freitag, J. Corbalan, J. Labarta. "A dynamic
periodicity detector: Application to speedup
computation." In Intermationa/ Para//e/ and Distributed

Processing Symposium (IPDPS2001), Apri12001.
[4] J. Hoeflinger, B, Kuhn, W. Nagel, P. Petersen, H.
Rajic, S. Shah, J. Vetter, M. Voss, and R. Woo. An
Integrated Performance Visualizer for MPl/OpenMP
Programs. In Internationa/ Workshop on Open,\1P
Applicatiom and Tools (WO,\1PAT2001), July 2001, pp.
40-52.
[5] B. P, Miller, M. D. Callaghan. The Paradyn Parallel
Performance Measurement Tools. IEEE Computer
28(11): 37-46, November 1995.
[6] Pallas: Vampirtrace. Instal/ation and User's Guide,

htm:llwww,12allas.de
[7] C. E. Wu, A, Bolmarcich, M. Snir, D. Wootton, F.
Parpia, A. Chen, E. Lusk and w, Gropp. From Trace
Generation to Visualization: A Performance Framework
for Distributed Parallel Systems. In Proceedings of

SuperComputing (SC 2000), November 2000.
[8] 0. Zaki, Eo Lusk, W, Gropp, and D. Swider, Toward
scalable performance visualization with Jwnpshot. In
Internationa/ Journa/ of High Performance Computing

App/icatiom. 13(2): pages 277-288, 1999.

6. Conclusions

We have described the some scalability probl~ms of
tracing in cun-ent performance analysis tools an~ why
these are a problem for storage, visualizatio~, and

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

Figure 3. Visualization of the thread states in the NAS Bt application
in 2 iterative parallel regions. Light color=idle, dark color=computing.

Figure 4. Visualization of the whole Hydro2D lexecution trace (full trace).

Figure 5. Visualization of the Hydro2D execution with scaled tracing (scaled trace).

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:54 from IEEE Xplore. Restrictions apply.

